
PHYSICAL REVIEW C 91, 024305 (2015)

Density dependence of the pairing interaction and pairing correlation in unstable nuclei
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This work aims at a global assessment of the effect of the density dependence of the zero-range pairing
interaction. Systematic Skyrme-Hartree-Fock-Bogoliubov calculations with the volume, surface, and mixed
pairing forces are carried out to study the pairing gaps in even-even nuclei over the whole nuclear chart.
Calculations are also done in coordinate representation for unstable semimagic even-even nuclei. The calculated
pairing gaps are compared with empirical values from four different odd-even staggering formulas. Calculations
with the three pairing interactions are comparable for most nuclei close to the β-stability line. However, the
surface interaction calculations predict neutron pairing gaps in neutron-rich nuclei that are significantly stronger
than those given by the mixed and volume pairing. On the other hand, calculations with volume and mixed pairing
forces show noticeable reduction of neutron pairing gaps in nuclei far from stability.
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I. INTRODUCTION

The odd-even staggering (OES) of nuclear binding energy
implies that the masses of odd nuclei are larger than the
two adjacent even nuclei, and pairing correlation has been
associated with this effect [1,2]. Pairing is a kind of emergent
phenomenon underlying many aspects of the dynamics of
atomic nuclei and is the most crucial correlation beyond the
nuclear mean field. Of particular interest nowadays is the study
of pairing correlation properties in drip-line nuclei where
the pairing gap energy becomes comparable to the nucleon
separation energy and the continuum effect may manifest
itself. It turns out that the Hartree-Fock-bogoliubov (HFB)
approach with effective zero-range pairing forces is a reliable
and computationally convenient way to study the nuclear
pairing correlations in both of both stable and unstable nuclei
(see, e.g., Refs. [3,4], and references therein).

One question thus arising is how the density dependence of
the zero-range pairing interaction affects the pairing correla-
tion. A systematic comparison between empirical OES from
available experimental binding energies and BCS and HFB
calculations with three different density dependent pairing
forces has been done in Ref. [5]. No significant difference
was seen and it is suggested that there is a slight preference
for the surface-peaked pairing [5]. Such finding is consistent
with the HFB calculations for the isotopic chain 100–132Sn [6]
and fission trajectories in superheavy nuclei [7]. A mixed
pairing force is used in the systematic study of Ref. [8]. On
the other hand, in Ref. [9] it is shown that below the critical
temperature where the pairing gap vanishes, the pairing gap
is indeed sensitive to the surface or volume localization of
the pairing force. Apparent differences were also noticed in
the HFB calculations with the different density dependent
pairing forces of neutron-rich Sn isotopes beyond N = 82
in Refs. [10–12] and Ref. [13]. The effect of the density
dependence of the pairing interaction on pairing vibrations
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in 124,136Sn was analyzed with the HFB + QRPA approach
in Ref. [14]. The density dependence of the pairing may also
influence the neutron pair transfer properties of Sn and light
semimagic neutron-rich nuclei [15–17].

This paper will examine systematically the effects of the
density dependence of the pairing interaction on neutron-rich
nuclei calculations within the HFB approach. The so-called
volume, surface, and mixed pairing force will be used. We
will confront theoretical results with available experimental
data and extend our calculations to the neutron drip line. We
will show that, for neutron-rich nuclei, calculations with the
surface pairing predict pairing gaps that are systematically
stronger than those given by the mixed and volume pairing.
We will also investigate the neutron pairing correlation near the
drip line from the viewpoint of the dineutron correlation. This
work is partially motivated by a recent calculations presented
in Ref. [18] where HFB calculations with surface-peaked zero-
range and finite-range pairing forces suggest that pairing can
persist even in nuclei beyond the drip line.

The paper is organized as follows: In Sec. II, we briefly
discuss the HFB approach and the empirical OES from
experimental binding energies. It is followed by the description
of the two-particle wave function. The HFB calculations with
different pairing interactions are compared in Sec. III. A
summary is given in Sec. IV.

II. THE HFB APPROACH AND THE PAIRING GAP

The HFB framework has been extensively discussed in
the literature [3,19–22] and will only be briefly mentioned
here for simplicity. In the standard HFB formalism, the
Hamiltonian is reduced into two potentials, namely the mean
field in the particle-hole channel and the pairing field in the
particle-particle channel. It gives rise to the HFB equation(

(H − λ) �
−�∗ −(H − λ)∗

)(
Uk

Vk

)
= Ek ·

(
Uk

Vk

)
, (1)

where Uk and Vk are the two components of single-
quasiparticle wave functions. In the particle-hole channel we
use the SLy4 Skyrme functional [23]. In the particle-particle
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channel we have the zero-range δ pairing force given as

Vpair(r,r′) = V0

(
1 − η

ρ(r)

ρ0

)
δ(r − r′), (2)

where V0 is the pairing strength, ρ(r) is the isoscalar local
density, and ρ0 is the saturation density fixed at 0.16 fm−3. η
takes the values 1, 0, and 1/2 for surface, volume, and mixed
pairing, respectively. The pairing parameters are fitted to give
a mean neutron gap of 1.31 MeV in 120Sn. The energy cutoff
is 60 MeV and the radius of the box is equal to 30 fm.

In the present work we consider the HFB equation in
a spherical system in coordinate space with the Dirichlet
boundary condition. The solutions are obtained with the HFB
solver HFBRAD [24]. For comparison we also consider axially
deformed solution of the Skyrme HFB equations in a harmonic
oscillator basis using the HFBTHO code [25].

We consider two different theoretical gaps: the �LCS

canonical gap [26], which is the diagonal element of the
pairing-field matrix for the lowest canonical state (LCS),
and the average gap �mean that is the average value of the
pairing fields [24]. These two theoretical pairing gaps were also
compared with empirical pairing gaps recently in Ref. [18].

A. Odd-even mass difference

The closest experimental data that we can compare our
theoretical pairing gap with are the systematic variations of the
nuclear binding energy depending on the evenness and oddness
of numbers of protons Z and neutrons N . The OES effect
has been extensively discussed in the literatures [5,22,27–30].
The simplest form for OES is the three-point formula [2,27],
which has been extensively used for the empirical studies of
the gap parameter �. For systems with even N and fixed Z the
expression for the neutron pairing gap can be written as

�
(3)
C (N ) = 1

2 [Sn(N,Z) − Sn(N − 1,Z)]

= 1
2 [B(N,Z) + B(N − 2,Z) − 2B(N − 1,Z)], (3)

where B is the (positive) binding energy which is extracted
from Refs. [31,32] and Sn is the one-neutron separation energy.
We will compare our results mainly with this three-point
formula which actually corresponds to the conventional three-
point formula for the case of odd nuclei as [5,33,34],

�(3)(N ) = − 1
2 [B(N − 1,Z) + B(N + 1,Z) − 2B(N,Z)].

(4)

There are other formulas such as the conventional three point
[2,27], four-point [2,27] and five-point [35,36] formulas for
calculating the pairing gap as

�(4)(N ) = 1
4 [−B(N + 1,Z) + 3B(N,Z)

− 3B(N − 1,Z) + B(N − 2,Z)] (5)

and

�(5)(N ) = 1
8 [B(N + 2,Z) − 4B(N + 1,Z) + 6B(N,Z)

− 4B(N − 1,Z) + B(N − 2,Z)]. (6)

The direct comparison between the theoretical pairing gap
and empirical OES is convenient from a computational point
of view since only one single calculation is required and one
avoids the complicated calculation of the odd nuclei. However,
it should be mentioned that, even though they are quantitatively
quite close to each other in most cases, the theoretical gap is
a model-dependent quantity and cannot be compared with the
empirical OES in a strict sense.

B. Two-particle wave function

In order to analyze the clustering feature of two neutrons
at the nuclear surface, we consider the spin-singlet com-
ponent of two-particle wave function. The spatial structure
of the two-particle wave function can be written as (see,
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FIG. 1. (Color online) Neutron pairing gaps calculated for �(3) (a), �
(3)
C (b), �(4) (c), and �(5) (d) for all known even-even nuclei.
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FIG. 2. (Color online) Neutron pairing gap �
(3)
C for even (odd)

number of protons and even (even) number of neutrons, red circles
(black squares). Green diamonds are proton-neutron interactions.
Solid (dashed) lines are the mean values (±σ ). Gap data with errors
more than 100 keV are excluded.

e.g., Ref. [37]),

	(2)(r1,r2,θ12)

= 1

4π

∑
pq

√
2jp + 1

2
δlplq δjpjq

Xpqφp(r1)φp(r2)Plp (cos θ12)

(7)

where φ is the single-particle wave function and Plp is the
Legendre polynomial. The two neutrons are at distances r1

and r2 from the core, and θ12 is the angle between them. Xpq

is the expansion coefficient, which corresponds to the product
upvq within the HFB approach. In this work, we obtain 	(2)

as a function of θ12 and radius r1 = r2 = R.

III. RESULTS

A. Comparison between different OES formulas

We begin our investigation by comparing the different
OES formulas. In Fig. 1 we have plotted the results obtained

TABLE I. Mean values (in MeV) of the residual proton-neutron
interaction δnp as extracted from the difference between neutron
and proton pairing gaps �

(3)
C for even-even nuclei and those of the

neighboring odd-A nuclei.

Neutron Proton

δpn 0.30 ± 0.26 0.31 ± 0.23

from different OES formulas, namely 559 measured �(3), 570
measured �

(3)
C , 541 measured �(4), and 516 measured �(5)

in even-even nuclei. For �(3), almost all nuclei with N < 50
have a pairing gap larger than 1.7 MeV. This is an indication of
the large mean-field contribution in this region as mentioned
in Ref. [27]. The shell effect for conventional OES-formula
�(3), �(4), and �(5) at neutron shell closure is also apparent
in Fig. 1.

Figure 2 shows the neutron �
(3)
C for even-even and even-

odd nuclei. They show clearly the reduction of OES for even
and odd numbers of nuclei by one rather constant magnitude
of δnp due to the extra binding in the intermediate odd-odd
nuclei as a result of np correlation. In Table I the residual np
interaction energy δnp is obtained by reduction of pairings gaps
of even-odd (even nuclei minus one) from even-even nuclei
as

δnp = �
(3)
C (N,Z) − �

(3)
C (N,Z − 1)

= 1
2 [Sp(N,Z) + Sp(N − 2,Z)] − Sp(N − 1,Z). (8)

The case for odd-even nuclei can be defined in a similar way.
The obvious trend as one may expect is that δnp derived from
proton gaps and neutron gaps are roughly the same and there
is no visible dependence on shell closure.

We also evaluated the uncertainty of the extracted pairing
gap in relation to the error in the experimental binding energy
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FIG. 3. (Color online) HFBTHO calculations with the mixed pairing interaction for the Fermi level λn (b), two-neutron separation energy
S2n = B(Z,N − 2) − B(Z − N ) (a), mean neutron pairing gap �n (c), and the deformation β (d).
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FIG. 4. (Color online) HFBTHO calculations with the volume pairing interaction for the Fermi level λn (b), two-neutron separation energy
S2n = B(Z,N − 2) − B(Z − N ) (a), mean neutron pairing gap �n (c), and the deformation β (d).

σB(N,Z) by applying the error propagation as

σ 2
� =

∑
N,Z

(
∂�

∂B(N,Z)

)2

σB(N,Z)
2, (9)

where the sum runs over all nuclei involved in calculating the
pairing gap �. The errors are quite small in most cases studied
in this paper and remain invisible in the scales of our figures
shown below.

B. Systematic HFBTHO calculations for even-even nuclei

In order to explore the effects of the different pairing
interactions on the pairing gap, we have firstly performed
a global calculation using the HFBTHO code with the three
different zero-range pairing interactions. A similar work was
done in Ref. [5] but only known nuclei were calculated. Our

investigation is restricted to even-even nuclei for simplicity. All
calculations are done in the usual harmonic oscillator basis by
taking into account 25 major shells.

Figures 3, 4, and 5 show the Fermi level λn, two-neutron
separation energy S2n, mean neutron pairing gap �n, and
the quadrupole deformation β2 for mixed, volume, and
surface interactions, respectively. Only nuclei with Fermi
level λn > −2 MeV and two-neutron separation energy
S2n < 2 MeV are included in the figures for a better
comparison of nuclei around the neutron drip line.

The major difference between these interactions is for
nuclei close to drip line. It is found that calculations with
the surface interaction predict a more smooth neutron drip line
than the other interactions, as can be seen from Fig. 6. This is
related to the fact that the pairing correlation in drip-line nuclei
predicted by calculations with the surface interaction is strong
and overcomes the shell effect in many cases. Furthermore,
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FIG. 5. (Color online) HFBTHO calculations with the surface pairing interaction for the Fermi level λn (b), two-neutron separation energy
S2n (a), mean neutron pairing gap �n (c), and the deformation β (d).
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FIG. 6. (Color online) The neutron drip lines as defined by λ = 0 (a) and S2n = 0 (b) given by the HFBTHO calculations with different
pairing interactions.

by getting close to neutron drip line, mixed and volume
interactions predict lower pairing gaps than those from the
surface interaction.

Deformations calculated with the volume interaction
are similar to those with the HFB approach with the
Gogny force [38]. Surface interaction shows a different
pattern for deformation for nuclei with 126 < N < 184 and
N < 50.

In Fig. 7 we compare the two theoretical gaps, �LCS and
�mean, in semimagic He, O, Ca, Ni, Sn, and Pb isotopes
calculated with the three different pairing forces. This may be
compared to Figs. 2 and 3 in Ref. [18]. It can be seen from the
figure that the pairing gaps calculated from the surface pairing
are systematically larger than those from the other two pairing
forces in the light He and O isotopes and in neutron-rich nuclei
shown in the figure. Moreover, there are noticeable differences
between �LCS and �mean in the surface pairing calculations
whereas those two values are pretty close to each other in the
other calculations with the mixed and volume pairing forces.
The pairing gaps predicted by the mixed and volume pairing
forces are similar in most cases.

Moreover, as can be seen from Figs. 5 and 7, calculations
with the surface pairing interaction predict large pairing gaps
for neutron rich nuclei both around and beyond the drip line.
The pairing correlation in nuclei in the neutron-rich region
given by this calculation can be significantly stronger than
those of the stable nuclei and can even overcome the shell
effect in many cases.

C. HFBRAD calculations for semimagic even-even nuclei

It is expected that calculations in the coordinate space may
provide a more precise description for weakly bound nuclei
in the vicinity of the drip line. Thus in Fig. 8 we have redone
the calculations presented in Fig. 7 with the HFBRAD code. All
calculations presented in the figures are done by restricting
the maximal spin to be j = 25/2 except the light He, O, Ca,
and Ni isotopes where we take j � 9/2, 11/2, 13/2, and
15/2, respectively. We have also done calculations for those
nuclei by extending the spin up to j = 25/2. However, as we
will also mention below, the pairing gaps thus calculated will
be significantly overestimated if the surface pairing is used.
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FIG. 7. (Color online) HFBTHO calculations with mixed pairing (green circles), volume pairing (blue diamonds), and surface pairing (black
squares) for the neutron pairing gaps in semimagic nuclei. The values of �LCS (open markers) are connected by dashed lines while the average
gaps �mean (filled markers) are linked by solid lines. The red triangles correspond to the empirical pairing gaps �
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C .

Figure 8 shows clearly again that volume and mixed pairing
can reproduce well the magnitude of the observed �

(3)
C for

both the light and heavier semimagic nuclei. However, there
is no consistency in the case of surface interaction. As can be
seen from the figure, for calcium, nickel, tin, and lead isotopes,
all three pairing interactions agree well with the experimental
data in most cases. Significant differences between predictions
of the surface interaction and those of the mixed and volume
interactions are seen in unknown regions with no experimental
data as well as in light He and O isotopes. Calculations with the
surface interaction are also much more sensitive to the number
of shells considered than those of the mixed and volume pairing
calculations. This is also related to the fact that the pairing
matrix elements predicted by the surface pairing are much
larger than those of the mixed and volume pairing for weakly
bound and unbound levels.

As can be seen from Figs. 7 and 8, both calculations in the
HO and coordinate spaces with the surface interaction predict
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FIG. 9. (Color online) SHF calculations with the Sly4 force on
the evolution of the single-particle energies in the neutron-rich
N = 52 isotones. With no pairing considered, the spurious s1/2 states
with positive energies have no physical meaning and are shown only
to illustrate the tendency.

large neutron pairing gaps for nuclei on the neutron-rich side.
A noticeable difference between the two calculation is that, in
the latter case, the calculated �LCS vanish for Ca, Ni, Sn, and
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FIG. 10. (Color online) Two-particle wave function 	 (2) for 82Ni.
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TABLE II. Calculations with different pairing forces on the chemical potential λn, pairing gaps, and the occupancy of the 2s1/2 neutron
orbital in neutron-rich 82–88Ni isotopes.

Interaction Isotopes

82Ni 84Ni 86Ni 88Ni

λn �mean �LCS v2 λn �mean �LCS v2 λn �mean �LCS v2 λn �mean �LCS v2

jmax = 15/2
Volume −1.68 0.59 0.50 2% −1.21 0.0 0.0 0% −0.57 0.0 0.0 100% −0.15 0.43 0.23 99%
Mixed −1.66 0.63 0.58 3% −1.22 0.0 0.0 0% −0.58 0.0 0.0 100% −0.17 0.59 0.35 97%
Surface −1.66 0.96 1.28 11% −1.25 1.01 1.36 25% −0.82 1.12 1.16 52% −0.45 1.25 1.27 72%

jmax = 25/2
Volume −1.67 0.62 0.53 2% −1.21 0.0 0.0 0% −0.57 0.0 0.0 100% −0.16 0.48 0.25 98%
Mixed −1.64 0.72 0.66 4% −1.22 0.27 0.25 4% −0.60 0.35 0.22 92% −0.20 0.75 0.46 94%
Surface −1.93 1.46 2.12 15% −1.50 1.61 2.29 27% −1.10 1.74 2.48 41% −0.74 1.87 2.28 54%

Pb isotopes beyond the dripline whereas the mean gaps persist
in some cases. This has also been noticed in Ref. [18]. The
theoretical �LCS and �mean values are quite close to each other
in most cases in both calculations with the mixed and volume
pairing forces. They drop to zero when one goes beyond the
neutron drip line for all semimagic nuclei studied here except
Ni isotopes.

D. Dineutron correlation in neutron-rich Ni isotopes

Nuclei around the neutron-rich isotope 78Ni, which may
become accessible experimentally soon, are of particular
interest in relation to the search for the loosely bound 2s1/2

orbital and neutron halo that may thus form. The s1/2 neutron
orbitals near threshold show a behavior that is quite different
from other orbitals with larger orbital angular momentum:
They lose energy in a way that is much slower than other
orbitals when the potential becomes shallower (see, e.g.,
Refs. [39,40], and references therein). As an example, in Fig. 9
we plot the the evolution of the single-particle energies in the
neutron-rich N = 52 isotones. As can be seen from the figure,
as one removes protons and the mean field gets shallower, the
1d5/2 and 0g9/2 neutron orbitals lose their energies much faster
than that of 2s1/2. One may expect that a loosely bound s1/2

may be found in this region below the d5/2 and g7/2 orbitals.

The situation may be further perturbed by considering the
pairing effect.

To further analyze the effect of the pairing, as a typical
example, in Fig. 10 we show the square of two-neutron wave
function |	2ν(r,r,θ )|2 for the nucleus 82Ni calculated with
the HFBRAD code with different paring interactions. In the
figure |	2ν(r,r,θ )|2 are calculated in a mesh defined by r
and θ but then projected on a two-dimensional plane for a
clearer view. In this way one can make sure that the peaks
shown correspond to the real ones. Those peaks appear around
r = 5.2 fm in all three cases. As can be seen from the figure,
the dineutron correlation predicted by the surface pairing
interaction calculation is much stronger than those from the
mixed and volume pairing interactions. This is related to that
fact that calculations with the surface pairing give much larger
pairing gaps than the other calculations. As a result, one needs
a significantly larger model space to get convergence in that
calculation, and big differences are seen between calculations
with maximal spin values j = 15/2 and 25/2. The wave
functions derived from surface pairing calculations are also
significantly more mixed. In Table II we give the calculated
chemical potentials λn, pairing gaps, and the occupancies of
the 2s1/2 neutron orbital in neutron-rich 82–88Ni isotopes with
the three different pairing forces. Calculations with the surface
pairing predict a significant mixture between the s1/2 orbital
and neighboring ones. The surface pairing calculation also

TABLE III. Same as Table II but for calculations with the strengths of pairing interaction enhanced by 5%.

Interaction Isotopes

82Ni 84Ni 86Ni 88Ni

λn �mean �LCS v2 λn �mean �LCS v2 λn �mean �LCS v2 λn �mean �LCS v2

jmax = 15/2 5%
Volume −1.66 0.69 0.58 3% −1.21 0.0 0.0 0% −0.57 0.0 0.0 100% −0.16 0.55 0.28 97%
Mixed −1.63 0.76 0.69 4% −1.21 0.32 0.28 5% −0.60 0.36 0.22 92% −0.20 0.78 0.46 94%
Surface −1.73 1.21 1.76 13% −1.31 1.31 1.74 26% −0.90 1.42 1.89 47% −0.53 1.54 1.59 65%

jmax = 25/2 5%
Volume −1.65 0.74 0.62 3% −1.21 0.0 0.0 0% −0.57 0.0 0.0 100% −0.16 0.62 0.32 98%
Mixed −1.62 0.86 0.81 5% −1.19 0.67 0.61 14% −0.64 0.74 0.48 76% −0.26 1.0 0.62 90%
Surface −2.12 1.84 2.66 17% −1.67 1.99 2.84 27% −1.27 2.13 3.03 38% −0.91 2.25 3.21 49%
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predicts a deeper chemical potential and larger pairing gaps
than the other two calculations. Moreover, as can seen from
Table III, calculations with the surface pairing are much more
sensitive to the strength of the pairing than those of the other
two pairing interactions.

IV. SUMMARY

In this work we present a systematic study on the neutron
pairing gaps predicted by HFB calculations with the Skyrme
force and zero-range pairing forces with different density
dependence. We first compared the experimental pairing gaps
from four different OES formulas. Then we applied the
HFB approach to study the pairing correlations in even-even
nuclei including the neutron-rich semimagic even-even nuclei.
We tested the different volume, mixed, and surface pairing
interactions with the SLy4 parametrization of the Skyrme
interaction in the particle-hole channel.

It is found that different treatments of pairing force can
affect the calculated �LCS and �mean significantly in neutron-

rich nuclei in the vicinity of the drip line, whereas the effect is
much less visible in calculations for known nuclei. Moreover,
our calculations show that the pairing gaps given by the
surface-peaked pairing interaction are systematically larger
than those of the volume and mixed pairing forces. Beyond
the neutron drip line, there is a clear difference between mean
gap and lowest canonical gap in calculations in the coordinate
representation with the surface-pairing interaction. This is not
seen in calculations with other pairing forces. Moreover, the
dineutron correlations in unstable nuclei and the position of
the two-neutron drip line can be quite different depending on
the density dependence of the pairing force.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Council
(VR) under Grants No. 621-2012-3805 and No. 621-2013-
4323. The calculations were performed on resources provided
by the Swedish National Infrastructure for Computing (SNIC)
at NSC in Linköping.
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