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Background: Electron scattering provides a powerful tool to determine charge distributions and transition
densities of nuclei. This tool will soon be available for short-lived neutron-rich nuclei.
Purpose: Beyond-mean-field methods have been successfully applied to the study of excitation spectra of nuclei
in the whole nuclear chart. These methods permit determination of energies and transition probabilities starting
from an effective in-medium nucleon-nucleon interaction but without other phenomenological ingredients. Such
a method has recently been extended to calculate the charge density of nuclei deformed at the mean-field level
of approximation [J. M. Yao et al., Phys. Rev. C 86, 014310 (2012)]. The aim of this work is to further extend
the method to the determination of transition densities between low-lying excited states.
Method: The starting point of our method is a set of Hartree-Fock-Bogoliubov wave functions generated with a
constraint on the axial quadrupole moment and using a Skyrme energy density functional. Correlations beyond
the mean field are introduced by projecting mean-field wave functions on angular momentum and particle number
and by mixing the symmetry-restored wave functions.
Results: We give in this paper detailed formulas derived for the calculation of densities and form factors. These
formulas are rather easy to obtain when both initial and final states are 0+ states but are far from being trivial
when one of the states has a finite J value. Illustrative applications to 24Mg and to the even-mass 58–68Ni have
permitted an analysis of the main features of our method, in particular the effect of deformation on densities and
form factors. An illustrative calculation of both elastic and inelastic scattering form factors is presented.
Conclusions: We present a very general framework to calculate densities of and transition densities between
low-lying states that can be applied to any nucleus. Achieving better agreement with the experimental data
will require improving the energy density functionals that are currently used and also introducing quasiparticle
excitations in the mean-field wave functions.
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I. INTRODUCTION

Electron scattering off nuclei is a powerful tool for studies
of nuclear structure and spectroscopy [1–16]. It allows deter-
mination of the charge distribution of nuclear ground states,
as well as of the transition charge and current densities from
the ground state to excited states. More global properties, such
as charge radii, can be extracted from a detailed knowledge of
charge distribution. Parameters characterizing the extension
and surface thickness of the nuclear density can also be
derived [17,18]. From the form factors for inelastic electron
scattering at low transferred momentum q, the spin and parity
of excited states and the multipole transition strengths can
be determined in a model-independent manner [4,10]. At
larger values of q, the form factors present an insight into
the spatial location of the transition process, which cannot
be accessed from the integral over this function provided by
the measurement of B(EL) values in Coulomb excitation
or lifetime measurements. Thereby, electron scattering not
only provides a powerful alternative to many other types
of nuclear structure studies but also complements them by
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giving access to levels and transitions that are undetectable in
photoexcitation and γ -ray spectroscopy, such as for instance
levels excited by monopole transitions or transitions of high
multipolarity.

As all electron-nucleus scattering experiments of the past
used fixed or gas targets, only stable and a very few long-lived
nuclides could be studied so far. This will change with the
setup of electron-RIB collider experiments. The SCRIT (Self
Confining Radioactive Isotope Target) project [19–21] is under
construction at Rikagaku Kenkyusho (RIKEN) (Japan) and the
ELISe (ELectron-Ion Scattering in a storage ring) project is
planned for the GSI Facility for Antiproton and Ion Research
(FAIR) (Germany) [22,23]. The charge densities and transition
charge densities of short-lived nuclides, in particular neutron-
rich nuclei, will be measured at both installations.

Data from electron scattering are often interpreted in terms
of paramterized macroscopic density and transition density
distributions, such as the ones of Helm [24], Tassie [25],
or Friedrich et al. [17,18]. They all have in common that
some functional form of the ground-state or transition charge
densities is postulated and its parameters are adjusted to
reproduce the data. Such analysis provides an insight into the
gross features of the ground-state and transition charge density
distribution and the resolution of their details [6]. For a more
detailed analysis, however, it is desirable to calculate the form
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factors from the same microscopic models that are also used
to describe nuclear structure and spectroscopy. Most of them
have been used to describe one and/or the other in the past.

(i) Shell-model calculations in small valence spaces have
been used to calculate transition densities between
states in light nuclei [26]. Some heavier nuclei have
been calculated within the framework of the inter-
acting Boson approximation [27]. In both cases, the
truncation of the model space requires the introduction
of effective charges and/or even explicitly calculated
core polarization effects [26,28–31]. The no-core shell
model, available only for light nuclei, is better suited
in that respect [32,33].

(ii) Methods based on self-consistent mean fields [34] are
a natural choice for such calculations, in particular for
heavy nuclei, as they use a model space that comprises
all occupied single-particle levels and an effective
interaction or energy density functional (EDF) that
is designed to reproduce nuclear saturation. Indeed,
electron scattering form factors of spherical nuclei
have already been studied in the pioneering papers of
this field [35–38]. More recent studies emphasize the
possible isospin dependence of the charge form factors
of spherical nuclei [39–42]. With the exception of ex-
citation to collective rotational states in well-deformed
nuclei [43–46], pure mean-field calculations, however,
are limited to ground-state densities. They also miss
correlations from fluctuations in collective degrees of
freedom and from symmetry restoration that should
be considered for nonspherical nuclei.

(iii) The random phase approximation (RPA) (or the
quasiparticle RPA) on top of mean-field calculations
has been applied to spherical nuclei to study the
ground-state and transition charge densities [47–55].
The extension of this framework to the density and
transition density for deformed nuclei is, however, not
trivial.

(iv) There also has been a number of studies where various
electric and magnetic electron scattering form factors
of deformed nuclei have been calculated by angular
momentum projection of mean-field wave functions.
To limit the computational cost, the wave functions
were either restricted to be of a simple form [56] or the
symmetry restoration was approximated in one way or
the other [44,46,57–62]. For a presentation of the main
aspects of these developments, see the review [63].

Recently, we have used the framework of the particle-
number and angular-momentum-projected generator coordi-
nate method (GCM) based on axial Hartree-Fock-Bogoliubov
(HFB) states and a nonrelativistic Skyrme energy density
functional to calculate the ground-state density of even-even
nuclei [64], demonstrating how the correlations brought by
going beyond a mean-field approach can quantitatively or even
qualitatively alter the density profile predicted by pure mean-
field methods. The same technique has been subsequently im-
plemented in the relativistic framework using covariant energy
density functionals [65–67]. Here, we extend the formalism of

Ref. [64] to transition densities between low-lying excited
states and the corresponding form factors as accessible by
electron scattering. The emphasis of this first exploratory study
is on the impact of static and dynamic quadrupole deformations
on the transition density between low-lying collective states.
Similar developments based on an angular-momentum and
parity-projected GCM with (nonpaired) HF states, also using
Skyrme interactions, have been recently reported in Ref. [68],
but the calculations were limited to the simple case of elastic
and inelastic transitions between 0+ states.

The paper is organized as follows. In Sec. II we present the
relevant formulas for the description of electron scattering off
nuclei and the formalism for the calculations of nuclear density
distribution and transition density for low-lying states in the
framework of the projected GCM based on axially deformed
HFB states. In Sec. III, we present an illustrative calculation
of both elastic and inelastic scattering form factors for 24Mg.
Section IV details an application to the transition densities in
even-mass 58–68Ni. The static and dynamic deformation effects
on nuclear charge densities, transition charge densities, and
form factors will be discussed in detail. Section V summarizes
our findings, and four appendices provide further technical
details on the calculation of nuclear form factors and the
transition density.

II. FORMALISM

A. Beyond-mean-field description of nuclear states

Our beyond-mean-field method restores two of the sym-
metries relevant for nuclear spectroscopy that are broken by
the self-consistent mean-field HFB method by projection on
particle number and angular momentum. Fluctuations in shape
degrees of freedom are described by the superposition of
projected HFB states with different intrinsic deformations.
The same formalism that is used to calculate operator matrix
elements between projected states can be used to calculate
projected densities and their form factors. Before entering into
the details of their calculation, we first recall the main features
of the method.

1. Quadrupole deformed HFB states

A set of deformed HFB states is generated by solving the
HFB equations including a constraint on the axial quadrupole
moment using an updated version of the code first described
in [69]. The states are restricted to be time-reversal invariant
and reflection symmetric, which implies that they are eigen-
states of parity with eigenvalue +1. The HFB equations are
complemented by the Lipkin-Nogami prescription to avoid the
unphysical breakdown of pairing correlations at low density
of single-particle levels around the Fermi energy.

The single-particle wave functions are discretized on a
three-dimensional Cartesian coordinate-space mesh [70]. The
step size of 0.8 fm ensures a good accuracy in the solution of
the mean-field equations.

Throughout this study, we use the Skyrme parametrization
SLy4 [71] together with a pairing energy functional of
surface character [72] with parameters ρ0 = 0.16 fm−3 for the
switching density and V0 = −1000 MeV fm3 for the pairing
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strength. A soft cutoff at ±5 MeV around the Fermi energy is
used when solving the HFB equations as described in Ref. [72].

2. Projected GCM states

The GCM wave function [73] is constructed as a su-
perposition of both particle-number and angular-momentum-
projected HFB wave functions corresponding to different
deformations |q〉,

|JMμ〉 =
∑

q

F J
μ,qP̂

J
M0P̂

N P̂ Z |q〉, (1)

where μ labels different collective states for a given angular
momentum J . This ansatz can cover a wide variety of
situations, such as small fluctuations around a spherical or
well-deformed minimum of a deep and steep potential well,
wide fluctuations in soft nuclei, or mixing of states in different
minima of the energy surface.

The operators P̂ Z and P̂ N project on proton and neutron
number,

P̂ N = 1

2π

∫ 2π

0
dϕ eiϕ(N̂−N), (2)

and P̂ J
MK extracts eigenstates of total angular momentum J

with z component M ,

P̂ J
MK = Ĵ 2

8π2

∫
d� DJ∗

MK (�) R̂(�), (3)

where Ĵ 2 ≡ 2J + 1, R̂(α,β,γ ) ≡ e−iαĴx e−iβĴy e−iγ Ĵz is the
rotation operator, and DJ

MK (α,β,γ ) is the Wigner D function.
Both the rotation operator and the Wigner D function depend
on the Euler angles, for which we will use the shorthand
notation � ≡ (α,β,γ ) whenever possible. The volume element
of the integration over Euler angles is given by d� ≡
dα dβ sin(β) dγ . Only a K = 0 component can be picked by
P̂ J

MK from an HFB state that is axially symmetric around the
z axis. Therefore, the index K will be dropped for simplicity.

The weight factors FJ
μ,q and the energies of the states

|JMμ〉 are obtained by solving a Hill-Wheeler-Griffin equa-
tion [73] ∑

q

(HJ
q ′q − EJ

μN J
q ′q

)
FJ

μ,q = 0, (4)

for each value of J , where the norm kernel N J
q ′q =

〈q ′|P̂ J
00P̂

N P̂ Z|q〉 and the energy kernel HJ
q ′q is a functional of

mixed densities [74]. More details about the calculations can
be found in Ref. [75] and references given therein.

As the projected mean-field states do not form an orthog-
onal basis and the weights FJ

μ,q in Eq. (1) are not orthogonal
functions, a set of orthonormal collective wave functions gJ

μ,q

is constructed as [73]

gJ
μ,q =

∑
q ′

(N J )1/2
qq ′ F

J
μ,q ′ , (5)

but the modulus square of gJ
μ,q does not represent the

probability of finding the deformation q in a GCM state
|JMμ〉. In a GCM based on axial states, however, the gJ

μ,q

do nevertheless provide a good indication about the dominant
configurations in the collective states |JMμ〉.

B. Form factors in electron scattering

1. General framework

Our aim is to show how to calculate form factors and
transition densities in the framework of our model. We will
therefore not enter into the details of the process of scattering
electrons off nuclei itself and limit the presentation to those
elements of the formalism that are necessary to compute
densities, transition densities, and their form factors in a form
that can then be compared to experiment.

We use the framework of the plane-wave Born approx-
imation (PWBA). The incident and outgoing electrons are
described by plane waves eiki ·r and eikf ·r with momenta ki

and kf and energies Ee
i and Ee

f , respectively. The differential
cross section for electron scattering from a spinless nucleus is
given by [2–4,7]

dσ

d�
= dσM

d�

∑
L�0

|FL(q)|2, (6)

which is the product of the Mott cross section dσM/d�
describing the cross section for scattering off a pointlike target
with charge Z [1,76] times the sum of form factors FL(q)
that represent its modification by the nucleus having a finite
size and an internal structure. The cross section depends on

the momentum transfer q = |kf − ki | � 2
√

Ee
i E

e
f sin(θ/2),

where ki(Ee
i ) and kf (Ee

f ) are the momenta (energies) of the
incoming and outgoing electron, respectively, and θ the angle
between ki and kf .

The longitudinal Coulomb (CL) form factor FL(q) in (6)
for an angular momentum transfer L is the Fourier-Bessel
transform of the transition density ρ

Jf μf

Jiμi ,L
(r) from an initial

state |JiMiμi〉 to a final nuclear state |Jf Mf μf 〉:

FL(q) =
√

4π

Z

∫ ∞

0
dr r2 ρ

Jf μf

Jiμi ,L
(r) jL(qr), (7)

where the coefficient
√

4π/Z is chosen so that the elastic part
(Jf = Ji,μf = μi) of the form factor F0(q) is unity at q = 0.

In this expression, ρ
Jf μf

Jiμi ,L
(r) is the reduced transition density

that will be related to GCM matrix elements in the next section.
In electron scattering off nuclei, the Coulomb attraction

accelerates the electrons when they approach the nucleus
and the electron wave is focused onto the nucleus. As a
consequence, an experiment actually samples the form factor
at a larger momentum transfer than given by the asymptotic
values of the kinematic variables. This can be corrected for by
plotting the experimental data measured for a given q [4,10,26]
as a function of the corresponding “effective” momentum
transfer

qeff = q

(
1 + 3Ze2

2Ee
i Rch

)
, (8)

where Rch is the equivalent hard-sphere radius of the nucleus
that is related to its rms charge radius rch by Rch = √

5/3 rch.
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Values for rch used in what follows are taken from a compila-
tion of experimental data [77]. It was concluded in Ref. [26]
that the Coulomb distortion effect of the scattered electrons is
mostly taken into account by this prescription and that there
is no significant advantage to replacing PWBA calculations
for inelastic scattering with more involved distorted-wave
Born approximation (DWBA) calculations, in particular when
considering the limitations in precision of both data and their
theoretical modeling.

A correction for the finite size of the proton is introduced by
folding all calculated point proton densities with a Gaussian
form factor [35], for example

ρch(r) =
(

1

a
√

π

)3 ∫
d3r ′ exp

[
− (r − r′)2

a2

]
ρp(r′), (9)

where a = √
2/3 〈r2〉1/2

p = 0.65 fm. When high precision is
required, more detailed parametrizations of the proton and
neutron charge distributions have to be used together with
relativistic corrections (cf. [26,34] and references therein).

A correction for the spurious center-of-mass (c.m.) motion
related to the breaking of translational invariance by the nu-
clear mean field should also be introduced. A rigorous way to
remove it is to project on the c.m., which, however, is difficult
to achieve in combination with angular-momentum projection
for deformed states. As has been shown in such calculations
for spherical mean-field states [78–80], the relative importance
of the c.m. correction quickly fades away for heavy nuclei.
A more economical approximation still in use [68] is the
harmonic oscillator approximation first proposed in Ref. [81],
where the calculated charge form factor is corrected by folding
it with a c.m. motion correction Fch,corr(q) = Fch(q) Gcm(q)
obtained in the harmonic oscillator approximation,

Gcm(q) = exp[q2b2/(4A)], (10)

where A = N + Z and b being a suitable oscillator length
parameter [26]. In what follows, we will use b = √

�/mω0,
where m is the bare nucleon mass and the frequency ω0 is given
by �ω0 = 41 A−1/3 MeV. As we will show below in Fig. 5,
already for 24Mg the effect of the c.m. motion correction is too
small to be relevant for the purpose of our discussion.

2. Transition density between GCM states

To calculate form factors (7) for elastic and inelastic
electron scattering and transition matrix elements, we need
to determine the reduced transition density ρ

Jf μf

Jiμi ,L
(r) as a

function of the radial coordinate r . We now derive its relation to
the three-dimensional (3D) transition density ρ

αf

αi (r) between
the initial |αi〉 and a final |αf 〉 GCM states:

ρ
αf

αi (r) ≡ 〈αf |ρ̂(r)|αi〉
=

∑
q ′q

F
Jf ∗
μf ,q ′F

Ji
μi ,q

ρ
σf q ′
σiq (r), (11)

where we have introduced the shorthand notation α ≡ {JMμ}
and σ ≡ {JMK}. With the exception of the appendices, we
restrict the discussion to axial states and σ ≡ {JM0}. The
density operator is defined as ρ̂(r) ≡ ∑

i δ(r − ri), where r is

the position at which the transition density is calculated, and
ri is the position of the ith nucleon.

The kernel of the 3D transition density between two axial
HFB states projected on particle numbers N,Z and angular
momentum J is determined by

ρ
σf q ′
σiq (r) ≡ 〈q ′|P̂ Jf

0Mf
ρ̂(r) P̂

Ji

Mi0
P̂ N P̂ Z|q〉. (12)

The calculation of a matrix element like Eq. (12) can be simpli-
fied for an operator that is a spherical tensor by eliminating one
of the two rotations [75,82,83]. The density operator, however,
is not a spherical tensor operator; the evaluation of its matrix
elements is considerably more complicated as both rotations
in Eq. (12) will have to be carried out numerically.

Inserting the explicit expressions for the projection opera-
tors into Eq. (12), one obtains for the transition density kernel
(see Appendix B for further details)

ρ
σf q ′
σiq (r) = Ĵ 2

f

8π2

∫
d�′ D

Jf

Mf 0(�′)

×
∑
K

D
Ji∗
MiK

(�′) R̂(�′) ρ
JiK0
q ′q (r), (13)

where ρ
JiK0
q ′q (r) for axially deformed nuclei is simplified as

ρ
JiK0
q ′q (r) ≡ Ĵ 2

i

2

∫ π

0
dβ sin(β) d

Ji

K0(β)

×〈q ′|ρ̂(r) P̂ N P̂ ZR̂y(β)|q〉. (14)

The calculation of the density (14) requires the determination
of nondiagonal matrix elements of the density operator
between a rotated and a nonrotated state analogous to the
calculation of projected matrix elements of tensor opera-
tors [75,82,83]. As shown in Ref. [82], when the x signature is
preserved, the integrant ρq ′q(r,β) ≡ 〈q ′|ρ̂(r) P̂ N P̂ ZR̂y(β)|q〉
presents a symmetry in β with respect to π/2:

ρq ′q(x,y,z,π − β) = ρq ′q(−x,y,z,β), (15)

which can be used to reduce the number of density overlaps to
be calculated explicitly by a factor of 2.

Compared to the calculation of operator matrix elements,
the unfamiliar element in the calculation of the projected
transition density kernels (13) is that the integration over �′
cannot be carried out analytically. Instead, Eq. (13) involves
the rotation of the density ρ

JiK0
q ′q (r) as a whole.

In a 3D coordinate-space representation as used here, a
rotation requires an interpolation of the rotated function, as
the rotated coordinates of the mesh points do in general
not fall back on the mesh. In our case, the integration over
d cos(β) is discretized using a Gauss-Legendre quadrature
with 24 points in the interval [−1, + 1], which is sufficient
for the low values of J considered here. The corresponding
rotations R̂y(β) in (14) are carried out with the same accurate
Lagrange-mesh technique [84,85] that is also used to evaluate
operator matrix elements in our codes.

To perform the rotation of ρ
JiK0
q ′q (r) in Eq. (13), it turned

out that, instead of a rotation of the density followed by an
integration over Euler angles, it is advantageous to expand
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ρ
JiK0
q ′q (r) into spherical harmonics first. Using the transforma-

tion of spherical harmonics under rotation and some further
angular-momentum algebra that is detailed in Appendix C, the
integrals over Euler angles �′ in Eq. (13) can be transformed
into integrals over spatial angles that are much easier to carry
out:

ρ
σf q ′
σiq (r) = Ĵ 2

f

Ĵ 2
i

∑
Kλν ′

〈Jf 0λK|JiK〉 〈Jf Mf λν ′|JiMi〉

× ρ
JiK0
q ′q;λK (r) Yλν ′(r̂), (16)

where ρ
JiK0
q ′q;λK (r) is given by

ρJK0
q ′q;λK (r) =

∫
d r̂′ ρ

JiK0
q ′q (r,r̂′) Y ∗

λK (r̂′). (17)

Finally, the 3D transition density of an axially deformed
nucleus is given by

ρ
αf

αi (r) = Ĵ 2
f

Ĵ 2
i

∑
Kλν ′

〈Jf 0λK|JiK〉〈Jf Mf λν ′|JiMi〉

×Yλν ′ (r̂)
∫

d r̂′ρJf JiK0
μf μi (r,r̂′)Y ∗

λK (r̂′), (18)

where we have introduced a configuration-mixing pseudo
GCM density1

ρ
Jf JiK0
μf μi (r) ≡

∑
q ′q

F
Jf 0∗
μf ,q ′ F

Ji0
μi,q

ρ
JiK0
q ′q (r). (19)

After some further algebraic manipulations, one obtains the
expression of the radial part of the 3D transition density,
namely, the reduced transition density [cf. (C9)]

ρ
Jf μf

Jiμi ,L
(r) = (−1)Ji−Jf

Ĵ 2
f

Ĵ 2
i

∑
K

〈Jf 0LK|JiK〉

×
∫

d r̂ ρ
Jf JiK0
μf μi (r) Y ∗

LK (r̂) (20)

that is experimentally accessible via electron scattering.
Compared to the direct evaluation of Eq. (13), the expansion

in spherical harmonics has the practical advantage in separat-
ing the radial dependence of ρ

Jf ,μf

Jiμi ,L
(r), which is specific to

each state, from its angular dependence, which is completely
determined by the angular momentum quantum numbers of
the states.

The integration over the angular part of r in Eq. (20) is
discretized using a Gauss-Legendre quadrature with 20 points
for the cosine of the polar angle cos(θ ) and a trapezoidal
rule with 20 points for the azimuthal angle ϕ. To carry
out the integral, the density ρ

JiK0
q ′q (r) that is calculated on a

equidistant Cartesian mesh has to be interpolated to the mesh
points in spherical coordinates by using the Lagrange-mesh
interpolation [84]. The step size dx of the original Cartesian
mesh is kept for the radial coordinate r .

1This pseudo GCM density summarizes all the information related
to the GCM calculation but it is not an observable.

3. Transition densities in some special cases

The expression for the inelastic scattering transition density
(TD), given by Eq. (18), simplifies greatly if the initial state is
a 0+ state:

ρ
αf

0+
μi

(r) = Y ∗
Jf Mf

(r̂)
∫

d r̂′ ρ
Jf 000
μf μi (r,r̂′) YJf 0(r̂′). (21)

As expected, the angular part of this TD is given by Y ∗
Jf Mf

(r̂).
The reduced transition density becomes

ρ
Jf μf

0μi,L
(r) = Ĵf

∫
d r̂ ρ

Jf 000
μf μi (r) YJf 0(r̂) δJf L. (22)

For a well-deformed nucleus, which can be described by a
single axial HFB configuration |q0〉, and by assuming that the
overlap between the rotated wave function and the original
one can be approximated by a δ(�) function, the pseudo
GCM density ρ

Jf JiK0
μf μi (r) reduces to the intrinsic density,

projected on particle numbers, ρNZ
q0q0

(r) ≡ 〈q0|ρ̂(r) P̂ N P̂ Z|q0〉.
The transition density ρ

Lμf

01,L(r) in Eq. (20) is then simply
given by

ρ
Lμf

01,L(r) = L̂

∫
d r̂ ρNZ

q0q0
(r) YL0(r̂), (23)

showing that we recover the rigid-rotor model for well-
deformed nuclei. The quality of this approximation quickly
deteriorates with increasing L values, as illustrated in
Refs. [10,57].

By putting αi = αf = α in Eq. (18), the 3D density for the
GCM state |α〉 is given by

ρα
α (r) =

∑
λ

Yλ0(r̂) 〈JMλ0|JM〉
∑
K

〈J0λK|JK〉

×
∫

d r̂′ ρJJK0
αα (r,r̂′) Y ∗

λK (r̂′). (24)

For the ground state 0+
1 , it is just the average of the pseudo

GCM density ρ0000
11 (r,r̂′) over the angular coordinates,

ρ
0+

1

0+
1

(r) = Y00(r̂)√
4π

∫
d r̂′ ρ0000

11 (r,r̂′), (25)

which obviously is spherically symmetric. This density has
been recently determined for various light systems using the
symmetry-restored GCM method [64–66].

4. Multipole transition matrix elements

The multipole transition matrix elements that are frequently
calculated in angular-momentum-projected GCM calculations
are related to the transition density (20) through

M
Jf μf

Jiμi ,L
=

∫ ∞

0
dr rL+2 ρ

Jf μf

Jiμi ,L
(r)

= Ĵ−1
i

∑
q ′q

F
Jf ∗
μf ,qf

F Ji
μi ,qi

〈Jf q ′||Q̂L||Jiq〉, (26)
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where the reduced matrix element of the multipole operator
Q̂LM (r) ≡ rL YLM (r̂) is defined by

〈Jf q ′||Q̂L(r)||Jiq〉 ≡ Ĵ 2
f Ĵ 2

i

2
(−1)Jf

∑
M

(
Jf L Ji

0 M −M

)

×
∫ π

0
dβ sin(β) d

Ji∗
−M0(β)

×〈q ′|rL YLM (r̂) P̂N P̂ZR̂y(β)|q〉.
(27)

The electric multipole transition strengths B(EL : αi → αf )
are then given by the square of the proton part of the transition
matrix element M

Jf μf

Jiμi ,L
(abbreviated with M

p
L). More details

are given in Appendix D.
There have been efforts to deduce the multipole transition

matrix elements M
p
L and Mn

L of protons and neutrons by
combining Coulomb excitation and (p,p′) measurements [86],
which, however, requires model assumptions at several stages
of the analysis. While their experimental determination re-
mains debatable, it turns out that the comparison between the
calculated M

p
L and Mn

L sheds light on the relative contributions
by the neutrons and protons to the nuclear excitation, and
therefore it provides an insight into the isospin nature of
the calculated excitation modes. The deviation of a factor η
defined as

η = Mn
L/M

p
L

N/Z
(28)

from 1.0 is then interpreted as the measure of the isovector
character of the excitation [86]. This quantity provides a tool
to study the isospin nature of the excitations, as the multipole
moments of neutrons can be easily calculated in the same way
as the ones of protons.

III. ILLUSTRATIVE APPLICATION TO 24Mg

The nucleus 24Mg has been used as a testing ground
for many implementations of beyond-mean-field mod-
els [75,82,83,85,87,88]. The results presented here are an
extension of previous studies. The mass quadrupole moment is
discretized with a step size �q = 40 fm2, ranging from −200
to +360 fm2. This choice ensures good convergence of the
GCM calculation. The excitation spectra obtained here are the
same as those reported for axial calculations in Ref. [75].

The energy curves obtained after projection on particle
numbers only and after simultaneous projections on particle
numbers and angular momentum J = 0, 2, and 4 are plotted in
Fig. 1(a). They are drawn as a function of the scaled quadrupole
moment β2 defined as

β2 =
√

5

16π

4π

3R2A
〈q|2ẑ2 − x̂2 − ŷ2|q〉, (29)

where R = 1.2A1/3 fm and varies from −0.9 to +1.6. The
energies of the first GCM states are also indicated by dots
centered at their mean deformations β̄Jμ defined as

β̄Jμ =
∑

q

β2(q)
∣∣gJ

μ,q

∣∣2
. (30)

FIG. 1. (Color online) (a) Total energy (normalized to the 0+
1

state) for the particle-number-projected HFB states (N&Z) and for
the particle-number and angular-momentum-projected states (curves
for J = 0, 2, and 4) for 24Mg as a function of the intrinsic mass
quadrupole deformation of the mean-field states. The solid squares
indicate the lowest GCM solutions, which are plotted at their average
deformation β̄Jμ. (b) Collective wave functions gJ

μ,q [cf. Eq. (5)] of
the 0+

1 , 2+
1 , and 4+

1 states.

Although β̄Jμ is not an observable, in axial calculations it
often provides a good indication about the dominant mean-
field configurations in a GCM state.

The corresponding collective wave functions are shown in
Fig. 1(b). The 0+

1 , 2+
1 , and 4+

1 states are a mixing of projected
prolate and oblate deformed configurations, with a dominance
of the prolate ones.

Contour plots of the proton densities ρα
α (r), Eq. (24), in the

y = 0 plane are shown in Fig. 2 for the M = 0 orientation
of the Jπ = 0+, 2+

1 , and 4+
1 states. As expected, the density

of the 0+
1 state is spherical after projection, The densities

FIG. 2. (Color online) Contour plots of calculated 3D proton
densities ρα

α (r) (in fm−3) in the y = 0 plane for the 0+
1 (a), 2+

1 (b),
and 4+

1 (c) states (with M = 0) in 24Mg.
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FIG. 3. (Color online) Contour plots of calculated TPD ρ
αf

0+
1

(r),

Eq. (21), in fm−3 in the y = 0 plane for the inelastic scattering from
the ground state to the 2+

1 (a) and the 4+
1 (b) states with M = 0 in

24Mg.

of the 2+
1 and 4+

1 states are a superposition of spherical
harmonics with λ values ranging from 0 to 2J [see Eq. (24)].
Their elongation along the z axis is larger than along the
x and y axes, giving the shapes a prolate-like form. The
dimensionless quadrupole deformations β(s) determined from
the spectroscopic quadrupole moments Qs(Jμ) of K = 0
states,

β(s)(Jk) =
√

5

16π

4π

3ZR2

(
−2J + 3

J

)
Qs(Jμ), (31)

are β(s) = 0.55 for the 2+
1 and 0.63 for the 4+

1 states,
respectively. The spectroscopic quadrupole moment Qs(Jμ)
is given by the expectation value of the quadrupole operator
Q̂20(r) = r2 Y20(r̂), multiplied by a coefficient

√
16π/5:

Qs(Jμ) =
√

16π

5
〈JJ20|JJ 〉M

Jμ
Jμ,2, (32)

with M
Jμ
Jμ,2 as defined in Eq. (26).

Figure 3 displays the transition proton density (TPD) ρ
αf

0+
1

(r)
[cf. Eq. (21)] for the inelastic scattering from the ground state
to the 2+

1 and 4+
1 states of 24Mg. The density for the transition

from the 0+
1 ground state to the 4+

1 state is an order of magnitude
smaller than the one to the 2+

1 state. As expected from Eq. (21),
the angular part of the TPDs has the shape of a spherical
harmonic. They are the largest around the nuclear surface and
present lobes of alternating signs.

The elastic C0 form factor |F0(q)|2 for the ground state of
24Mg is plotted in Fig. 4. The GCM calculation reproduces the
position of the form factor minima and is in agreement with
the data at low q values. However, our result underestimates
largely the form factor after the first minimum. A similar
discrepancy was found in Ref. [68] in the case of 12C. There,
it has been argued that the spreading of the collective wave
function on many deformations creates a too large smoothing
of the one-body density and decreases the weights of the
large-q components of the transition density. In the case of
12C, the pure HF form factor was slightly in better agreement
with the data. To estimate the effect of deformation on the

FIG. 4. (Color online) Elastic C0 form factor |F0(q)|2 for the 0+
1

ground state of 24Mg, in comparison with several calculations: he
C0 form factor obtained by particle-number and J = 0 projection
of a single HFB state with either β2 = 0 (spherical shape; light blue
dash-dotted curve) or β2 = 0.55 (minimum of J = 0 projected energy
curve; dark blue dashed curve) and from the full projected GCM
calculation (red solid curve). The inset shows the corresponding
charge density. Data (solid triangles and circles) are taken from
Ref. [89].

form factors, we also show the results obtained from single-
configuration calculations based on either β2 = 0 (spherical
shape) or β2 = 0.55 (minimum of the J = 0 energy curve)
wave functions. The form factor corresponding to the projec-
tion of the deformed configuration differs only marginally from
the GCM result. A similar result has also been found for 46Ar in
Ref. [66]. On the contrary, the high-q components of the form
factor based on the spherical configuration are much larger
and in better agreement with the data. As can be seen from the
inset, the charge density of the spherical configuration is also
larger in the interior than the densities obtained from J = 0
projected deformed configurations. Since it is well established
that 24Mg is deformed, the discrepancy between the GCM
result and experiment at large q values points toward missing
components in the ground-state wave function.

In Refs. [17,18], Friedrich and collaborators have per-
formed a detailed analysis of the relation between various
parametric forms of charge density distributions and the
resulting form factors. They conclude that the first zero of
|F0(q)|2 determines an extension parameter of the charge
distribution. Indeed, their analysis shows that, when comparing
two different C0 form factors, a minimum at lower q values
corresponds to a larger extension of the nuclear density. By
contrast, the surface diffuseness of the charge distribution is
related to the height of the first maximum of |F0(q)|2. For each
of the three calculations shown in Fig. 4, the first minimum
of |F0(q)|2 is located at nearly the same value of q, indicating
similar extensions. The value of |F0(q)|2 at the first maximum,
however, is significantly larger for the spherical configuration
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FIG. 5. (Color online) Longitudinal C2 form factor |F2(q)|2 for
the transition from the ground state to the 2+

1 state for 24Mg, in
comparison with available data. The form factor calculated with only
one single configuration of β2 = 0.55 and the form factor of the
transition proton density from full GCM calculations are given for
comparison. The inset shows the corresponding transition densities.
Data are taken from Ref. [90] (squares) and Ref. [89] (circles and
triangles).

and corresponds to a lower surface thickness, as can be seen
on the plot of the density.

The C2 longitudinal inelastic form factor is plotted in Fig. 5
for the transition from the ground state to the 2+

1 state in 24Mg.
Results obtained by projecting a single deformed HFB state
with β2 = 0.55 on J = 0 and J = 2 are compared with the
full projected GCM calculation and with experimental data.
The spreading of the GCM wave function over deformation
has little effect. As for |F0(q)|2, the GCM |F2(q)|2 form factor
is too low at large q values. A possible cause for this deficiency
could be a lack of components not included in the mean-field
basis. However, since we are using effective interactions, a
shortfall of the EDF cannot be excluded either. To estimate
the spurious effect of the c.m. motion, we have introduced
a correction in the form given by Eq. (10). Although this
correction is too small, it is going in the right direction.

Figure 6 displays the q-dependent transition quadrupole
matrix element M2(q2), Eq. (A15), for the transition from the
ground state to the 2+

1 state. The calculated values agree well
with the available data. According to Eqs. (A13) and (A15),
the transition strength B(E2) is given by the square of M2(q2)
in the q → 0 limit. The B(E2 ↑) value determined in this
way from the inelastic scattering data in low-q region is
420 ± 25 e2 fm4 [90], which is slightly overestimated by our
calculation, which gives a value of about 450 e2 fm4.

Figure 7 displays the C4 longitudinal inelastic form factor
|F4(q)|2 from the ground state to the 4+

1 state. The experimental
data are taken from Ref. [91]. The calculation reproduces well
the diffraction minimum observed at q � 2.0 fm−1 in the data.

FIG. 6. (Color online) q-dependent transition quadrupole matrix
element M2(q2), Eq. (A15), for the E2 transition from the ground state
to the 2+

1 state in 24Mg, in comparison with available data. M2(q2) in
the q → 0 limit is related to the B(E2) value via M2(0) = √

B(E2)/e.
Data are taken from Ref. [90] (squares) and Ref. [89] (circles and
triangles).

Moreover, the calculated E4 transition strength B(E4 : 0+
1 →

4+
1 ) = 2.07 × 103 e2 fm8 is close to the experimental value of

2.0(3) × 103 e2 fm8 [91]. The L = 4 transition density, shown
in the inset of Fig. 7, is peaked at r � 4.0 fm, further out than
the L = 2 transition density that has been shown in Fig. 5.

IV. APPLICATION TO EVEN-MASS 58–68Ni

The stable Ni isotopes (A = 58 to 62) have been extensively
studied in the 1960s. The data have been extended to heavier
isotopes over the past ten years, going up to potentially neutron
magic numbers N = 40 and N = 50. There is now a large set
of data putting into evidence the complexity of the evolution
of the Ni shell structure with the number of neutrons (see for
instance the discussions in Refs. [92–94]).

FIG. 7. (Color online) Longitudinal C4 form factor |F4(q)|2 for
the transition from the ground state to the 4+

1 state of 24Mg, in
comparison with available data. The inset shows the corresponding
transition density. Data are taken from Ref. [91].
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FIG. 8. (Color online) Same as Fig. 1, but for 58Ni.

The discretization of the mass quadrupole moment used for
the GCM calculations of the Ni isotopes ranges from −500 to
+700 fm2 with a step size �q = 100 fm2.

The results obtained at the successive steps of our method
for 58Ni are plotted in Fig. 8. The energy curve obtained
from particle-number projection of mean-field wave functions
presents a soft spherical minimum. After projection on angular
momentum, two minima, close in energy, are obtained for
J = 0, 2, and 4 by the projection of prolate and oblate
mean-field configurations. The collective wave functions gJ

μ

resulting from configuration mixing are spread over a large
range of deformations [see Fig. 8(b)]. As a consequence, the
mean deformation β̄Jμ is close to zero and does not bring
valuable information. By contrast, the positive β̄Jμ of the first
excited states indicates that they are dominated by prolate
mean-field configurations.

There have been claims in the literature that 58Ni is
a spherical vibrator (see for instance Refs. [95,96]). The
calculated energy pattern that we obtain, shown in Fig. 9, has
indeed some of the characteristics expected for a vibrator [97].
The first 4+ and second 2+ levels are at about twice the energy
of the 2+

1 state. There are, however, two near-degenerate 0+
levels at the expected energy of the two-phonon state instead
of just one. Looking at transition probabilities, one sees that
the first excited 0+ has a strong deexcitation to the second 2+
state, which is incompatible with a simple vibrator. The second
excited 0+ decays predominantly to the first 2+ and would thus
be a better candidate for a two-phonon state, but the overall
pattern of B(E2) values is very different from what would be
expected. The available data for 58Ni are too sparse to draw
firm conclusions, but they do not seem to be well described
by the assumption of a simple vibrator either. In fact, there
seems to be a general rule that the more information about a

FIG. 9. (Color online) Comparison between the spectrum ob-
tained for 58Ni using our method and the experimental results. Data
are taken from Ref. [94].

potential anharmonic vibrator becomes available, the less this
interpretation can be retained [97,98].

The shell-model description of this Ni isotope, and also of
all others up to 68Ni, shows that a correct reproduction of both
energies and B(E2) values of the low-lying states requires the
inclusion of the full fp shell (see the discussion in Ref. [93]).
In its present form, our beyond-mean-field method does not
allow us to include all the relevant shell-model configurations:
Multiple quasiparticle excitations that break time-reversal
invariance are not contained in the model space used in
this study. However, deformed configurations include many
spherical multiparticle-multihole excitations. The spreading of
the GCM wave functions over a large range of deformations
is an economic way to include spherical orbitals arising from
shells excited at sphericity (see Fig. 13).

The elastic scattering form factor for 58Ni is shown in
Fig. 10. The results obtained with the full GCM basis are
compared to those corresponding to the projection of a single
configuration, either spherical or corresponding to the minima
at β2 = ±0.21 of the projected energy curve. All these form
factors are quite close, with slight differences at q values
beyond the first maximum. The position of the zeros is
reproduced rather well, but the heights of the first and second
diffraction maxima are underestimated.

The ground-state charge density distribution is plotted in
Fig. 11 for the same four calculations as in Fig. 10. The small
differences between these calculations above q = 1.2 fm−1 is
reflected in differences between the densities in the interior
region (r < 2.0 fm). The GCM result is similar to a previous
result obtained from a one-dimensional Bohr Hamiltonian
(1DBH) calculation determined by the HFB method and using
the Gogny D1 force [101].

To analyze the effect of static deformations, we compare in
Fig. 12 the elastic form factor and the charge distribution calcu-
lated using projected deformed configurations with increasing
values of β2 from spherical to β2 = 0.7. The height of the
first and second diffraction maxima is not affected by small
deformations. However, it starts to significantly decrease with
deformation for β2 values larger than 0.2. Moreover, the C0
form factor drops faster in the low-q region if the deformation
is increased, as shown in the inset of Fig. 12. This behavior
can be understood by looking to the relation (A16) between

024301-9



J. M. YAO, M. BENDER, AND P.-H. HEENEN PHYSICAL REVIEW C 91, 024301 (2015)

FIG. 10. (Color online) Data for the elastic form factor |F0(q)|2
for the ground state of 58Ni taken from Ref. [99] in comparison with
the form factor obtained from four different calculations: projection
of a single HFB configuration with either β2 = 0 (spherical shape) or
β2 = ∓0.21 (oblate and prolate minima of the J = 0 energy curve)
and full GCM of projected states.

the C0 form factor and the rms charge radii rch for low-q
values and from the effect of deformation on the charge radius
of a uniformly charged liquid drop, rch/r

sph
ch � (1 + 5

4π
β2

2 ).
Figure 12(b) illustrates the effect of deformation on the charge
density distribution. Increasing the deformation pushes charge

FIG. 11. (Color online) Comparison between the charge distri-
bution of the ground state of 58Ni obtained using single projected
mean-field configurations or the full GCM basis and the experimental
data [100]. A previous calculation using a one-dimensional Bohr
Hamiltonian based on an HFB calculation with the Gogny D1 force
(1DBH) [101] is also shown. The insets magnify the profile of the
charge density at very small radii and in the nuclear surface.

FIG. 12. (Color online) (a) Elastic form factor |F0(q)|2 for the
J = 0 state of 58Ni projected from a single HFB configuration with
prolate deformation of β2 increasing from 0.0 to 0.7, respectively. (b)
Charge distributions corresponding to the form factors displayed in
panel (a).

from the inside of the surface (around r = 3 fm) to the outside
(around r = 6 fm).

The origin of the change of behavior of |F0(q)|2 at β2 ≈ 0.3
can be traced back to the single-particle spectra. These are
plotted in Fig. 13. The shell structure for neutrons and for
protons is very similar. At β2 ≈ 0.3, a downsloping proton
level from the 1f7/2 spherical shell crosses an upsloping level
from the 2p3/2 shell. This indicates that the gradual population
of the 2p3/2 orbital beyond this point might be responsible for
the decrease of the form factor at large q values.

In the next figures, we show results obtained for the even
Ni isotopes up to N = 40. Figure 14 shows the evolution with

FIG. 13. (Color online) Nilsson diagram of the eigenvalues of
the single-particle Hamiltonian for neutrons (a) and protons (b) as
obtained with the Skyrme interaction SLy4 as a function of the
quadrupole deformation. Solid (dotted) lines represent levels of
positive (negative) parity, and black, red, green, and blue colors
represent levels with expectation values of 〈jz〉 = 1/2, 3/2, 5/2, and
7/2, respectively.
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FIG. 14. (Color online) The excitation energy E(2+
1 ) of the 2+

1

state and the B(E2) value for the transition from this state to
the ground state for 58–68Ni. Experimental data are taken from
Refs. [94,102].

N of the excitation energy of the first 2+
1 state and of the

B(E2) value to the ground state. Although both the E(2+
1 )

and B(E2) values are systematically overestimated in our
calculation, their evolution as a function of the neutron number
is rather well reproduced. We expect that the discrepancy with
experiment is mainly due to the time-reversal invariance that
is imposed to the mean-field wave functions and that limits
the model space of the present calculation to purely collective
states. Noncollective time-reversal-invariance-breaking two-
quasiparticle excitations are indeed present in the shell-model
calculations, which are in better agreement with data. It can
be expected that such configurations will decrease the 2+
excitation energies and make them less collective, resulting
in a decrease of the B(E2) values.

The calculated C2 form factor |F2(q)|2 and the q-
dependent transition quadrupole matrix element M2(q2) for
the quadrupole transition from the ground state to the 2+

1 state
are displayed in Fig. 15. The isotopic dependence of the form
factor is very weak, with a decrease of the height of the first
maximum with N . The quadrupole transition matrix element
M2(q) at q → 0 decreases in the same way, which corresponds
to the smooth decrease of the calculated B(E2) value (cf.
Fig. 14).

In Fig. 16, the neutron and proton densities for the transition
from the 2+

1 state to the ground state are shown for 58–64Ni. The
radial profiles are similar for all isotopes, with a large peak at
large radii and a smaller one at low values of r . The height
of the first peak for the neutron transition density decreases
with N and nearly disappears at N = 40, in contrast with the
second peak.

The ratio η between the values of the quadrupole matrix
element for neutrons to that for protons is given in Table I
for 58–68Ni. This ratio provides a measure of the isovector

FIG. 15. (Color online) (a) The C2 form factor and (b) the q-
dependent transition quadrupole matrix element for the quadrupole
transition from the ground state to the 2+

1 state in 58–68Ni.

character of the transition. It is close to one in our calculation,
indicating that the transitions are predominantly isoscalar.

The radial transition charge density (TCD) from the
ground state to the 2+

1 state is compared to the experimental
data [9] for 58–68Ni in Fig. 17. The shape of the TCD of
58–64Ni is reproduced by the GCM calculation. However, we
overestimate the height of the surface peak and/or the tail
part of the TCD. This deficiency can be traced back to the
overestimated B(E2 : 2+

1 → 0+
1 ) values, as shown in Fig. 14.

In Fig. 18 the GCM inelastic Coulomb form factors |FL(q)|2
are compared to the experimental data for the transitions
from the ground state to the J+

1 (L = J = 2,4) state. Our
calculation reproduces rather well the shapes of the quadrupole
and hexadecapole transition form factors, but it systematically
underestimates the hexadecapole ones.

FIG. 16. (Color online) Calculated transition neutron and proton
densities from the 2+

1 state to the ground state for 58–68Ni.
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TABLE I. Isovector character η [cf. Eq. (28)] of the 2+
1 state of

even-even Ni isotopes.

η 58Ni 60Ni 62Ni 64Ni 66Ni 68Ni

This work 1.02 1.05 1.06 1.06 1.03 1.02
Ref. [86] 1.01 1.02 1.12 0.92
Ref. [103] 1.10 1.31 1.36 1.41
Ref. [104] 1.10 1.09 1.33 1.02

V. SUMMARY AND OUTLOOK

We have presented how to determine densities and transition
densities, as well as the corresponding form factors, within
the beyond-mean-field model that we have developed over
many years. The light deformed nucleus 24Mg and the even-
mass 58–68Ni have been used as examples. Depending on the
structure of the nucleus, static deformation, or dynamic shape
fluctuations, or both might be important for the description of
the ground-state and transition densities.

The framework that we have developed is very general and
can be applied to any nucleus and any kind of transitions
for which calculations using the GCM are available. This
gives some hope that applications to odd-mass nuclei will
be available in a not too distant future [109]. For a better
description of low-lying excited states in spherical even-even
nuclei, it would be desirable to add noncollective time-
reversal-breaking n-quasiparticle states to the GCM basis.

FIG. 17. (Color online) Calculated transition charge densities
from the ground state to the 2+

1 state for 58–68Ni, in comparison with
available data [9].

FIG. 18. (Color online) Calculated inelastic Coulomb form fac-
tors |FL(q)|2 for the transition from the ground state to the J +

1 (L =
J = 2,4) state in 58–68Ni, in comparison with available data, taken
from Ref. [105] (up triangles), Ref. [106] (squares and diamonds),
Ref. [107] (circles), and Ref. [108] (left and right triangles).

Leptonic probes have the advantage that the interaction
mechanism and the nucleonic form factors are precisely
known, which reduces the theoretical uncertainties. But with
additional modeling, also the scattering of hadronic probes off
nuclei could be described.

To improve the quality of the results obtained in our model,
one certainly needs to construct a new energy functional, which
should be adjusted to the data on nuclear charge radii at the
beyond-mean-field level. As has been shown in Ref. [110], the
charge radii, in particular of light nuclei, become systemati-
cally larger in the angular-momentum-projected GCM, which
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poses a problem when using a parametrization adjusted at the
mean-field level. Elastic and inelastic form factors seem to
be tools that are very sensitive to the momentum composition
of the collective wave functions and should provide stringent
tests of nuclear models.
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APPENDIX A: FORM FACTORS OF ELECTRON
SCATTERING OFF NUCLEI IN THE PWBA

We suppose that the nucleus makes a transition from the
initial state |αi〉 to the final state |αf 〉, where we introduce the
shorthand notation α representing JMμ. In the plane-wave
Born approximation, the longitudinal form factor, normalized
to the nuclear charge Z, is given by the Fourier-Bessel
transformation of the transition density ρ

αf

αi (r) [cf. Eq. (11)],

|F (q)|2 = 4π

Z2 Ĵ 2
i

∑
Mi,Mf

∣∣∣∣∣
∑
LM

〈αf |M̂LM |αi〉Y ∗
LM (q̂)

∣∣∣∣∣
2

. (A1)

The multipole operator M̂LM (q) has been defined following
Refs. [105,111] as

M̂LM (q) ≡
∫

d3r jL(qr) YLM (r̂) ρ̂(r), (A2)

where jL(qr) is a spherical Bessel function and where we have
used the relation

eiq·r = 4π
∑
LM

iL jL(qr) Y ∗
LM (q̂) YLM (r̂). (A3)

By using the orthogonality of the spherical harmonics, one
can show that the radial dependence of |F (q)|2 is given
by [3,105,112]

|F (q)|2 = 4π

Z2Ĵ 2
i

∞∑
L=0

|〈Jf μf ||M̂L(q)||Jiμi〉|2. (A4)

Comparing with Eq. (6), one finds the form factor FL(q) for
an angular momentum transfer L [111]:

FL(q) =
√

4π

ZĴi

|〈Jf μf ||M̂L(q)||Jiμi〉|. (A5)

Using its definition provided by Eq. (A2), the matrix element
of the multipole operator M̂LM between an initial |αi〉 and a
final |αf 〉 state,

〈αf |M̂LM |αi〉 =
∫

d3r jL(qr) YLM (r̂) ρ
αf

αi (r), (A6)

is related to the reduced matrix element
〈Jf ; μf ||M̂L(q)||Ji ; μi〉 by the Wigner-Eckart theorem [114]

〈Jf μf ||M̂L(q)||Jiμi〉 = (−1)2LĴf

〈αf |M̂LM |αi〉
〈JiMiLM|Jf Mf 〉 ,

(A7)

where 〈JiMiLM|Jf Mf 〉 is a Clebsch-Gordan coefficient. In
other words, one can define a reduced transition density
ρ

Jf ,μf

Ji ,μi ,L
(r) as a function of radial coordinate r through the

3D transition density ρ
αf

αi (r),

〈αf |ρ̂(r) YLM |αi〉

= (−1)2L

Ĵf

〈JiMiLM|Jf Mf 〉〈Jf μf ||ρ̂(r)YL||Jiμi〉. (A8)

The left-hand side of Eq. (A8) is given by

〈αf |ρ̂(r)YLM |αi〉 =
∫

d r̂ ρ
αf

αi (r) YLM (r̂). (A9)

The reduced transition density ρ
Jf μf

Jiμi ,L
(r) with angular momen-

tum transfer L is therefore given by

ρ
Jf μf

Jiμi ,L
(r) = Ĵ−1

i 〈Jf μf ||ρ̂(r) YL||Jiμi〉, (A10)

where the factor Ĵ−1
i is introduced such that the integration of

rL+2ρ
Jf ,μf

Ji ,μi ,L
(r) over the radial coordinate r gives the value of

the transition matrix element of multipolarity L [cf. Eq. (26)].
In terms of the reduced transition density, the longitudinal

form factor FL(q) for angular momentum transfer L in
Eq. (A5) has the form

FL(q) =
√

4π

Z

∫ ∞

0
dr r2 ρ

Jf μf

Jiμi ,L
(r) jL(qr). (A11)

We note that our convention for the reduced transition density
differs from the one of Eq. (5) of Ref. [76] by a factor of√

4π/Z.
According to the asymptotic behavior of the spherical

Bessel function jL(qr) [4],

lim
qr→0

jL(qr) = (qr)L

(2L + 1)!!

[
1 − 1

L + 3/2

(
qr

2

)2

+ 1

2(L + 3/2)(L + 5/2)

(
qr

2

)4

− · · ·
]
,

(A12)

the Coulomb form factor of inelastic scattering in the q → 0
limit is given by [4,113]

FL(q) =
√

4π

Z

qL

(2L + 1)!!

√
B(EL)

×
[

1 − q2 R2
tr

2(2L + 3)
+ q4 R4

tr

8(2L + 3)(2L + 5)
− · · ·

]
,

(A13)
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where the effective transition radii Rn
tr (n = 2, 4) are defined

as

Rn
tr =

∫
dr rL+n+2 ρ

Jf μf

Jiμi ,L∫
dr rL+2 ρ

Jf μf

Jiμi ,L

. (A14)

From these properties, one can extract the multipolarity L of
the transition, the transition strength B(EL), and the transition
radius R2

tr from the data for the Coulomb form factor in the
low-q region. Usually, one introduces a q-dependent multipole
transition matrix element M

p
L(q) for graphical comparisons of

matrix elements and Coulomb form factors at small q values:

ML(q2) = Z√
4π

(2L + 1)!!

qL
F �

L(q). (A15)

For elastic scattering, L = 0, αf = αi = α, and the Coulomb
form factor becomes in the q → 0 limit

F0(q) =
√

4π

Z

∫ ∞

0
dr r2 ρ

Jμ
Jμ,0(r)

sin(qr)

qr

= 1 − q2

3!
r2

ch + · · · , (A16)

where rch is the rms charge radius of the state |Jμ〉.

APPENDIX B: DERIVATION OF TRANSITION DENSITY
BETWEEN GCM STATES

In this section, we derive the form of the transition density
between two arbitrary GCM states for the general case of
triaxially deformed nuclei. In this case, the wave function of
the GCM state is given by

|α〉 =
∑
K,q

F JK
μ,q P̂ J

MK P̂ N P̂ Z|q〉. (B1)

Sandwiching the density operator ρ̂(r) ≡ ∑
i δ(r − ri) be-

tween the wave functions of the initial |αi〉 and final |αf 〉
GCM states, one obtains the 3D transition density

ρ
αf

αi (r) =
∑

Kf ,Ki

∑
qf ,qi

F
Jf Kf ∗
μf ,q ′ FJiKi

μi ,q
ρ

σf q ′
σiq (r), (B2)

where we have introduced the shorthand notation σ ≡
{JMK}. The kernel of the 3D transition density ρ

σf q ′
σiq (r) reads

ρ
σf q ′
σiq (r) = Ĵ 2

i Ĵ 2
f

(8π2)2

∫∫
d�′ d� D

Jf ∗
Kf Mf

(�′) D
Ji

KiMi
(�)

×〈q ′|R̂(�′) ρ̂(r) R̂†(�′) P̂ N P̂ ZR̂(�′) R̂†(�)|q〉.
(B3)

For any HFB state |q〉, one has

〈q ′|R̂(�′)ρ̂(r)R̂†(�′)|q〉 ≡ 〈q ′|ρ̂(r̃�′)|q〉
= R̂†(�′)[〈q ′|ρ̂(r)|q〉], (B4)

where r̃�′ = D(�′) r. By decomposing the rotation operator
R̂(�) ≡ R̂(�′′) R̂(�′), R̂†(�) = R̂†(�′)R̂†(�′′) and using the
properties of Wigner D functions,

D
Ji

KiMi
(�) =

∑
K

D
Ji

KiK
(�′′) D

Ji

KMi
(�′), (B5)

the kernel ρ
σf q ′
σiq (r) of the 3D transition density in (B2) can be

simplified to

ρ
σf q ′
σiq (r) = Ĵ 2

f

8π2

∫
d�′ D

Jf ∗
Kf Mf

(�′)

×
∑
K

D
Ji

KMi
(�′) R̂†(�′) ρ

JiKKi

q ′q (r), (B6)

where ρ
JiKKi

q ′q (r) is defined as

ρ
JiKKi

q ′q (r) ≡ 〈q ′|ρ̂(r)P̂ Ji

KKi
P̂ N P̂ Z|q〉. (B7)

APPENDIX C: EXPANSION IN TERMS OF SPHERICAL
HARMONICS

To separate the radial dependence of the 3D transition density
from its trivial angular part, inspired by Ref. [57] we expand
ρ

JiKKi

q ′q (r) in Eq. (B7) in terms of spherical harmonics,

ρ
JiKKi

q ′q (r) =
∞∑

λ=0

λ∑
ν=−λ

ρ
JiKKi

q ′q;λν (r) Yλν(r̂), (C1)

where the radial part ρ
JiKKi

q ′q;λν (r) is given by

ρ
JiKKi

q ′q;λν (r) =
∫

d r̂ ρ
JiKKi

q ′q (r,r̂) Y ∗
λν(r̂). (C2)

In this case, the rotation R̂†(�′) of ρ
JiKKi

q ′q (r) in Eq. (B6) can
be evaluated analytically as

R̂†(�′)ρJiKKi

q ′q (r) =
∑
λνν ′

Dλ∗
νν ′ (�′) ρ

JiKKi

q ′q;λν (r) Yλν ′(r̂). (C3)

The kernel ρ
σf q ′
σiq (r) of the 3D transition density in Eq. (B6)

becomes

ρ
σf q ′
σiq (r) = Ĵ 2

f

Ĵ 2
i

∑
Kλνν ′

〈Jf Kf λν|JiK〉〈Jf Mf λν ′|JiMi〉

× ρ
JiKKi

q ′q;λν (r) Yλν ′(r̂), (C4)

where we have expressed the integration of the product of
three Wigner D functions over Euler angles as the product of
two Clebsch-Gordan coefficients, making the assumption that
Ji + Jf + λ is integer [114]:∫

d�′DJf ∗
Kf Mf

(�′)DJi

KMi
(�′)Dλ∗

νν ′(�′)

= 8π2

Ĵ 2
i

〈Jf Kf λν|JiK〉 〈Jf Mf λν ′|JiMi〉. (C5)

By substituting the expression for ρ
αf

αi (r) into Eqs. (A8)–(A10),
one finds as an expression for the reduced transition density

ρ
Jf μf

Jiμi ,L
(r) = (−1)2L

Ĵ 3
f

Ĵ 3
i

∑
Kf ,Ki

∑
q ′q

F
Jf Kf ∗
μf ,q ′ FJiKi

μi ,q

×
∑

Kλνν ′
〈Jf Kf λν|JiK〉 〈Jf Mf λν ′|JiMi〉

〈JiMiLM|Jf Mf 〉

× ρ
JiKKi

q ′q;λν (r)
∫

d r̂ YLM (r̂) Yλν ′(r̂). (C6)
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With the help of the orthogonality relation of spherical
harmonics,

∫
d r̂ YLM (r̂) Yλν ′(r̂) = (−1)−M δLλ δM−ν ′ , and the

symmetry relation 〈Jf Mf L − M|JiMi〉 = (−1)2L−M+Ji−Jf

Ĵi

Ĵf
〈JiMiLM|Jf Mf 〉 of the Clebsch-Gordan coefficients, the

reduced transition density can be simplified to

ρ
Jf μf

Jiμi ,L
(r) = (−1)Ji−Jf

Ĵ 2
f

Ĵ 2
i

∑
Kf ,Ki

∑
q ′q

F
Jf Kf ∗
μf ,q ′ FJiKi

μi ,q

×
∑
Kν

〈Jf Kf Lν|JiK〉 ρ
JiKKi

q ′q;Lν (r), (C7)

where we have replaced the phase factor (−1)4L−2M+Ji−Jf by
(−1)Ji−Jf . Substituting Eq. (C2) into the above equation, one
finds as the final expression for the reduced transition density
of triaxially deformed nuclei

ρ
Jf μf

Jiμi ,L
(r) = (−1)Ji−Jf

Ĵ 2
f

Ĵ 2
i

∑
Ki,Kf

∑
q ′q

F
Jf Kf ∗
μf ,q ′ FJiKi

μi ,q

×
∑
Kν

〈Jf Kf Lν|JiK〉
∫

d r̂ ρ
JiKKi

q ′q (r) Y ∗
Lν(r̂).

(C8)

When axial symmetry about the z axis is imposed on the
intrinsic states |q〉, all components with Ki �= 0 and Kf �= 0

vanish. In this case, the reduced transition density ρ
Jf μf

Jiμi ,L
(r) in

Eq. (C8) is simplified as

ρ
Jf μf

Jiμi ,L
(r) = (−1)Ji−Jf

Ĵ 2
f

Ĵ 2
i

∑
q ′q

F
Jf 0∗
μf ,q ′F

Ji0
μi,q

×
∑
K

〈Jf 0LK|JiK〉
∫

d r̂ ρ
JiK0
q ′q (r) Y ∗

LK (r̂)

= (−1)Ji−Jf
Ĵ 2

f

Ĵ 2
i

∑
K

〈Jf 0LK|JiK〉

×
∫

d r̂ ρ
Jf JiK0
μf μi (r) Y ∗

LK (r̂), (C9)

where the pseudo GCM density ρ
Jf JiK0
μf μi (r) has been defined in

Eq. (19).

APPENDIX D: MULTIPOLE TRANSITION MATRIX
ELEMENTS

With the reduced transition density ρ
Jf μf

Jiμi ,L
(r) (C8), one

can calculate the multipole (L) transition matrix element
straightforwardly as

M
Jf μf

Jiμi ,L
≡

∫
dr r2+L ρ

Jf μf

Jiμi ,L
(r)

= (−1)Ji−Jf
Ĵ 2

f

Ĵ 2
i

∑
Kf ,Ki

∑
q ′q

F
Jf Kf ∗
μf ,q ′ FJiKi

μi ,q

×
∑
Kν

〈Jf Kf L − ν|JiK〉(−1)−ν

×
∫

d3r rL YLν(r̂) 〈q ′|ρ̂(r)P̂ Ji

KKi
P̂ N P̂ Z|q〉.

(D1)

By defining the transition operator of multipolarity L as
Q̂Lν = rLYLν , and using the relation between Clebsch-Gordan
coefficients and 3j symbols [114], we obtain the final
expression for the multipole transition matrix element,

M
Jf μf

Jiμi ,L
= (−1)2Ji

Ĵ 2
f

Ĵi

∑
Kf ,Ki

∑
q ′q

F
Jf Kf ∗
μf ,q ′ FJiKi

μi ,q

×
∑
Kν

(−1)Jf −Kf +2K

(
Jf L Ji

−Kf ν K

)

×〈q ′|Q̂LνP̂
Ji

KKi
P̂ N P̂ Z|q〉. (D2)

It can be easily shown that the electric multipole transition
strength is given by

B(EL : Jiμi → Jf μf ) = ∣∣MJf μf ,p

Jiμi ,L

∣∣2
, (D3)

provided that the operator Q̂Lν is replaced by the electric one,
Q̂Lν = erLYLν .
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