
PHYSICAL REVIEW C 91, 024325 (2015)

Thomas-Ehrman effect in a three-body model: The 16Ne case
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The dynamic mechanism of the Thomas-Ehrman shift in three-cluster systems is studied by using the example
of 16Ne and 16C isobaric mirror partners. We predict configuration mixings for 0+ and 2+ states in 16Ne and 16C.
Large isospin symmetry breaking on the level of wave function component weights is demonstrated for these
states and discussed as a three-body mechanism of the Thomas-Ehrman shift. It is shown that the description of
the Coulomb displacement energies requires consistency among three parameters: the 16Ne decay energy ET ,
the 15F ground-state energy Er , and the configuration mixing parameters for the 16Ne and 16C 0+ and 2+ states.
Based on this analysis we infer the 15F 1/2+ ground-state energy to be Er = 1.39–1.42 MeV.
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I. INTRODUCTION

This paper probes whether the Thomas-Ehrman shift (TES)
can be used to gain more insight into the low-lying 16Ne
spectrum and the properties of the even s-d shell nuclei beyond
the proton drip line in general.

The TES is an effect of isobaric symmetry violation, which
was initially introduced for single-particle states of sd-shell
nuclei in Refs. [1,2]. In such nuclei the l = 0 and l = 2
orbitals are quite close to degeneracy. However, these orbitals
have different radial extent and their Coulomb displacement
energies (CDEs) are quite different. Therefore the relative
positions of the l = 0 and l = 2 orbitals in isobaric partner
states are strongly affected by the presence (absence) of the
Coulomb interaction. These differences provide, e.g., a simple
way for l identification. Later, studies of the TES effect have
also been extended to nuclei with even number of “valence”
nucleons, with the goal, e.g., understanding of configuration
mixing.

There is no solid definition of the TES, so, let us recall those
typically used in the literature. One possibility is a kind of
“theoretical” definition in which one considers the difference
between the experimental CDE and the one expected from
isobaric symmetry,

�J = �Coul(calc) − �Coul(pert), (1)

for a state with total spin J . �Coul(calc) is the CDE obtained by
solving the Schrödinger equation (SE) on both the proton and
neutron sides of the isobar, while �Coul(pert) is the perturbative
CDE obtained by solving the SE on the neutron side of
the isobar and then using the obtained wave function (WF)
to calculate the CDE on the proton side perturbatively by
assuming complete isobaric symmetry:

�Coul(pert) = 〈�n|VCoul|�n〉.
Such a definition was used, e.g., in Refs. [3–5].

A phenomenological analog of the value (1) was analyzed
in Ref. [6]. This work compared experimental masses Mexp

with masses Mcg provided by the charge-symmetric mass
relationship

�J = Mexp − Mcg.

Such an analysis relies only on the information about masses
and excitation energies and it can be performed in an
unambiguous and statistically significant way. A systematic
increase in the value of the TES was demonstrated in [6] for
systems beyond the proton drip line with increasing proton (or
two-proton) Q values.

The other possibility is to use a pure “phenomenological”
definition which relies only on the experimental relative shifts
of the energy levels with different J values in proton-rich and
neutron-rich mirror systems:

�J2J1 = [E(J2) − E(J1)]prot − [E(J2) − E(J1)]neut. (2)

An analysis of this definition of this TES compared with the
one of Eq. (1) can be found in Ref. [3].

The interpretation of the TES for systems with one valence
nucleon is very simple as we have already mentioned. The
energies of single-particle orbitals with l = 2 can be found
around the values defined by the perturbative Coulomb
displacement, and �J for these should be relatively small.
The energies of single-particle orbitals with l = 0 are shifted
to considerably lower energies than perturbative values, and
�J for these should be large. As a result, the distance between
levels (and sometimes even the level ordering) is changing,
inducing a sizable �J2J1 .

The situation is more complicated for systems with two
valence nucleons. A simple estimate illustrating that is as
follows. For the sd-shell WFs of the 0+ and 2+ states can
schematically be approximated as

�0 = α0[s2]0 + β0[d2]0, �2 = α2[sd]2 + β2[d2]2. (3)

If we think in terms of the independent particle model and
consider that a typical value of the TES associated with an
s-wave nucleon is �, and with the d-wave nucleon being zero,
then, e.g., for α0 = 1 and α2 = 0 we can expect �20 = 2�
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while for α0 = 0 and α2 = 1 we can expect �20 = −�.
Thus, in principle, the important structure information is
encoded in the �J2J1 value, but it still cannot be extracted
without considerable theoretical work, in contrast with the
one-valence-nucleon case.

The existence of a specific realization of the TES, char-
acterized as a “three-body mechanism” of the TES, was
demonstrated in Ref. [4]. 12O, 16Ne, and their isobaric mirror
partners 12Be and 16C were considered in a three-body core +
N + N model. It was shown that in such systems not only a
conventional (or “static”) TES exists, which is connected with
the different radial extent of the [s2] and [d2] configurations.
Also there arises a specific TES of a three-body nature (a
“dynamic” TES) for which the relative weights of [s2] and
[d2] configurations appeared to be strongly different in the
neutron-rich and proton-rich mirror partners. A strong increase
(tens of percent) was predicted for the weight of the [s2]
configuration on the proton side of the isobar caused by the
presence of the core-p Coulomb interaction.

Recently, 16Ne was studied in three experiments using
neutron knockout from a 17Ne beam [7–9], providing data
with better statistics and quality than in the previous works.
This inspired us to revisit the issue and consider the TES effect
in 16Ne and 16C also in the broader context including the first
excited 2+ states. We demonstrate in this work that the TES
can be used as a very precise tool to check the consistency
of three-body core + N + N and two-body core + N state
properties.

II. THEORETICAL MODEL

The theoretical model of this work is the same as was previ-
ously used for the discrete spectrum [10] and continuum [11]
studies in a three-body approach. It was applied to 16Ne and
its isobaric mirror partner 16C in Refs. [4,9]. Here we describe
the model mainly to clarify details connected with our accurate
TES treatment.

For studies of 16C, the discrete spectrum states are solutions
of a homogeneous three-body Schrödinger equation

(Ĥ3 − ET )�3(ρ,�5) = 0, (4)

where the energy ET is calculated with respect to the core +
N + N threshold. For studies of the 16Ne continuum spectrum
an inhomogeneous three-body Schrödinger equation

(Ĥ3 − ET )�(+)
3 (ρ,�5) = �(J )

q (ρ,�5) (5)

is solved for each J different energies ET searching for the
resonance peak position. The source function �

(0)
q for the 16Ne

ground state (g.s.) was approximated by assuming a sudden
removal of a neutron from the 15O core of 17Ne,

�(0)
q = v0

∫
d3rn eiqrn

〈
�14O

∣∣�17Ne
〉
, (6)

where rn is the radius vector of the removed neutron. The
17Ne g.s. WF �17Ne was obtained in [12] in a three-body
15O + p + p model, and different aspects of nuclear dynamics
for this system were investigated in [13]. The WF of the
removed neutron was constructed in the cluster 14O + n model
approximation for 15O in such a way that the neutron separation

energy and experimental matter radius of 15O are reproduced.
The details of the whole procedure can be found in Ref. [14].
The value of the rms radius, 3.05 fm, for the 14O + n channel
WF was found by using rms matter radii of 2.44(4) fm (15O)
and 2.40(3) fm (14O) from Ref. [15].

For the 2+ excitations of 16Ne we do not have some
simple dynamically motivated model and �

(2)
q was provided

by additionally acting on the valence protons of the 17Ne g.s.
WF by the quadrupole operator:

�(2)
q = v2

∫
d3rne

iqrn
〈
�14O

∣∣ ∑
i=1,2

r2
i Y2mi

(r̂i)
∣∣�17Ne

〉
. (7)

The sudden removal approximation is not intended for absolute
cross-section calculations; therefore the “source strength”
coefficients vJ are arbitrary values providing the source
functions the correct dimension [energy/length5/2].

It should be noted that the approaches to discrete spectrum
and continuum states is explicitly different in Eqs. (4) and (5).
There are two things to emphasize: (i) The formulation
provided by Eq. (5) is a simplistic but reasonable approxi-
mation for the neutron knockout reaction mechanism used to
populate 16Ne states in the recent experimental studies [7–9].
Therefore, the differences in the approaches (4) and (5) is
physically motivated. (ii) The practical difference between
results provided by Eqs. (4) and (5) vanishes in the limit of
the widths tending to zero for continuum states. For 0+ and 2+
states of 16Ne considered in this work (which are very narrow),
the effect of a particular choice of the sources �

(J )
q on the

energies of the calculated resonances is less than some units
of keV, which is much less than the other effects considered
here.

The three-body WF �3 depends on a set of hyperspherical
variables: the hyperradius ρ and the five-dimensional hyper-
angle �5. The hyperspherical decomposition of the discrete
spectrum WF is

�3(ρ,�5) = ρ−5/2
∑
Kγ

χKγ (ρ)JKγ (�5). (8)

The value K is the hypermoment (the principal quantum
number of the hyperspherical method) while the “multiindex”
γ = {L,S,lx,ly} stands for the complete set of quantum
numbers for the specific three-body WF component: total
orbital momentum L, total spin S, and orbital angular momenta
lx and ly for the Jacobi subsystems. The boundary conditions
for the discrete spectrum partial hyperspherical functions χKγ

are expressed in terms of Bessel functions K as

χKγ (ρ)
ρ→∞∼

√
2�ρ/π KK+2(�ρ)

∼ exp[−�ρ]

(
1 + 4(K + 2)2 − 1

8�ρ
+ · · ·

)
, (9)

where � = √
2MET , and M is the average mass of the nucleon

in the considered system. At large distances (tens of Fermi)
this is essentially an exponential decrease. For example, for the
K = 0 component of the 16C g.s. WF, the largest nonconstant
term in the long-range decomposition in Eq. (9) becomes small
compared to unity (less than 0.1) at ρ values larger than 36 fm.
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The decomposition of the continuum WF �
(+)
3 is analogous

to that of Eq. (8). The boundary conditions for the partial
continuum functions χ

(+)
Kγ at extreme remote asymptotic hyper-

radius (where the long-range Coulomb terms vanish because
of some form of physical screening) should be provided by
diverging waves:

χ
(+)
Kγ (ρ)

ρ→∞∼ exp[i�ρ]. (10)

However, for realistic distances of actual calculations (e.g.,
ρ ∼ 1000 fm) we use complicated approximate boundary
conditions for the three-body Coulomb problem obtained
by diagonalization of the Coulomb potential terms in the
hyperspherical representation on the finite hyperspherical
basis [11].

The three-body Hamiltonian consists of the kinetic term,
three pairwise interactions, and the phenomenological poten-
tial V3 depending only on the hyperradius ρ:

Ĥ3 = T̂ + Vcore-N1 + Vcore-N2 + VN1-N2 + V3(ρ). (11)

The V3 term technically aims at fine correction of the state
energies when we need to adjust them exactly to experimental
values, and it physically accounts for many-body effects which
are beyond the three-body dynamics [11]. In this work we use
for this term the Woods-Saxon form factor

V3(ρ) = V
(J )

3

/{1 + exp[(ρ − ρ0)/aρ]}, (12)

with the radius ρ0 = 6 fm and diffuseness aρ = 0.6 fm. The
V3 potential depth parameter V

(J )
3 is adjusted individually for

each total spin J (see Table I, for example).
For the 14Z + N channel (Z = 9,6) we use the potentials

very similar to those from Refs. [4,9], but with minor variations
connected with the procedure of the TES treatment discussed
in the next paragraph. These are Woods-Saxon potentials with
derivative (ls) term

Vcore-Ni
= V (l)

c

1

1 + f (r)
+ (l · s) V

(l)
ls

b

ra

f (r)

[1 + f (r)]2
,

f (r) = exp
[(

r − r
(l)
0

)/
a
]
,

where b = 2.015 32 fm2. The components of the potentials
are l dependent: they are adjusted individually for the quan-
tum states with different angular momenta. The following
parameters are used for s, p, and d orbitals: a = 0.53 fm,
V (1)

c = −12 MeV, V
(1)
ls = 11 MeV, r

(1)
0 = 2.89 fm, V

(2)
ls =

−11.12 MeV, and r
(2)
0 = 3 fm. The other central component

parameters for s and d waves are provided in Table I. There
is also an additional repulsive component in the s wave with
Woods-Saxon form factor with repulsion 144 MeV, width 1.7
fm, and diffuseness 0.53 fm. This is required to simulate the
effect of the occupied deep s orbital in the 14Z core cluster in
our three-body model.

In this work we employ for the nucleon-nucleon channel
the quasirealistic potential from Ref. [16] including central,
spin-orbit, tensor, and parity-splitting terms.

The Coulomb potential of a homogeneously charged sphere
was used in this work with sphere radius adjusted to reproduce
the specific charge radius. We also estimated the influence of
the charge distribution on the effect of using Gaussian and

TABLE I. Potential sets in the core + N channel adjusted for
rch(14O) = 2.7 fm. Radii are in fm, energies in MeV, and probabilities
in percent. The position Er of the two-body resonance is defined here
by the phase shift equal to π/2. The energy of the first excited state
of 15F is Er (5/2+) = 2.8 MeV.

P1 P2 P3 P4 P5

Er (1/2+) 1.147 1.287 1.467 1.287 1.287
r

(0)
0 3.5 3.1 2.7 3.1 3.1

V (0)
c − 34.085 − 47.45 − 67.9 − 47.45 0

V (2)
c − 49.587 − 49.587 − 49.587 0 − 49.587

V
(0)

3 0.255 0.647 1.051 − 2.461 − 1.918
�Coul(pert) 7.017 7.130 7.301 6.517 7.561

16C( 0+)
W (s2) 44.2 47.8 51.4 93.5 0.82
W (p2) 0.88 0.86 0.83 5.47 9.01
W (d2) 46.5 43.1 39.9 0.71 89.8

16Ne( 0+)
ET 1.136 1.303 1.514 0.821 1.972
 (keV) 0.323 1.09 3.67 0.003 0.313
W (s2) 71.7 70.2 69.0 95.4 1.16
W (p2) 5.88 5.84 5.98 3.67 9.59
W (d2) 22.2 23.4 24.6 0.62 88.8

V
(2)

3 0.355 0.72 1.09 − 2.697
�Coul(pert) 6.927 7.062 7.229 7.436

16C( 2+)
W (p2) 4.67 4.79 4.9 2.50
W (d2) 15.9 14.6 13.3 94.8
W (sd) 78.1 78.4 80.6 2.07

16Ne( 2+)
ET 2.941 3.074 3.232 3.585
 (keV) 40.6 45.2 51.4 5.25
W (p2) 3.72 3.89 4.06 3.08
W (d2) 7.72 7.81 7.87 91.6
W (sd) 87.2 86.9 86.7 4.43

Fermi-type form factors. The impact of such a modification on
energies is on the level of 10–15 keV, which is much smaller
than the scale of energy uncertainty connected with uncertainty
of the charge radius itself.

In the large-basis calculations we treat part of the basis adia-
batically. The potential matrix of the large size Kmax is reduced
to the size KFR by a procedure which is called Feschbach
reduction. This is essentially an adiabatic approximation (see,
e.g., Ref. [17] for details). A reduced potential matrix of size
KFR is used to solve the system of hyperspherical coupled
channel equations. A Kmax equal to 110 and 70 is used for the
0+ and 2+ states correspondingly, while the KFR values are
24 and 18. Such basis sizes are sufficient for computational
convergence of such complicated decay observables as widths
and momentum distributions [9,17]. They are more than
sufficient for full convergence of the energy calculations.

III. COMPUTATION PROCEDURE FOR THE TES

There are two uncertain ingredients in the three-body model
computation of the TES in the 16Ne-16C mirror partner pair:
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FIG. 1. (Color online) Energy level schemes for 16Ne (from [9]),
15F (left axis), and 16C and 15C (right axis). The true 2p decay path
for the 16Ne g.s. is indicated by the red dotted arrow. The hatched
area indicates the experimental uncertainty of the 15F g.s. position.

(i) the charge radius rch of 14O, which is experimentally
unknown (see, e.g., Ref. [18]), and (ii) the 1/2+ ground-
state energy Er of 15F, which strongly affects the results of
the calculations, but on which there exists an experimental
controversy (see, e.g. Ref. [19]). The level schemes for
16Ne-16C and 15F-15C isobaric mirror partner pairs are shown
in Fig. 1.

Preparing the potential sets we fix the positions of 1/2+
and 5/2+ states of 15C = 14C + n to be exactly experimental
values by using potentials of somewhat different radii r0 in
the corresponding partial wave. Then we switch to 15F, getting
different resonant state positions Er (Jπ ) depending on the
potential radius and also on rch of 14O. Based on the trend of
known charge radii for oxygen isotopes [18] the charge radii
of 14O around 2.7 fm are used. The d-wave potential radius is
thus fixed based on the well-known position of the 5/2+ state
in 15F. The 1/2+ state position in 15F is varied depending on
specific r0 and rch. For relatively broad states, to which the 15F
g.s. belongs, there is always some uncertainty in the definition
of the state position. In this work we always imply that Er is
the energy at which the phase shift passes π/2.

With the obtained potential sets we run three-body model
calculations for 16C. The phenomenological three-body poten-
tial parameters V

(J )
3 are adjusted to provide exact experimental

energies of 0+ and 2+ states of 16C, ET (0+) = −5.469 MeV
and ET (2+) = −3.703 MeV. With V

(J )
3 parameters adjusted in

this way we then perform the calculations for 16Ne. The results
for several potential sets (P1, P2, and P3), giving different 15F
g.s. positions, are provided in Table I. In the table we show
only the calculation inputs and results for the charge radius
rch(14O) = 2.7 fm since the values obtained with different
charge radii differ insignificantly.

It is seen in Table I that for realistic potentials P1–P3 the
values of V

(J )
3 are quite small, typically below 1 MeV. They

are also quite similar for both 0+ and 2+ states. This indicates
that the three-body picture of the inert 14O-14C core plus two
nucleons is an adequate approximation to the structure of these
low-lying states in 16Ne-16C.

To test the sensitivity of the TES to the structure, we
varied the s/d ratio of the WF by the following procedure:
We increased the [s2] content of the WF by multiplying the

d-wave potential depth parameter V (2)
c by a factor smaller than

unity, and vice versa to increase the [d2] content of the WF we
multiply the s-wave potential depth parameter V (0)

c by a factor
smaller than unity. Two limiting cases of such potential sets
(P4 and P5) are illustrated in Table I. The P4 results for the
2+ state are missing there as it is not possible to construct a
low-lying 2+ state only on the s-wave orbitals.

IV. CALCULATION RESULTS

A. Charge radius dependence

Figure 2 shows that calculations with potentials providing
different positions of the 15F g.s. produce very different
positions of both 0+ and 2+ states of 16Ne. For variation
of Er (1/2+) within the range 1.23–1.56 MeV, “allowed”
by uncertainty in existing experimental data, the three-body
resonance energies ET variation in 16Ne is 250–300 keV. In
contrast, the predicted curves for different 14O charge radii
practically overlap (the deviations being less than 15 keV).
Thus the influence of the specific value of the unknown charge
radius of 14O on the physically motivated calculation results
(those with fixed 15F g.s. position) is practically negligible
and will not significantly affect the conclusions of this work
concerning the TES.

B. Three-body TES mechanism

In Ref. [4] it was demonstrated that there are two major
sources of TES in the 0+ ground states of even sd-shell
nuclei present in the three-body core + N + N approximation:
(i) conventional “static” TES connected with larger spatial
extent of the s-wave orbitals compared to the d-wave orbitals
and (ii) a “dynamic” three-body TES mechanism leading to a
relative increase of the [s2]0 configuration weight compared
to that of the [d2]0 configuration.

Both effects are illustrated by Fig. 3, which shows the
radial density dependence for two dominant components of
16Ne and 16C g.s. WFs. The K = 0 component weight is
very close to that of the [s2]0 configuration and the selected

FIG. 2. (Color online) Dependence of the 16Ne 0+ and 2+ state
energies on the position of the g.s. 1/2+ resonance in 15F. Calculations
for potential sets with different charge radii of 14O are shown to be
nearly overlapping.

024325-4



THOMAS-EHRMAN EFFECT IN A THREE-BODY MODEL: . . . PHYSICAL REVIEW C 91, 024325 (2015)

FIG. 3. Radial density dependence of two major components of
three-body WFs for the ground 0+ states of 16Ne and 16C, using
potential set P2. The 16C WF is normalized to unity, and the 16Ne WF
is normalized arbitrarily for ease of viewing.

K = 4 component corresponds well to the [d2]0 configuration.
The densities of 16C WF components at large hyperradii
demonstrate behavior which is close to an exponential
decrease. The densities of 16Ne WF components tend to
become constant at large hyperradii, which corresponds to
an ∼ exp[i�ρ] asymptotic of the WF �

(+)
3 . The radial extent

of the [d2]0 component in 16Ne is a bit larger but close to that
in 16C. In contrast, the [s2]0 component is drastically broader
in 16Ne. Also the weight of the [s2]0 component in 16Ne is
evidently larger than in 16C, while the weight of the [d2]0

component is smaller.
The relative scale of “static” and “dynamic” TES effects can

be understood from Table I. The calculations with potential sets
P4 and P5 provide limiting cases (practically pure s wave or
pure d wave) of the 16Ne-16C structure which are very “robust”
and are not altered by the Coulomb interaction. Thus the TES
value �0 for the 0+ state associated solely with the radial size
increase of orbitals from 16C to 16Ne is ∼230 keV for pure
[s2] and ∼120 keV for pure [d2] configurations. In contrast,
the predicted TES for the realistic structure of 16Ne-16C also
includes the dynamic effect of structure modification and
thus varies between ∼300 and ∼ 400 keV. Therefore we can
estimate the scale of the “dynamic” contribution as 45%–60%
of the whole TES.

C. The 15F ground-state issue

The calculated positions of the 0+ and 2+ states in 16Ne as
functions of the 15F g.s. energy are shown in Fig. 4. This figure
also compares dynamical and perturbative results.

“Theoretical” TES values �J are always large in our
calculations for both the 0+ state (varying between ∼300 and
∼400 keV) and the 2+ state (stable at ∼300 keV) in 16Ne.
In contrast, the “phenomenological” TES value �J1J2 is small
and even changes sign, being sensitive to the particular value
of Er in 15F. The latter result can probably be qualitatively
understood as follows: If we look in Table I we see that the
weight W (s2) varies between 44% and 51% for 0+ in 16C,
while W (sd) is more stable around 79% for 2+. Thus, there
are two s-wave nucleons in 0+, which are subject to strong

FIG. 4. (Color online) Dependence of the 0+ and 2+ state ener-
gies in 16Ne on the position of the g.s. 1/2+ resonance in 15F for
dynamical (solid lines) and perturbative (dashed lines) calculations.
The thickness of theoretical curves corresponds to ∼15 keV uncer-
tainty connected to the choice of the charge distribution form factor.
Horizontal gray lines and shaded areas show the experimental ET

values for 0+ and 2+ states from Ref. [9] with their uncertainties. The
vertical shaded area indicates the range of Er where a consistency
between the theory and the experiment is achieved. The 2+ state
excitation energies E∗

2+ and the TES values corresponding to different
definitions provided by Eqs. (1) and (2) are indicated in the plot.

TES, but the weight of this configuration is mainly under 50%.
There is only one s-wave nucleon in the [sd] configuration of
2+; however, the weight of this configuration is about twice as
large in 2+ than W (s2) in 0+. So, for such structures of 0+ and
2+ states, the TES modifications of CDE are about equal.

Figure 4 shows that simultaneous consistent theoretical
description for both 0+ and 2+ resonances [9] is achieved
at Er = 1.39–1.42 MeV. For theoretical calculations in [9] we
used a potential giving Er = 1.45 MeV. We see now that this
value is a bit too large considering the TES results of this work.
However, slight modification of this parameter on such a level
does not lead to any modification of conclusions of Ref. [9]
related to basic theory.

The current experimental situation for 15F g.s. is quite
uncertain (see, e.g., the discussion in Ref. [19]). Table II
shows the results of the four most recent experiments. All
of them were for the resonance scattering of 14O on protons,
so coinciding results are expected. This is practically true for

TABLE II. Properties of the 15F 1/2+ g.s. and the first excited
5/2+ state obtained in the recent experiments on resonance scattering
of 14O on protons and in the theoretical analysis of this work. All
values are in MeV.

Ref. Er (1/2+) (1/2+) Er (5/2+) (5/2+)

[20] 1.51(15) 1.2 2.853(45) 0.34
[21] 1.45+0.16

−0.1 0.7 2.795(45) 0.325(60)
[22] 1.23(5) 0.67(17) 2.81(2) 0.30(6)
[23] 1.31(1) 0.85(15) 2.78(1) 0.31(1)
This work 1.405(15)
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FIG. 5. (Color online) (a) Dependence of the 16Ne 0+ state en-
ergy on the weight of the [s2] WF component and (b) dependence of
the 16Ne 2+ state energy on the weight of the [sd] WF component.
Horizontal gray lines and shaded areas show the experimental values
for 0+ and 2+ states from Ref. [9] with corresponding uncertainty.

the first excited state, but not for the ground state of 15F. Given
the high uncertainty of experimental situation the consistency
check found in this work may provide now the most reliable
information on the 15F g.s. energy.

The positions of the 0+ and 2+ states in 16Ne as functions
of the internal structure are shown in Fig. 5. Such curves allow
us to fix the configuration mixing values in the case when the
decay energy ET is known. However, in our calculations we
demonstrate that this can be made differently, depending on
the particular 1/2+ resonance energy in 15F. Figure 5 shows
that for the 0+ state consistency with the experiment [9] is
achieved for a broad range (from 50% to 75%) of possible
configuration mixing W (s2) values, depending on the specific
g.s. energy Er of 15F. Consistency with experiment [9] for the
2+ state can be achieved for from 40% to 100% of possible
W (sd) values. However, for the 2+ state the situation is more
restrictive as for Er � 1.45 MeV consistency of the TES with
the experimental energy cannot be achieved at all.

If we fix the three-body state energies ET to be exactly
experimental [9] we can get the region on the planes
{W (s2),Er} or {W (sd),Er} where mutually consistent values
of W and Er are located (see Fig. 6). The meaning of these

FIG. 6. Two-dimensional {W,Er} plots for 16Ne for (a) the [s2]
WF component weight for 0+, W (s2), and (b) the [sd] 2+ WF
component weight W (sd) vs the energy of the 15F g.s. under the
restriction of reproducing exactly the experimental energies of the
16Ne g.s., ET = 1.466(20) MeV, and 2+ state, ET = 3.16(2) MeV [9].
Gray curves correspond to the limits defined by the experimental
uncertainty of the above energies.

plots is that precisely fixing the g.s. properties of 15F fixes
the structure of the valence configurations for both 0+ and
2+ states of 16Ne simultaneously. We note again that while
for the 0+ state consistency in principle can be achieved for
a broad range of Er , which is much broader than existing
experimental uncertainty, for the 2+ state this kind of plot
becomes quite restrictive, limiting a possible Er value to be less
than 1.43–1.45 MeV. Thus we see that simultaneous studies of
the TES for 0+ and 2+ states imposes stringent limitations on
possible properties of the core + N + N systems and its core
+ N subsystems.

The value Er = 1.39–1.42 MeV deduced in this work for
the 15F g.s. appears very precise. Still there are two inherent
uncertainties: (i) the experimental uncertainty of ET and
(ii) the theoretical uncertainties of the three-body 14O + p + p
model for 16Ne. Theoretical uncertainties which go beyond
the three-body formulation for 16Ne should further increase
this uncertainty. Thus, an admixture of configurations like
14O ∗ + p + p should lead to a CDE increase (with these
configurations being more compact than the main one) and
thus shifts the consistency range to somewhat lower Er values.
Considering the good description of energies of 16Ne-16C
in our model we do not expect a large admixture of such
configurations and making simple estimates we can suggest
a 15–30 keV decrease of the lower boundary of Er for a
10%–20% admixture of configurations with an excited 2+
state of the 14O core. This would extend the boundaries for the
“TES-based” 15F g.s. position to Er = 1.36–1.42 MeV.

D. Structure of 16Ne 0+ and 2+ states

The variation of the 15F g.s. energy in the range allowed by
the current experimental uncertainty produces some variations
in the structure of 16Ne and 16C states calculated in the
three-body model. These were found to be the largest for
the 16C ground state, where W (s2) varies on the level of
6%–8%. For its isobaric mirror partner, this uncertainty is
significantly reduced. In 16Ne the typical level of structure
variation is 2%–3% and can be regarded as insignificant. We
can guess that for 16Ne the peripheral dynamics, associated
with the long-range Coulomb interaction rather than with the
short-range nuclear dynamics, is more important and this leads
to the relative stabilization of the calculated results for the 0+
state in 16Ne.

For the 2+ state the predictions are much more stable than
for the 0+ state and also follow the trend discussed above:
There is ∼2.5% variation of W (sd) in the 16C WF and just
∼0.5% variation in the 16Ne WF. Both values can be regarded
as very small and the predicted structure as stable.

Quite a paradoxical output of our studies is that the presence
of the Coulomb interaction drastically increases the reliability
of theoretical predictions for a class of systems such as 16Ne-
16C on the proton side of the isobar.

E. Widths of the 16Ne 0+ and 2+ states

The results of width calculations (see Table I) are shown in
Fig. 7. They are accompanied with the calculated results from
Ref. [4]. The latter work was one of the first of our works on
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FIG. 7. (Color online) The widths of the 16Ne 0+ and 2+ states.
Solid and dashed curves are three-body calculations and diproton
model estimates from Ref. [4]. Red diamonds are results of calcula-
tions with different Er values from Table I. Green squares show the
results of calculations with limiting cases of nuclear structure: pure
[s2] or pure [d2]. The blue star shows the 0+ result from Ref. [9].
Vertical gray lines and dashed areas correspond to experimental
energies from Ref. [9] and their uncertainties.

the topic and the results provided there suffered from some
technical issues, which were later overcome [11].

It can be seen that our new results for the 0+ state [red
diamonds in Fig. 7(a)] are around a factor of 4 larger than
those from Ref. [4] (solid curves in Fig. 7). However, they
follow the trend provided by the old prediction very well. So,
the difference is a pure convergence issue, connected to the
small-basis calculations a decade ago.

A different situation is found for the 2+ state widths. The
newly calculated results differ from the old ones even more
and here they clearly follow a different energy trend. Here we
have to conclude that the three-body width increase connected
with the decrease of the 1/2+ state energy in the 15F subsystem
“outweighs” the three-body width decrease connected with the
corresponding shift to lower ET energies.

The width results for the pure [d2] configuration (green
squares in Fig. 7) are always more than an order of the
magnitude lower than the value expected by continuing the
trend for realistic structure calculations or calculations with
[s2] dominance. This is an indication of the uncertainty range
for the two-proton decay widths, which, in principle, can be
associated with unknown nuclear structure.

V. EXPERIMENTAL DATA ON 16Ne 0+ AND 2+ STATES

Figure 4 demonstrated the consistency of our theoretical
TES values with the most recent experimental data [9] on
16Ne0+ and 2+ states. The situation is, however, different for
the other data.

The available experimental data on 16Ne 0+ and 2+ states
are listed in Table III. The first thing which should be noted
is that already the ground-state data are still quite uncertain,
spanning from 1.33 to 1.47 MeV (where we omit here one
of the early and imprecise results). This uncertainty is often
larger than the provided errors of particular experiments. Even
the most recent experiments [8,9], both of which have been
declared to have the best precisions ever, disagree with each
other for ET values of the 0+ state beyond the provided

TABLE III. Experiments in which the properties of 0+ g.s. and
first 2+ states in 16Ne were measured. Energies and widths are in
MeV. The last column provides the range of the 15F g.s. energies
Er (1/2+) in which the consistency of theoretical TES values can be
achieved for 0+ and 2+ states simultaneously (see Figs. 4 and 8).

Ref. ET (0+) (0+) ET (2+) (2+) Er (1/2+)

[24] 1.33(8) 0.2(1) 3.02(11) 1.25–1.35
[25] 1.35(8) 3.2(2) 0.2(2) 1.27–1.4
[8] 1.388(15) 0.082(15) 3.220(46) <0.05 none
[9] 1.466(20) <0.08 3.16(2) 0.02(1) 1.39–1.42
[26] 1.8(5)
[27] 1.466(45)
[28] 1.399(24) 0.11(4)

errors. Thus the overall experimental situation is unsatisfactory
already for the 0+ 16Ne ground-state energies.

Among the experimental data given in Table III, the four
experiments listed first [8,9,24,25] provide both the 0+ and 2+
positions and thus allow us to consider consistency of these
data with theoretical TES results as was done for [9] in Fig. 4.
Such a comparison is provided in Fig. 8. The consistency
range for the experiment in Ref. [25], Er = 1.27–1.4 MeV,
is quite broad and somehow overlaps with that found for the
data of Ref. [9]. Consistency in terms of the TES exists for
the data from Ref. [24]. However, the obtained range of Er =
1.25–1.35 MeV is not compatible with that of [9]. Finally, the
results of [8] are not compatible in TES terms as calculated
in our work (with the theoretical curves being crossed by
the experimental ranges at somewhat different Er ranges).
It should be noted that if a larger uncertainty is assumed
for the g.s. energy in this experiment, then consistency with
theoretical results would be achieved at Er ∼ 1.39 MeV, also
in agreement with [9].

We have demonstrated above in Figs. 5 and 6 that an
increase in precision of the experimental data on the state
positions is required to make better use of the TES results
even for the most recent data of Ref. [9]. Figure 8 shows

FIG. 8. (Color online) Dependence of the 0+ and 2+ state ener-
gies in 16Ne on the position of the g.s. 1/2+ resonance in 15F. The
solid lines are the same as in Fig. 4. Horizontal gray lines and hatched
areas show the experimental values from Refs. [8,24] (a) and Ref. [25]
(b) with their uncertainties. The vertical hatched areas indicate the Er

ranges where consistency between theory and experiment is achieved.
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that the overall situation is even worse and we see from
the experimental side also a broad controversy concerning
the older data, which should be resolved in general before
definitive conclusions on actual TES behavior would become
possible.

VI. THEORETICAL DISCUSSION

The obvious way to use the TES for nuclear structure studies
in sd-shell systems with even number of valence nucleons is
to apply it to the derivation of the configuration mixing rates.
The basic idea was discussed in the Introduction related to
Eq. (3). This way of reasoning about the nuclear structure was
elaborated in a number of papers for various mirror pares of sd-
shell systems: 12O-12Be [29], 15Ne-15B [30], 16Ne-16C [31,32],
17Ne-17N [33], and 18Ne-18O [31,34].

It is necessary to note that the connection between the
TES and configuration mixing is straightforward and simple
only in the case of an independent particle model with
well-defined orbital characteristics. However, even in the
independent particle model fixing of orbital sizes requires
precise knowledge of excitation energies of the single-particle
states for the A − 1 “subsystem” on the proton side of
the isobar. Among the mentioned systems this is not the
case for 12O, 15Ne, and 16Ne, with “subsystems” 11N, 14F,
and 15F which possess quite broad s1/2 states making the
precise experimental determination of CDE problematic. In
this work we demonstrate by the example of 16Ne that this
issue has a major impact on conclusions about configuration
mixing (see Fig. 6). On top of this issue we also insist
on the existence of a dynamic three-body TES mechanism
leading to a strong modification of configuration mixing rates
when we move from the neutron to the proton side of the
isobar.

Reference [30] provides an impressive prediction of the
15Ne g.s. energy of ET = 2.68(24) MeV, which appears to
be in a good agreement with the later measured value of
ET = 2.522(66) MeV [8]. This prediction is based on two
ingredients: (i) A phenomenological linear dependence on
W (s2) for the “scaled CDE,” (S2n − S2p)A1/3/Z<, was derived
in [30] based on the data for several Z = 8, 10 isobaric mirror
partner pairs. (ii) A plausible value W (s2) = 66% for 15B
was assumed in [30] just between the W (s2) = 86% deduced
for 14Be and W (s2) = 46% for 16C. We point to the need to
reconcile this type of phenomenology with more complicated
dependencies obtained in this work. The dependence (i) is in
principle analogous to the dependence of Fig. 5(a). However,
we obtain a set of such dependencies even for one single
nucleus 16Ne depending on Er in 15F. Studies of configuration
mixing in 15Ne in a three-body model could also elucidate
issue (ii).

VII. CONCLUSIONS

The following main results are obtained in this work.
(i) Large isospin symmetry breaking on the level of the

nuclear structure associated with the TES was predicted in
Ref. [4] for 0+ states and further elaborated in this work also
in the case of 2+ states. We have found that in the 16Ne-16C
mirror pair the “dynamic” component of the TES, connected
to structure modification, is responsible for about half of the
whole TES effect. The scale of the structure modification in
these mirror nuclei is 20%–25% for the 0+ ground states and
6%–10% for the first 2+ states.

(ii) In this work we study carefully the stability of such
predictions to theoretical inputs to the calculations. In our
predictions the structure of the 16Ne states appears to be
very stable to the admissible variation of parameters. Quite
unexpectedly, the stability of predictions for 16Ne is much
better than for 16C, presumably due to a more peripheral
character of its WF.

(iii) Accurate studies of the Coulomb displacement energies
indicate that a consistency among three parameters should be
needed: the decay energy ET , the 15F g.s. energy Er , and
the configuration mixing parameters [W (s2)/W (d2) for 0+
and W (sd)/W (d2) for 2+ states]. This is a more complicated
dependence than is ordinarily assumed. Typically the TES
is correlated with configuration mixing only to provide
predictions about nuclear structure [29–34].

(iv) The energy of the 15F 1/2+ g.s. extracted from our
analysis is Er = 1.39–1.42 MeV. Some shift to lower energies
is possible due to WF configurations which are beyond our
model. The Er values above 1.43–1.45 MeV are practically
excluded by our analysis.

(v) The current experimental situation is too uncertain for
high-precision comparison with the calculated results. Even
the very accurate values of the 16Ne experimental energies
of Ref. [9] allow consistency with theoretical predictions
of the TES in a broad range of other parameters. Further
increase in the precision of the measured energies in 15F and
16Ne would impose very stringent limits on the parameter
space in which consistency with theory is possible. Thus the
TES could become a sensitive tool for extraction of deep
structural information about 16Ne-16C mirror nuclei as well
as sd-shell nuclei with analogous dynamics.
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