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Examination of the first excited state of 4He as a potential breathing mode
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The isoscalar monopole excitation of 4He is studied within a few-body ab initio approach. We consider the
transition density to the low-lying and narrow 0+ resonance, as well as various sum rules and the strength energy
distribution itself at different momentum transfers q. Realistic nuclear forces of chiral and phenomenological
nature are employed. Various indications for a collective breathing mode are found: (i) the specific shape of
the transition density, (ii) the high degree of exhaustion of the non-energy-weighted sum rule at low q, and
(iii) the complete dominance of the resonance peak in the excitation spectrum. For the incompressibility K of
the α particle, two different definitions give two rather small values (22 and 36 MeV).
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I. INTRODUCTION

The quantum breathing mode (monopole oscillation) is
the object of continuous theoretical and experimental inves-
tigations in a large variety of systems as nuclei and trapped
nanoplasmas or cold atoms (see, e.g., Refs. [1,2] and references
therein). In fact it appears as one of the most important
properties that allows diagnosis of the underlying force. The
isoscalar giant monopole resonance (ISGMR), also known
as nuclear breathing mode, is one of the collective nuclear
excitations that are well established and much discussed in
heavier nuclei, also because of possible interesting relations to
the nuclear matter incompressibility (see, e.g., Refs. [3,4] and
references therein).

The lightest nucleus where the breathing mode has been
discussed is the α particle. The discussion has a rather long
history. It was triggered by the results of an inclusive electron
scattering experiment on 4He in 1965 [5], where the transition
form factor |FM (q)|2 to the 0+ resonance (0+

R ) had been
measured for various momentum transfer q. The interpretation
of the resonance as a collective breathing mode was suggested
a year later [6]. A fair agreement both for the excitation
energy ER and |FM (q)|2 was obtained. In the following years
the collectivity of the resonance was an object of further
discussion.

The intent of the present work is to analyze the collectivity
issue of the 0+

R from a modern few-body ab initio point of
view [7], as an interesting bridge between few- and many-body
physics. Further below it will become evident that various
results of our ab initio few-body calculation point to a
breathing-mode interpretation of the resonance.

As an introduction, we give a summary of the discussion
on the 0+

R , leaving out other theoretical work where the issue
of collectivity is not addressed explicitly. After the work of
Refs. [5,6] mentioned above, in 1970 the 0+

R was the object
of an electron scattering experiment at lower q [8], and in
the following decade the generator coordinate method [9,10]
was applied to investigate the resonance [11,12]. Within
this method collective motions are studied microscopically,

introducing a collective path. Again a fair agreement with
experiment was found. The results gave “further evidence
that the first excited state in 4He can be interpreted as a
compressional monopole state” [12]. A translation invariant
shell-model calculation, which included two-particle two-hole
(2p-2h) configurations, was carried out in 1981 [13] and
there it was concluded that the comparison of the obtained
results with the experimental |FM (q)|2 “casts doubts on the
usual breathing mode interpretation.” A similar conclusion
was drawn in 1986 [14] by comparing the results of a two-
and four-particle excitation models to data that included
new results at higher q [15]. There it was stated that the
resonance “has very little of the breathing mode in it and
consists basically of more complex excitations.” In 1987 two
microscopic models were applied [16]: one in terms of a
collective variable, the other in terms of a cluster variable
(similar to the resonating group approach). It was concluded
that the 0+

R “has a cluster character” (3 + 1). A year later it
was stated [17] that “these two hypotheses are not mutually
exclusive.” In fact it was already shown in Ref. [6] that
in a translation-invariant harmonic-oscillator model, where
one nucleon is excited from the 0s to the 1s shell, the
necessary change of sign of the transition density (its integral
in space vanishes) happens just at the 4He radius. This is
precisely the form of the excess density of a breathing mode,
though the model may appear as noncollective because of its
interpretation as mean field or (3 + 1) cluster. This common
feature is not very surprising in a s-shell scenario, since the
transition density for q → 0 can be written as a function of
just the hyper-radius ρ2 = ∑4

i r2
i , one of the six collective

coordinates defined by the group GL+(3,R) [18,19]. At the
end of the 1980s the 0+

R was understood as “a superposition
of simple 1p-1h excitations and not as a collective state”
[20].

We observe that in all these early works the criterion for
the collectivity of the 0+

R has been mainly the agreement
with experimental data: If in a collective (noncollective, i.e.,
purely mean field based) model the data could be described

0556-2813/2015/91(2)/024303(5) 024303-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.024303


BACCA, BARNEA, LEIDEMANN, AND ORLANDINI PHYSICAL REVIEW C 91, 024303 (2015)

sufficiently well, it was simply concluded that the 0+
R has a

collective (noncollective) character.
No further insight in the issue of collectivity came up

until 2004, when it was reconsidered within a few-body ab
initio approach [21]. Using a truncated version of a realistic
nucleon-nucleon (NN) potential, Argonne V8′ (AV8′) [22],
and a phenomenological three-nucleon force (3NF), it was
concluded with a sum rule argument that the 0+

R is not a
breathing mode. Another motivation against the collectivity
was the large overlap of the 0+

R wave function with the
trinucleon ground state. However, the density is an integral
property; therefore it is perfectly possible, as already indicated
in Refs. [6,17], that a large overlap of the 0+

R state with a (3 + 1)
cluster gives rise to the density of a breathing mode. The sum
rule arguments are questioned below.

For many-body systems there is a general consensus that the
breathing mode collectivity is signaled by two typical features:
(i) the above mentioned peculiar form of the transition density
and (ii) the degree of exhaustion of the energy-weighted sum
rule [23] by the resonance strength. For 4He the latter was
often examined, while the former was considered (besides in
Ref. [6]) only in Ref. [21].

As already pointed out, the aim of the present work is the
study of collectivity from a modern ab initio few-body point of
view. We investigate whether an ab initio calculation of the 4He
inelastic isoscalar monopole (InISM) strength exhibits features
that are believed to characterize a collective behavior in
many-body systems and how they depend on different nuclear
forces. We use two realistic potential models including the
Coulomb force: the chiral effective field theory NN potential
at next-to-next-to-next-to leading order (N3LO) [24] plus the
N2LO 3NF [25] and the AV18 NN potential [26] plus the
UIX 3NF [27] (both NN potentials lead to excellent fits to NN
scattering data). In this work we consider both the form of the
transition density to the 0+

R and the degree of exhaustion by the
resonance strength of various sum rules. We investigate to what
extent these features appear and conclude accordingly whether
realistic nuclear forces, the only input of a four-body ab initio
calculation, allow us to picture the excitation as collective. In
addition we show that the strength distribution itself leads to
much better insights.

II. FORMALISM

The InISM strength distribution is given by

SM (q,ω) =
∞∑

n=0

|〈n|M(q)|0〉|2δ(ω − En + E0), (1)

where ω is the excitation energy, and |0〉,|n〉 and E0,En are
eigenfunctions and eigenvalues of the nuclear Hamiltonian H ,
respectively (for continuum energies the sum is replaced by an
integral). The InISM operator reads (� = c = 1)

M(q) = 1

2

(
A∑

i=1

j0(qri) − 〈0|
A∑

i=1

j0(qri)|0〉
)

, (2)

where j0 is the zeroth order spherical Bessel function (the
dependence on the nucleon form factor is neglected).

In the low-q, long-wavelength (LW) limit, the InISM
operator is

MLW = lim
q2→0

6M(q)

q2
= 1

2

(
A∑

i=1

r2
i − A〈r2〉

)
, (3)

where 〈r2〉 is the mean square radius of the system. It is
important to notice that MLW depends only on the collective
variable ρ2, unlike M(q).

As well explained in Ref. [28], sum rules “provide useful
yardsticks for measuring quantitatively the degree of collec-
tivity of a given excited state.” They are particular expressions
for the moments [29–31] defined as

mn(q) =
∫

dω ωn SM (q,ω) . (4)

The moment m1 for the operator MLW is an interesting sum
rule. Using the completeness property of the eigenstates of the
Hamiltonian H = T + V , where T and V are the kinetic and
potential energy operators, one finds

m1(q) = 1
2 〈0| [M(q), [T + V,M(q)]] |0〉 ≡ mT

1 + mV
1 . (5)

For local potentials m1 coincides with mT
1 and in the LW limit

one obtains

mLW
1 = 1

2
〈0|[MLW,[T ,MLW]]|0〉 = A

2MN

〈r2〉, (6)

where MN is the nucleon mass and A the number of nucleons.
Equation (6) is known as the Ferrell energy-weighted sum rule
(FEWSR) [23].

For m0 completeness leads to

mLW
0 = 〈0|MLWMLW|0〉 . (7)

While the FEWSR is considered “model independent,” mLW
0

is not. In fact the experimental value of 〈r2〉 (corrected for the
nucleon finite size) can lead to a good estimate of the FEWSR.
In contrast, for the evaluation of mLW

0 one would need one-
and two-body ground-state densities. Particularly the latter is
largely model dependent.

For the special case where all the transition strength is
concentrated into one specific excited state, the sum rules
become very simple. Assuming that the breathing mode |�BM〉
is such a state, it is evident that it exhausts 100% of the
FEWSR [6]. In general, this assumption implies that for any
n one has mn = (EBM − E0)n|〈�BM|MLW|0〉|2 and therefore
this state exhausts all sum rules completely:

rLW
n = (EBM − E0)n|〈�BM|MLW|0〉|2

mLW
n

= 1. (8)

We note in passing that in Ref. [6] also a simple relation
between the |FM (q)|2 and the derivative of the elastic form
factor was derived and that the same relation is found in
Ref. [32] via the so-called “progenitor sum rule” [33], under
the hypothesis of a unique collective state.

It is generally believed that the ratios rn, and in particular
r1, are good quantities to infer the degree of collectivity of
a state. However, it is usually neglected that for n = 1 (and
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higher) one emphasizes the high-energy strength contribution.
In fact, even in the presence of a pronounced collective state,
a negligible higher energy strength could lead to a rather
small r1 and thus to the wrong conclusion. In Ref. [28] it
is made clear that the proper quantity to check is rather r0. It
is the “model independence” of the FEWSR and the difficulty
in calculating m0, especially for the heavier nuclei, that has
led to the general attitude to consider r1. For 4He, however,
we are able to evaluate mLW

0 accurately. The results for the
moments m0 and m1 of SM (q,ω), reported in the following,
are obtained via the Lanczos algorithm, analogously to what
was done in Ref. [34] for the dipole operator. We perform
our calculations by diagonalizing H on the hyperspherical
harmonics (HH) basis up to sufficient convergence, using the
effective interaction HH method [35,36].

We test the accuracy of our results using the AV8′
potential [22]. Unlike the other models, this potential is almost
local (the only nonlocal term, the spin-orbit term, does not
contribute to mLW

1 ). Therefore we get an estimate of our
numerical error via independent calculations of mLW

1 and 〈r2〉
in Eq. (6). We find mLW

1 = 183.43 fm4 MeV to be compared
to 183.62 fm4 MeV from the FEWSR.

III. RESULTS AND DISCUSSION

We discuss our first criterion for collectivity, namely the
specific shape of the transition density1

ρtr (r) = 〈0+
R |ρ̂(r)|0〉 . (9)

In Fig. 1 we show ρtr (r). One sees that the first criterion is met
quite well since ρtr (r) changes sign at a distance approximately

1This definition would in principle involve an integral over the
resonance region, but, as in other calculations in the literature for
very narrow resonances, we approximate 0+

R by a bound state.
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FIG. 1. (Color online) Transition density between the ground
state and the 0+

R for the chiral (black full line) and the phenomeno-
logical (red [gray] dashed line) forces. In the inset the densities of the
ground state and of the 0+

R for the chiral force are also shown.
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FIG. 2. (Color online) SM (q,ω)/m0(q) for various fixed q. In
the insets the strength in the resonance region and the background
contribution [40].

equal to the root-mean-square radius of about 1.46 fm, for both
our potential models. A similar behavior is found in Ref. [21]
(see Fig. 2 there). Therefore we may conclude that this feature
is rather independent on the force.

Next we study our second criterion for collectivity, namely
sum rules. First we analyze rLW

0 , replacing in Eq. (8) |�BM〉
by |0+

R〉. We calculate the transition strength in the same
way as we did in Ref. [37], but for MLW. Here we recall
that it is the Lorentz integral transform method [38,39]
and a proper inversion algorithm that allows us to separate
the resonant contribution from the background contribution.
For the chiral (phenomenological) potential we find for the
transition strength the value of 3.53 (2.25) fm4 and m0 =
6.80 (5.99) fm4, leading to rLW

0 = 52% (38%). Considering
the observation by Rowe [28], that “a typical T = 0 collective
state exhausts something like 50 percent” (of m0), we are led
to conclude that the chiral force generates a 0+

R of collective
character.

Since in experiments the |FM (q)|2 is measured at finite
momentum transfer, it is worth studying rn at various q (in
Eq. (8): rLW

n → rn(q), MLW → M(q)). Results are given in
Table I. For both potential models r0(q) and r1(q) decrease
with growing q, but differ somewhat. The low-q results for
r0 are in line with those in the q → 0 limit. For the chiral
interaction r0 reaches remarkable values of more than 50%. In
the case of a collective mode such a q behavior of r0 can be
expected, since low q correspond to large wavelengths, where
the virtual photon “sees” the nucleus as a whole. The table
also shows that r1 is always smaller than r0. This indicates a
non-negligible high-energy strength and also shows that the
argumentation against the collectivity which relies on r1 is
based on shaky ground.

Rather than considering its integral properties the study
of the strength distribution itself is much more informative.
As already mentioned above, in Ref. [37] we had computed
both the InISM background distribution and the integrated 0+

R

strength (though not the strength distribution of the resonance
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TABLE I. Transition form factor |FM (q)|2 and the zeroth and first
moment of the strength distribution for the InISM operator M(q).
Also listed are the corresponding ratios r0 and r1. For each q the
upper and lower lines refer to N3LO+N2LO and AV18+UIX forces,
respectively.

q |FM (q)|2 m0 m1 r0 r1(
MeV

c

)
(MeV) (%) (%)

50 0.00034 0.00063 0.021 53 34
0.00024 0.00064 0.018 38 28

100 0.0042 0.0085 0.262 50 34
0.0031 0.0086 0.258 37 25

200 0.0248 0.0683 2.42 36 22
0.0190 0.0710 2.48 27 16

300 0.0297 0.129 5.89 23 11
0.0242 0.139 6.33 17 8

400 0.0154 0.126 8.43 12 4
0.0141 0.143 9.39 10 3

itself). There we focused on ER and |FM (q)|2, which turned
out to be largely model dependent and considerably higher
than existing data. Here, in Fig. 2 we show SM (q,ω)/m0(q) at
constant q values for the chiral interaction, assuming for the
0+

R a Lorentzian with the experimental width of 270 keV [8].
It is evident that the spectrum is completely dominated by the
resonance peak. A similar result is obtained for the AV18+UIX
potential even though the ratio resonance background is
somewhat smaller. In Fig. 2 the peak becomes less pronounced
with growing q, in favor of an increasing background (see
insets of Fig. 2). The more pronounced dominance at low q
can be understood if one considers that MLW depends only
on the collective variable ρ2. This is not the case for M(q) in
Eq. (2), where the noncollective coordinates play a growing
role with increasing q.

Here we would like to draw attention to an interesting
similarity between two very different physical systems: The
evolution with q of the monopole spectrum of this light
system resembles that of the dynamical structure factor of
an alkali metal (almost free electron gas), where the plasmon
(dipole) collective excitation is established at low q (see, e.g.,
Ref. [41]).

Now we turn to another aspect related to the breathing
mode, namely the nuclear (in)compressibility and its rela-
tion to mLW

−1 . In Ref. [29] it is shown that a monopole
perturbation VP = λ

∑
i r

2
i induces a change of the radius

proportional to mLW
−1 (limλ→0 δ〈r2〉/λ = −2 mLW

−1 ). Therefore
mLW

−1 serves to define the nuclear incompressibility [42] KI
A =

A〈r2〉2/(2m−1). We have calculated mLW
−1 summing the inverse-

energy-weighted resonance strength to the corresponding inte-
gral of the background contribution. For the chiral interaction
and for AV18+UIX we find mLW

−1 = 0.259 and 0.236 fm4

MeV−1 (resonance strength contribution: 64% and 45%) and
〈r2〉 = 2.146 and 2.051 fm2, respectively. These values lead
to KI

4 = 35.6 MeV for both potentials. Another definition
of the nuclear incompressibility in terms of the resonance
energy KII

A = E2
R M〈r2〉 [42] is used in the literature. This is

equivalent to KI
A if one uses the sum rule (SR) estimate ER =

ESR
R =

√
mFEWSR

1 /m−1. For N3LO+N2LO and AV18+UIX
we find ER = 21.25 and 21.06 MeV, and therefore KII

4 =
23.4 and 21.9 MeV, respectively. The reason why KI

4 differs
from KII

4 is due to the discrepancy between the values of ER

and the higher sum rule estimates ESR
R = 26.2 and 26.8 MeV,

caused by the background contributions. All these values of
the incompressibility are much smaller than the nuclear matter
estimate (230 ± 40 MeV [4]), showing the extreme softness
of the α particle. Such low K4 are in line with a recent
parametrization for nuclei with A > 10 [43]. By extending
the fit to 4He one obtains K4 	 0, because of the large surface
contribution.

IV. SUMMARY

We have investigated the InISM strength of 4He and
the corresponding sum rules within a few-body ab initio
approach, employing realistic nuclear forces (chiral and
phenomenological ones). For the 0+

R we find properties
that can also be attributed to a collective breathing mode:
(i) the transition density changes sign at about the 4He radius;
(ii) for low momentum transfer q, where the excitation operator
can be expressed in terms of the collective hyper-radius,
the transition strength to 0+

R is large and exhausts between
about 40% (phenomenological force) and 50% (chiral force)
of the non-energy-weighted sum rule and (iii) the resonance
dominates the continuum spectrum completely over a very low
and extended background.

Moreover, we observe a very interesting similarity in the
evolution with q of the spectrum, between our results and
the plasmon collective excitation spectrum of an alkali metal.
Finally, the inverse-energy-weighted sum rule allows us to
give the incompressibility KA of 4He predicted by the modern
realistic potentials: KA results to be rather small and to
vary little (�6%) with the potential model. More noticeable
is the variation with the definition that one uses to define
it. Two different definitions [42] give values around 22 or
36 MeV.

A final clarification of the collectivity issue can only come
from experiment. Since the present criterion based on the
FEWSR is not really appropriate, it would be necessary to
determine the strength distribution at low q, where existing
electron scattering data are scarce and limited to the resonance
strength. Interesting complementary information could come
from α scattering.

ACKNOWLEDGMENTS

W.L. and G.O. thank E. Lipparini, S. Stringari, and F.
Pederiva for helpful discussions. This work was supported
in part by the Natural Sciences and Engineering Research
Council (NSERC), the National Research Council of Canada,
the Israel Science Foundation (Grant No. 954/09), and the Pazi
Fund.

024303-4



EXAMINATION OF THE FIRST EXCITED STATE OF . . . PHYSICAL REVIEW C 91, 024303 (2015)

[1] D. H. Youngblood, Y.-W. Lui, Krishichayan, J. Button, M. R.
Anders, M. L. Gorelik, M. H. Urin, and S. Shlomo, Phys. Rev.
C 88, 021301 (2013).

[2] J. W. Abraham and M. Bonitz, Contrib. Plasma Phys. 54, 27
(2014).

[3] E. Khan, J. Margueron, G. Colò, K. Hagino, and H. Sagawa,
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