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3Bioterra University, 81 Gârlei RO-013724, Bucharest, România
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We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the
spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We
consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given
by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the
nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range
character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the
geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature
and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We
generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The
quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence
of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which
takes into account the overlap with the proton-neutron part of the α-particle wave function. It turns out that it
does not depend on the nuclear size and has a value comparable to the free α-particle radius. We have shown
that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected
to the nuclear surface.
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I. INTRODUCTION

The concept of coherence has a general character being
connected to the linear superposition of quantum states. Two-
body coherence properties in nuclear structure are directly
connected to the properties of low-lying collective states.
Collective excitations are microscopically described by a
superposition of creation pair operators acting on the ground
state, described by a coherent state within the random phase
approximation (RPA). The coherent state in this context is
defined as an exponential excitation of products between
pair operators acting on the vacuum state [1]. It is well
known that ground-state properties of even-even nuclei are
well reproduced by the pairing interaction [2–4]. The wave
function within the Bardeen–Cooper–Schrieffer (BCS) pairing
approach is also of a coherent type, i.e., an exponential excita-
tion of the pair creation operators acting on the vacuum state.

The spatial distribution of the two-particle density is
very important in understanding nuclear correlations [5,6].
In particular, Ref. [7] analyzed the relationship between
coherence and chaotic properties of the nuclear pairing. The
coherence property is characterized by the so-called coherence
length, defined as the root-mean-square distance averaged
over the density. For superfluid nuclei this average is usually
performed over the pairing density. In Refs. [8–10] it was
shown that this quantity is relatively large, comparable to
the nuclear size inside the nucleus, and decreases beyond
the nuclear surface. This picture of an extended dinuclear
cluster can be understood in terms of Pauli blocking, hindering
the clustering of nucleons together inside the nucleus and,
therefore, the cluster loses binding and becomes larger. It is

in contrast to the α-clustering phenomenon, which takes place
in a narrow region close to the surface area [11,12], being
connected to the very large binding energy of an α-particle
moving in a low-density region [13]. Thus, we expect that
the corresponding correlation length estimated between proton
and neutron pairs will have a significantly smaller value.

The finiteness of nuclear systems also has important
consequences as far as thermal properties are concerned.
Pairing correlations in finite nuclei do not vanish at some
critical temperature, but they slowly decrease over several
MeV [14,15]. This can be theoretically obtained by projecting
the particle number in the BCS theory [16]. However, hints
about such behavior can be extracted in the unprojected BCS
approach from the spatial properties of the correlations.

In this paper we perform a systematic analysis of
the pairing coherence length and a comparison to the
similar quantity defined for quartets. In Sec. II we give
the necessary theoretical background concerning pairing
equations containing resonant states and coherence length.
In Sec. III we perform a systematic analysis of the coherence
length and in the last section we draw conclusions.

II. THEORETICAL BACKGROUND

A. Pairing equations

In order to investigate two-body correlations we expand the
wave function of N + 2 particles in terms of the wave function
of N particles as follows:

|�N+2〉 = κ̂|�N 〉 =
∑

ε

Xε[â†
ε ⊗ â†

ε ]0|�N 〉. (2.1)
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We consider in our calculations the spherical approximation.
Thus, the operator â†

ε creates a single particle (sp) eigenstate
of the spherical mean-field potential with standard quantum
numbers ε ≡ (εlj ). In the configuration representation one
has

〈r,s|â†
εm|0〉 ≡ ψεm(r,s) = [ϕε(r) ⊗ χ 1

2
(s)]jm,

(2.2)

ϕεμ(r) = ϕε(r)ilYlμ(r̂) ≡ fε(r)

r
ilYlμ(r̂),

where ϕε(r) is the radial wave function and the rest of the
notation is standard.

The operator κ̂ in Eq. (2.1) is called, within the decay
theory, the two-particle formation amplitude. In the absence
of two-body correlations, when the wave functions are Slater
determinants, this relation is nothing else than the Laplace
expansion of the (N + 2) × (N + 2) normalized determinant
in terms of N × N times 2 × 2 normalized determinants.

The most important two-body correlation beyond the mean
field in even-even nuclei is given by the pairing interaction.
We describe such systems within the standard BCS approach,
where the averaged particle number is conserved, separately
for protons and neutrons. Thus, both wave functions in
Eq. (2.1) have a BCS ansatz, and the operator κ̂ , connecting
N + 2 with N systems, is called pairing density operator. In
this case the expansion coefficient

Xε = 1

2
〈BCSN+2|[â†

ε ⊗ â†
ε ]0|BCSN 〉

=
√

2j + 1

2
xε, (2.3)

is given in terms of the BCS amplitudes as follows:

xε ≡ u(N+2)
ε v(N)

ε

∏
k �=ε

[
u

(N+2)
k u

(N)
k + v

(N+2)
k v

(N)
k

]
≈ u(N)

ε v(N)
ε ≈ u(N+2)

ε v(N+2)
ε . (2.4)

We consider in our basis bound sp states with negative energy,
as well as relatively narrow sp resonances with positive energy.
Relatively narrow resonances are similar to bound states and
can be normalized to unity in the internal region, but at large
distances they behave like outgoing waves

ϕε(r) →r→∞ Mε

H
(+)
l (r)

r
≡ Mε

Gl(r) + iFl(r)

r
(2.5)

in terms of spherical Hankel functions for neutrons and
Coulomb–Hankel functions for protons. The coefficients Mε

are called scattering amplitudes and their squared values are
proportional to sp partial decay widths.

The states in the continuum play an important role
on pairing correlations, especially for nuclei close to the
drip lines [6,17–21]. For nuclear structure calculations the
background contribution is not relevant and only relatively
narrow resonant states are important [22,23]. A very good
approximation for BCS calculations is to neglect the finite
resonance width, i.e., to treat the resonances as bound-like
states [24]. We label bound states by a and resonances with
positive energy by r . We treat proton and neutron pairing
separately; for a given isospin index the generalized system

of BCS equations for gap parameters 	a , 	r and number of
particles N is

	a =
∑
a′

(
ja′ + 1

2

)
Va,a′

	a′

2
√

(εa′ − λ)2 + 	2
a′

+
∑

r

(
jr + 1

2

)
Va,r

	r

2
√

(εr − λ)2 + 	2
r

,

	r =
∑
a′

(
ja′ + 1

2

)
Vr,a′

	a′

2
√

(εa′ − λ)2 + 	2
a′

+
∑
r ′

(
jr ′ + 1

2

)
Vr,r ′

	r ′

2
√

(εr ′ − λ)2 + 	2
r ′

,

N =
∑

a

(
ja + 1

2

)(
1 − εa − λ√

(εa − λ)2 + 	2
a

)

+
∑

r

(
jr + 1

2

)(
1 − εr − λ√

(εr − λ)2 + 	2
r

)
, (2.6)

where λ is the chemical potential and the potential matrix
elements Vα,β are computed according to Eq. (2.6) of Ref. [25].

We investigate pairing in excited nuclei by using the
temperature-dependent equations with anomalous and normal
densities, respectively:

〈aεaε̄〉 = uεvε tanh
βEε

2
,

〈a†
εaε〉 = v2

ε + (
u2

ε − v2
ε

)
/(eβEε + 1). (2.7)

where Eε is the quasiparticle energy Eε = √
(ε − λ)2 + 	2

ε .

B. Pairing coherence length

The two-body operator entering the pairing density (2.1)
can be written in the configuration representation. By using
the recoupling from j -j to the L-S scheme, one obtains
spin-singlet and spin-triplet components. Our calculations
have shown that the largest contribution is given by the
spin-singlet component, given the following expression:

κ(r1,r2) =
∑

ε

zε[ϕε(r1) ⊗ ϕε(r2)]0

=
∑

ε

zε

fε(r1)fε(r2)

r1r2
Yl(cos θ ), (2.8)

in terms of two-particle azimuthal harmonics

Yl(cos θ ) = [ilYl(r̂1) ⊗ ilYl(r̂2)]0

=
√

2l + 1

4π
Pl(cos θ ), (2.9)

where θ is the angle between particle radii, and the expansion
coefficient is given by

zε = xε

√
j + 1

2

〈
(ll)0,

(
1

2

1

2

)
0; 0

∣∣∣∣
(

l
1

2

)
j,

(
l
1

2

)
j ; 0

〉
, (2.10)

in terms of LS-jj recoupling brackets. By expanding the sp
wave function with respect to the harmonic oscillator (ho)
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basis,

ϕεμ(r) =
∑

n

cnεφ
(β)
nlμ(r),

φ
(β)
nlμ(r) = φ

(β)
nl (r)ilYlμ(r̂), (2.11)

where β = MNω/� is the standard ho parameter, and by using
the Talmi-Moshinsky transformation to relative r = r1 − r2
and center-of-mass (c.m.) coordinate R = (r1 + r2)/2 one
obtains the following expansion:

κ(r,R,θ ) =
∑

λ

fλ(r,R)Yλ(cos θ ), (2.12)

with expansion coefficients given by

fλ(r,R) =
∑
nN

GnNλφ
(β/2)
nλ (r) �

(2β)
Nλ (R), (2.13)

where

GnNλ ≡
∑

ε

zε

∑
n1n2

cn1εcn2ε〈nλNλ; 0|n1ln2l; 0〉. (2.14)

Here, the bracket denotes the standard Talmi–Moshinsky
recoupling coefficient. By averaging over the angle θ we get

κ̄2(r,R) = 1

2

∫ 1

−1
κ2(r,R,θ )d cos θ

= 1

(4π )2

∑
λ

f 2
λ (r,R). (2.15)

The coherence length is defined as follows:

ξ (R) =
√

I (2)(R)

I (1)(R)

≡
√∫ ∞

0
drr2w(r,R), (2.16)

in terms of the integrals

I (p)(R) ≡
∫ ∞

0
drr2pκ̄2(r,R)

=
∑
λNN ′

�
(2β)
Nλ (R)�(2β)

N ′λ (R)

×
∑
nn′

GnNλGn′N ′λ

∫ ∞

0
drr2pφ

(β/2)
nλ (r)φ(β/2)

n′λ (r).

(2.17)

Let us finally mention that the quantity xε , defined by Eq. (2.4),
is also called the “anomalous” density, while the quantity

yε = v2
ε (2.18)

is called the “normal” density. Therefore κ , defined by
Eq. (2.8), can be called the anomalous coherence length, while
a similar quantity κ0 defined by using the normal density is
called the normal coherence length.

C. Quarteting correlations

We investigate quarteting correlations in medium and heavy
α-decaying nuclei, where the valence protons and neutrons oc-
cupy different major shells. The standard assumption to build
a quartet from two protons and two neutrons in such nuclei
is to consider proton and neutron pairing separately [26,27].
Therefore, the system of Nπ + 2,Nν + 2 nucleons can be
expressed in terms of Nπ,Nν nucleons in a factorized way
as follows:

|�Nπ+2,Nν+2〉 = κ̂π κ̂ν |�NπNν
〉, (2.19)

where κτ is defined by Eq. (2.1). Thus, the quartet wave
function is a product between proton and neutron two-body
wave functions (2.12). Anyway, calculations in infinite nuclear
matter suggest that α clusters can occur only at relatively small
nuclear densities compared with the equilibrium value and the
proton-neutron correlations play an important role [13]. Thus,
an α particle can be formed only in the surface region where
the nuclear density diminishes and proton-neutron correlations
become relevant. This situation can be simulated by a proper
modification of the single particle mean field by adding a
Gaussian interaction in the surface region [28] and still by
keeping the factorized ansatz (2.19). This can explain why
an α particle can be formed from two protons and two
neutrons lying in different major shells. This additional ansatz
of the single-particle mean field was recently confirmed by
microscopic calculations [29] and fission-like theory [30].
Anyway, this modification is important in order to reproduce
the absolute value of the half-life but has a minor influence on
the coherence length.

In order to describe quartets we introduce the relative
and c.m. coordinates for proton, neutron, and proton-neutron
systems, respectively:

rπ = r1 − r2, Rπ = r1 + r2

2
,

rν = r3 − r4, Rν = r3 + r4

2
, (2.20)

rα = Rπ − Rν, Rα = Rπ + Rν

2
,

where we labeled by 1,2 proton and by 3,4 neutron coor-
dinates. The internal α-particle wave function is given by
the product between the lowest proton, neutron and proton-
neutron ho orbitals:

ψα = φ
(βα/2)
00 (rπ )φ(βα/2)

00 (rν)φ(βα)
00 (rα), (2.21)

where βα ≈ 0.5 fm−2 is the free α-particle ho parameter mea-
sured by electron-scattering experiments [26]. This parameter
is about two to three times larger than the similar sp ho
parameter in heavy α emitters, due to the fact that the α particle
is a very bound object.

We describe quarteting correlations between proton and
neutron pairs by overlapping the relative coordinates to the cor-
responding components of the α-particle wave function (2.21).
We proceed in two steps.
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1. Quarteting correlation length

Let us first consider only the overlap with respect to
proton and neutron relative coordinates rπ ,rν by keeping
free the internal proton-neutron coordinate rα . Thus, we
consider independent from each other proton and neutron pairs
by neglecting proton-neutron correlations. Therefore we can
define the quarteting density in analogy to the pairing density,
but between the proton and neutron pairs (instead of fermions):

κq(Rπ ,Rν) = 〈
κπ (r1,r2)

∣∣φ(βα/2)
00 (rπ )

〉〈
κν(r3,r4)

∣∣φ(βα/2)
00 (rν)

〉
.

(2.22)

By recoupling the product between proton and neutron
pairs (2.12) to the relative and c.m. pair coordinates one obtains
for the leading monopole component the following relation:

κq(rα,Rα) ≈ κ (0)
q (rα,Rα)

=
∑

Nπ ,Nν

Gπ (Nπ ) Gν(Nν)

×
∑
nα

〈nα0Nα0; 0|Nπ0Nν0; 0〉φ(β)
nα0(rα)φ(4β)

Nα0 (Rα),

(2.23)

in terms of Moshinsky brackets and the proton and neutron
monopole G coefficients (2.14):

Gτ (Nτ ) =
∑
nτ

Gnτ Nτ 0
〈
φ

(β/2)
nτ 0 (rτ )

∣∣φ(βα/2)
00 (rτ )

〉
,

τ = π,ν. (2.24)

It does not depend on angles and therefore one can define
the quarteting coherence length ξq(Rα) without any additional
angular average (2.15) by using in Eqs. (2.16) and (2.17) the
quarteting density squared κ2

q (rα,Rα).

2. Alpha coherence length

The next step is to consider proton-neutron correlations.
They are described by the corresponding part in the α-particle
wave function (2.21) given by φ

(βα )
00 (rα). In order to account

for the narrow proton-neutron spatial distribution in the free
α particle one defines the so-called alpha coherence length
ξα(Rα) by using the alpha density

κα(rα,Rα) = κq(rα,Rα)φ(βα)
00 (rα) (2.25)

in performing the integrals (2.17).
Let us finally mention that the integral of the alpha density

over the relative proton-neutron coordinate

F(Rα) =
∫ ∞

0
κα(rα,Rα)r2

αdrα, (2.26)

defines the formation amplitude and its square describes
the probability to find an α particle in the quartet wave
function [12,26].

III. NUMERICAL APPLICATION

We analyzed all even-even nuclei with 20 < Z < 100 and
known experimental pairing gaps, determined by the binding
energies of neighboring nuclei [31].

TABLE I. Proton quantum numbers, sp spectrum, decay widths,
and gap parameters for the Gaussian, renormalized Gaussian, and
DDD interactions in 48Cr, given by the diagonalization of the Woods–
Saxon mean field with universal parametrization [32].

No. l 2j ε (MeV) � (MeV) 	2fm (MeV) 	4.5fm (MeV) 	DDD (MeV)

1 0 1 −28.911 3.114 1.354 0.724
2 1 3 −20.837 3.173 1.810 1.482
3 1 1 −18.638 3.121 1.739 1.436
4 2 5 −12.118 2.908 2.131 2.387
5 0 1 −8.349 2.454 1.795 1.728
6 2 3 −7.488 2.886 2.047 2.351
7 3 7 −3.079 2.261 2.224 2.246
8 1 3 0.322 0.000 1.349 1.356 1.076
9 1 1 2.403 0.046 1.149 1.133 0.962
10 3 5 4.101 0.024 2.114 2.003 2.139
11 4 9 5.874 0.055 1.389 1.893 0.996

For the nuclear mean field we used a standard Woods–
Saxon potential with universal parametrization [32]. We
considered in our sp basis all bound states and resonances
in the continuum up to emax = 10 MeV with a sp decay width
� � 1 MeV. As an example, we give in Table I the proton
sp spectrum for 48Cr. Here, we give level number, angular
momentum, twice the total spin, sp energy, decay width of sp
states in the continuum, and pairing gaps for the interactions
considered below.

We solved the BCS equations (2.6) separately for protons
and neutrons with two widely used types of nucleon-nucleon
pairing interactions:

A. Gaussian interaction

It is defined by the following ansatz:

v(r12) = −v0e
−[r12/r0]2

, (3.1)

depending on the relative radius r12. Here, the width parameter
r0 = 2 fm corresponds to the spin-singlet “bare” value in
free space. The corresponding value of the effective potential
strength v0 is determined by the gap parameter at the Fermi
level, which should be equal to the experimental value.

B. Density-dependent-delta interaction

It is known that the strength of the effective pairing
interaction depends upon the local density [17,18], given by
the following phenomenological ansatz [19]:

v(r,r′) = u0δ(r − r′)
{

1 − X

[
ρN (r)

ρ
(0)
N

]γ }
, (3.2)

in terms of the nuclear density ρN . The value X = 1 corre-
sponds to the surface DDD interaction.

As an example, in Fig. 1 we plot the pairing gap (2.6) versus
sp energy for 48Cr, given in Table I. Here, circles correspond to
the Gaussian interaction in free space with r0 = 2 fm. Notice
the large values for states below the Fermi level. The gaps
given by the DDD interaction with X = γ = 1 are plotted by
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FIG. 1. (Color online) Paring gap defined by the first two lines of
Eq. (2.6) versus ε in 48Cr for DDD potential (squares) and Gaussian
potentials with r0 = 2 fm (circles) and r0 = RN (diamonds).

squares and the values below the Fermi level are significantly
smaller that the Fermi gap.

It is interesting to point out that a very similar behavior
has the Gaussian interaction where the width parameter is
renormalized to the geometrical nuclear radius (in fm) r0 =
RN = 1.2A1/3. A dinuclear cluster inside nuclear matter has
different properties with respect to free space. It considerably
loses the binding property due to Pauli blocking, becoming
larger, and therefore the effective pairing interaction has a
more extended shape. Above the Fermi sea we obtained similar
values in all cases.

In Fig. 2(a) we plot the proton coherence length given by
Eq. (2.16) divided by the nuclear radius RN , as a function of
the ratio between the c.m. and the nuclear radius R/RN in 48Cr.
Here we used the normal density while in Fig. 2(b) we used
the anomalous density. Notice that all cases, plotted by the
different symbols explained in the caption, have very similar
shapes. Thus, the coherence length is not sensitive to the radial
shape of the interaction. The normal coherence length is equal

FIG. 2. (Color online) Proton coherence length divided by geo-
metrical radius versus c.m. radius in 48Cr computed with (a) normal
and (b) anomalous densities for DDD potential (solid line) and
Gaussian potentials with r0 = 2 fm (long dashes) and r0 = RN (short
dashes).

FIG. 3. (Color online) The integrand of the proton coherence
length versus the relative radius radius in 48Cr, computed with (a)
normal and (b) anomalous densities for different c.m. radii. Here, we
used the Gaussian interaction with r0 = 2 fm.

to the nuclear radius in the internal region and diminishes by
a factor 0.5 on the surface. The anomalous coherence length
has a similar shape, but with a twice-larger internal value. This
picture is very different from the dependence of the two-body
wave function versus the c.m. radius, which is peaked on the
nuclear surface [25].

In order to better understand the behavior of the coherence
length we plot in Fig. 3(a) the integrand of the normal
correlation length w0(r,R), given by the second line of
Eq. (2.16), versus the relative radius r for three values of
the c.m. radius R = 4.5 fm (solid line), 2 fm (long dashes),
and 0 fm (short dashes). Here, we used the bare version of
the Gaussian interaction. Notice that the three curves have
a similar shape, strongly peaked around 2 fm. We obtain
completely different plots for the integrand of the anomalous
coherence length w(r,R). They are given in Fig. 3(b). The
distribution corresponding to the c.m. radius on surface R =
4.5 fm (solid line) is peaked around the free singlet value
of the Gaussian width i.e., r = 2 fm. On the contrary, the
distribution corresponding to a smaller radius R = 2.5 (long
dashes) is peaked around a much larger value r = 7 fm.

FIG. 4. (Color online) (a) Proton coherence length versus c.m.
radius for different chemical potentials λ = −2.96 MeV (solid line),
0 MeV (long dashes), and 0.96 MeV (short dashes) in 48Cr. (b)
Neutron coherence length versus c.m. radius for different chemical
potentials λ = −13.75 MeV (solid line), 0 MeV (long dashes), and
0.88 MeV (short dashes) in 48Cr.
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FIG. 5. Strength parameter of the Gaussian interaction, corre-
sponding to r0 = 2 fm, versus neutron number for (a) proton and (b)
neutron systems.

Our conclusions are in agreement with Ref. [8], where in
Fig. 5 the anomalous coherence length of the pairing inter-
action was estimated within the more sophisticated Hartree–
Fock-Bogoliubov (HFB) approach by using the Gogny force
for Ni isotopes. The shape is similar, predicting a mean
coherence length of about 6 fm in the internal region and
decreasing as one approaches the nuclear surface and reaching
the value of 2 fm just outside the nucleus.

Most of the exotic nuclei close to the drip lines have
the last nucleon in continuum. Therefore we investigated the
dependence of the coherence length on the Fermi level, by
changing the real part of the Woods–Saxon potential. We
plotted in Fig. 4(a) the proton coherence length versus c.m.
radius in 48Cr for different values of the chemical potential.
One sees that it increases by increasing the chemical potential.
This effect is stronger for neutrons, as seen in Fig. 4(b), due to
the absence of the Coulomb barrier. Therefore, in exotic nuclei
close to drip lines the nucleons become more correlated.

Then we performed a systematic analysis of the anomalous
coherence length (by simply calling it the coherence length)
for even-even nuclei with 20 < Z < 100.

In Fig. 5(a) we plotted the effective strength v0 as a function
of neutron number for protons corresponding to Gaussian
interaction with r0 = 2 fm. The isotope chains are connected
by solid lines and magic numbers are indicated by vertical
lines. Different regions are plotted by open squares (20 < Z <
28), filled squares (28 < Z < 50), open circles (50 < Z <
82), and filled circles (82 < Z < 100). As a general trend we
remark a strong decreasing behavior with the increase of the

FIG. 6. Ratio 〈ξ〉/RN , corresponding to a Gaussian interaction
with r0 = 2 fm, versus neutron number for (a) proton and (b) neutron
systems.

FIG. 7. Ratio 〈ξ〉/RN , corresponding to the DDD interaction (3.2)
with X = γ = 1, versus neutron number for (a) proton and (b)
neutron systems.

neutron number. We notice a remarkable feature; namely, it has
almost the singlet bare value in the free space, v0 ∼ 35 MeV,
for very light nuclei. The strength strongly decreases up to
v0 ∼ 20 MeV for heavy nuclei, except the regions around
magic numbers. In Fig. 5(b) we give a similar plot for neutrons.
Notice that, in this case, shell effects are stronger.

In Fig. 6(a) we analyzed the mean coherence length 〈ξ 〉
for protons, corresponding to the Gaussian interaction with
the free value of the width parameter r0 = 2 fm as a function
of neutrons. The ratio of this quantity to the nuclear radius
decreases from 1.4 for light nuclei up to around unity for
heavy nuclei. In Fig. 6(b) we give similar results for neutrons.
As a general trend, the coherence length is larger for neutrons
due to the absence of the Coulomb barrier, but the shell effects
are stronger for protons.

We then investigated the density dependent pairing inter-
action given by Eq. (3.2) with X = γ = 1 in Fig. 7. It turns
out that the ratio 〈ξ 〉/RN has similar gross features, but with
more pronounced shell oscillations. The fact that the coherence
length for neutrons is larger is confirmed. It is interesting to
notice the linear correlation between log10〈ξ 〉 and log10 A,
plotted in Fig. 8 for the Gaussian pairing interaction with
r0 = 2 fm.

In order to investigate the behavior of the coherence length
for excited states, in Fig. 9 we analyze the role of the
temperature. First, we give for 220Ra the coherence length
versus the pair c.m. radius for T = 0 and just below the
“critical” temperature Tc ≈ 0.57 MeV (here the gap decreases

FIG. 8. (Color online) Logarithm of the ratio 〈ξ〉/RN versus
logarithm of the mass number for (a) protons and (b) neutrons.
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FIG. 9. (Color online) Proton coherence length versus c.m. ra-
dius in 220Ra computed for T = 0 (solid line) and T = 0.5675 MeV
�Tc (long dashes), for a Gaussian potential with r0 = 2 fm.

below 10−3 MeV). The pairing coherence length shows very
little change in shape up to Tc. The strongest variation appears
in the internal region, while on the surface, where the pairs
are strongly coupled [8], there is indeed almost no change.
As a measure of the pairing correlations, the coherence length
would appear to indicate a gradual transition to the normal
state with increasing temperature, as its behavior is similar
to that of the pairing gap in the particle-number-conserving
case [16,33].

Our purpose is to compare the pairing and quarteting
coherence lengths. First we analyzed the quarteting coherence
length, by using the quarteting density (2.22), for the α emitter
220Ra as a function of c.m. radius in Fig. 10(a). One notices a
similar qualitative behavior compared to the pairing coherence
length, but the absolute values are larger on the nuclear surface.
Our calculations have shown that the temperature practically
does not change this dependence.

It turns out that the proton-neutron correlations, given by
the overlap with the corresponding proton-neutron part of
the α-particle wave function (2.25), completely change this

FIG. 10. (a) Quarteting coherence length in 220Ra versus c.m.
radius. (b) Same as in panel (a) but for alpha coherence length.

FIG. 11. Averaged alpha coherence length versus mass number.

picture. One sees from Fig. 10(b), where we plot the alpha
correlation length versus c.m. radius, that the values oscillate
around the value of the geometrical radius of the α particle
Rα . Thus, our analysis confirms the crucial role played by
proton-neutron correlations in the formation of the α particle.
Finally, in Fig. 11 we plot the mean value of the alpha
coherence length for even-even α emitters above A = 100. It
has a quasiconstant value around 1.7 fm. Small local maxima
correspond to regions above double magic nuclei 132Sn
and 208Pb.

In order to better understand the difference between pairing
and quarteting correlations we plot in Fig. 12 the two terms
I (p), p = 2 (solid line) and p = 1 (dashed line) given by
Eq. (2.17) versus the c.m. radius. The two terms reach their
maximal values for the pairing case (left panels) at R = 0,
while for the quarteting case (right panels) the maxima are

FIG. 12. (Color online) The two terms I (p)(R), p = 2 (solid line)
p = 1 (dashed line) given by Eq. (2.17), defining the pairing coher-
ence length for (a) protons, (b) neutrons, (c) quarteting coherence
length, and (d) alpha coherence length versus the c.m. radius.
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centered around the surface region. The pairing coherence
length for protons [Fig. 12(a)] and neutrons [Fig. 12(b)]
is given by the ratio between solid and dashed curves
which obviously decreases with increasing c.m. radius. The
quarteting coherence length is given by the ratio between the
solid and dashed lines in Fig. 12(c) which have slightly-shifted
broad maxima located below the nuclear surface. Although the
two terms have completely different shapes compared to the
pairing case, their ratio plotted in Fig. 10(a) is also a decreasing
function with respect to the c.m. radius.

The alpha coherence length, given by the ratio of the
two curves in Fig. 12(d), deserves special attention. These
curves have very narrow maxima centered at the same point
on the nuclear surface. Moreover, it turns out that the two
curves are almost proportional and therefore their ratio leads
to the quasiconstant value in Fig. 10(b), close the α-particle
geometrical radius R(0)

α = 1.241/3 ≈ 1.9 fm. Notice that the
shape of the curves in Fig. 12(d), peaked on the nuclear surface,
is similar to the standard α-particle formation probability,
given by the integral (2.26) squared [12,28].

IV. CONCLUSIONS

In conclusion, we performed in this paper a systematic
analysis of the pairing coherence length in the spin-singlet
channel for various types of pairing interaction. We compared
the DDD potential to the Gaussian interaction. We considered
in our calculations bound states as well as narrow resonances.

A very important conclusion is that we showed that, by
considering the singlet bare value of the width parameter r0 =
2 fm, the strength parameter reproducing the gap parameter
for light nuclei is close to the singlet value in free space, v0 ∼
35 MeV, and decreases up to v0 ∼ 20 MeV for heavy nuclei.
We showed that the “renormalized” Gaussian interaction with
a larger width parameter than its free value r0 = 2 fm (equal

to the nuclear radius) has similar properties to the commonly
used density-dependent pairing potential.

It turns out that the pairing coherence length has similar
properties for all considered interactions. It is larger than the
geometrical radius for light nuclei and approaches this value
for heavy nuclei. Our analysis provides evidence of strong
shell effects.

The pairing coherence length slowly decreases with in-
creasing temperature, indicating a gradual quenching of
pairing correlations, as is natural in finite systems. In exotic
nuclei close to drip lines, where the Fermi energy has positive
values, the correlation length has larger values and therefore
the spatial correlation increases.

The quarteting coherence length describes correlations
between proton and neutron pairs, by overlapping their relative
parts to the corresponding pp and nn components of the α-
particle wave function. It has a similar behavior, but with larger
values on the nuclear surface. We evidenced the important
role played by proton-neutron correlations by considering in
addition the overlap with the pn component of the α-particle
wave function. They change completely the behavior of the
quarteting coherence length; namely, the alpha correlation
length has oscillating values around the α-particle geometrical
radius. Its mean value ≈1.7 fm weakly depends on the nuclear
mass. The analysis of the two terms entering the definition
of the coherence length reveals the main difference between
the pairing and quarteting cases. It turns out that pairing
correlations are larger inside the nucleus, while quarteting
correlations are connected to the nuclear surface.

ACKNOWLEDGMENTS

This work has been supported by the projects PN-II-ID-
PCE-2011-3-0092 and NuPNET-SARFEN of the Romanian
Ministry of Education and Research.

[1] P. Ring and P. Schuck, The Nuclear Many Body Problem
(Springer-Verlag, New York, Berlin, 1980).

[2] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607
(2003).

[3] V. Zelevinsky and A. Volya, Nucl. Phys. A 731, 299 (2004).
[4] S. Yoshida and H. Sagawa, Phys. Rev. C 77, 054308 (2008).
[5] L. Ferreira, R. J. Liotta, C. H. Dasso, R. A. Broglia, and

A. Winther, Nucl. Phys. A 426, 276 (1984).
[6] K. Hagino and H. Sagawa, Phys. Rev. C 72, 044321

(2005).
[7] A. Volya, V. Zelevinsky, and B. A. Brown, Phys. Rev. C 65,

054312 (2002).
[8] N. Pillet, N. Sandulescu, and P. Schuck, Phys. Rev. C 76, 024310

(2007).
[9] N. Pillet, N. Sandulescu, P. Schuck, and J.-F. Berger, Phys. Rev.

C 81, 034307 (2010).
[10] X. Vinas, P. Schuck, and N. Pillet, Phys. Rev. C 82, 034314

(2010).
[11] F. A. Janouch and R. J. Liotta, Phys. Rev. C 27, 896 (1983).
[12] D. S. Delion Theory of Particle and Cluster Emission, (Springer-

Verlag, New York, Berlin, 2010).

[13] G. Ropke, A. Schnell, P. Schuck, and P. Nozieres, Phys. Rev.
Lett. 80, 3177 (1998).

[14] A. Schiller et al., Phys. Rev. C 63, 021306(R) (2001).
[15] V. Zelevinsky and A. Volya, Phys. At. Nucl. 66, 1781 (2003).
[16] T. Døssing et al., Phys. Rev. Lett. 75, 1276 (1995).
[17] G. Bertsch and H. Esbensen, Ann. Phys. (NY) 209, 327 (1991).
[18] P. J. Borycki, J. Dobaczewski, W. Nazarewicz, and M. V.

Stoitsov, Phys. Rev. C 73, 044319 (2006).
[19] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger,

C. R. Chinn, and J. Decharge, Phys. Rev. C 53, 2809 (1996).
[20] M. Grasso, N. Sandulescu, N. Van Giai, and R. J. Liotta, Phys.

Rev. C 64, 064321 (2001).
[21] I. Hamamoto, Phys. Rev. C 73, 044317 (2006).
[22] R. Id Betan, G. G. Dussel, and R. J. Liotta, Phys. Rev. C 78,

044325 (2008).
[23] R. Id Betan, Nucl. Phys. A 879, 14 (2012).
[24] D. S. Delion, D. Santos, and P. Schuck, Phys. Lett. B 398, 1

(1997).
[25] D. S. Delion, M. Baldo, and U. Lombardo, Nucl. Phys. A 593,

151 (1995).
[26] H. J. Mang, Phys. Rev. 119, 1069 (1960).

024312-8

http://dx.doi.org/10.1103/RevModPhys.75.607
http://dx.doi.org/10.1103/RevModPhys.75.607
http://dx.doi.org/10.1103/RevModPhys.75.607
http://dx.doi.org/10.1103/RevModPhys.75.607
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.041
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.041
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.041
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.041
http://dx.doi.org/10.1103/PhysRevC.77.054308
http://dx.doi.org/10.1103/PhysRevC.77.054308
http://dx.doi.org/10.1103/PhysRevC.77.054308
http://dx.doi.org/10.1103/PhysRevC.77.054308
http://dx.doi.org/10.1016/0375-9474(84)90108-8
http://dx.doi.org/10.1016/0375-9474(84)90108-8
http://dx.doi.org/10.1016/0375-9474(84)90108-8
http://dx.doi.org/10.1016/0375-9474(84)90108-8
http://dx.doi.org/10.1103/PhysRevC.72.044321
http://dx.doi.org/10.1103/PhysRevC.72.044321
http://dx.doi.org/10.1103/PhysRevC.72.044321
http://dx.doi.org/10.1103/PhysRevC.72.044321
http://dx.doi.org/10.1103/PhysRevC.65.054312
http://dx.doi.org/10.1103/PhysRevC.65.054312
http://dx.doi.org/10.1103/PhysRevC.65.054312
http://dx.doi.org/10.1103/PhysRevC.65.054312
http://dx.doi.org/10.1103/PhysRevC.76.024310
http://dx.doi.org/10.1103/PhysRevC.76.024310
http://dx.doi.org/10.1103/PhysRevC.76.024310
http://dx.doi.org/10.1103/PhysRevC.76.024310
http://dx.doi.org/10.1103/PhysRevC.81.034307
http://dx.doi.org/10.1103/PhysRevC.81.034307
http://dx.doi.org/10.1103/PhysRevC.81.034307
http://dx.doi.org/10.1103/PhysRevC.81.034307
http://dx.doi.org/10.1103/PhysRevC.82.034314
http://dx.doi.org/10.1103/PhysRevC.82.034314
http://dx.doi.org/10.1103/PhysRevC.82.034314
http://dx.doi.org/10.1103/PhysRevC.82.034314
http://dx.doi.org/10.1103/PhysRevC.27.896
http://dx.doi.org/10.1103/PhysRevC.27.896
http://dx.doi.org/10.1103/PhysRevC.27.896
http://dx.doi.org/10.1103/PhysRevC.27.896
http://dx.doi.org/10.1103/PhysRevLett.80.3177
http://dx.doi.org/10.1103/PhysRevLett.80.3177
http://dx.doi.org/10.1103/PhysRevLett.80.3177
http://dx.doi.org/10.1103/PhysRevLett.80.3177
http://dx.doi.org/10.1103/PhysRevC.63.021306
http://dx.doi.org/10.1103/PhysRevC.63.021306
http://dx.doi.org/10.1103/PhysRevC.63.021306
http://dx.doi.org/10.1103/PhysRevC.63.021306
http://dx.doi.org/10.1134/1.1619492
http://dx.doi.org/10.1134/1.1619492
http://dx.doi.org/10.1134/1.1619492
http://dx.doi.org/10.1134/1.1619492
http://dx.doi.org/10.1103/PhysRevLett.75.1276
http://dx.doi.org/10.1103/PhysRevLett.75.1276
http://dx.doi.org/10.1103/PhysRevLett.75.1276
http://dx.doi.org/10.1103/PhysRevLett.75.1276
http://dx.doi.org/10.1016/0003-4916(91)90033-5
http://dx.doi.org/10.1016/0003-4916(91)90033-5
http://dx.doi.org/10.1016/0003-4916(91)90033-5
http://dx.doi.org/10.1016/0003-4916(91)90033-5
http://dx.doi.org/10.1103/PhysRevC.73.044319
http://dx.doi.org/10.1103/PhysRevC.73.044319
http://dx.doi.org/10.1103/PhysRevC.73.044319
http://dx.doi.org/10.1103/PhysRevC.73.044319
http://dx.doi.org/10.1103/PhysRevC.53.2809
http://dx.doi.org/10.1103/PhysRevC.53.2809
http://dx.doi.org/10.1103/PhysRevC.53.2809
http://dx.doi.org/10.1103/PhysRevC.53.2809
http://dx.doi.org/10.1103/PhysRevC.64.064321
http://dx.doi.org/10.1103/PhysRevC.64.064321
http://dx.doi.org/10.1103/PhysRevC.64.064321
http://dx.doi.org/10.1103/PhysRevC.64.064321
http://dx.doi.org/10.1103/PhysRevC.73.044317
http://dx.doi.org/10.1103/PhysRevC.73.044317
http://dx.doi.org/10.1103/PhysRevC.73.044317
http://dx.doi.org/10.1103/PhysRevC.73.044317
http://dx.doi.org/10.1103/PhysRevC.78.044325
http://dx.doi.org/10.1103/PhysRevC.78.044325
http://dx.doi.org/10.1103/PhysRevC.78.044325
http://dx.doi.org/10.1103/PhysRevC.78.044325
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.026
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.026
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.026
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.026
http://dx.doi.org/10.1016/S0370-2693(97)00169-X
http://dx.doi.org/10.1016/S0370-2693(97)00169-X
http://dx.doi.org/10.1016/S0370-2693(97)00169-X
http://dx.doi.org/10.1016/S0370-2693(97)00169-X
http://dx.doi.org/10.1016/0375-9474(95)00344-Z
http://dx.doi.org/10.1016/0375-9474(95)00344-Z
http://dx.doi.org/10.1016/0375-9474(95)00344-Z
http://dx.doi.org/10.1016/0375-9474(95)00344-Z
http://dx.doi.org/10.1103/PhysRev.119.1069
http://dx.doi.org/10.1103/PhysRev.119.1069
http://dx.doi.org/10.1103/PhysRev.119.1069
http://dx.doi.org/10.1103/PhysRev.119.1069


PAIRING VERSUS QUARTETING COHERENCE LENGTH PHYSICAL REVIEW C 91, 024312 (2015)

[27] A. Sandulescu, Nucl. Phys. 37, 332 (1962).
[28] D. S. Delion and R. J. Liotta, Phys. Rev. C 87, 041302(R)

(2013).
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