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We construct a coordinate-space chiral potential, including �-isobar intermediate states in its two-pion-
exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions
entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by
Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The
low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting
of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy
range 0–300 MeV. For the total 5291 pp and np data in this range, we obtain a χ2/datum of roughly 1.3 for
a set of three models characterized by long- and short-range cutoffs, RL and RS, respectively, ranging from
(RL,RS) = (1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and
two-pion exchange (contact) part of the potential.
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I. INTRODUCTION

The nucleon-nucleon (NN) interaction is a basic building
block in nuclear physics as it makes it possible to describe
nuclear structure and nuclear reactions. If the forces were
known accurately and precisely, the nuclear many-body
problem would become a large-scale computation where
precision and accuracy are defined in terms of the preferred
numerical method. However, the lack of direct knowledge of
the forces among constituents at separation distances relevant
for nuclear structure and reactions drastically changes the
rules of the game. Indeed, the use of a large but finite body
of scattering data below a given maximal energy to provide
constraints on the interaction transforms the whole setup into
a statistical inference problem, based on the conventional least
χ2 method. This fact was recognized already in 1957 [1]
(see Ref. [2] for an early review) and, after many years,
culminated in the admirable Nijmegen partial wave analysis
(PWA) of 1993 [3], based on the crucial observations that
charge-dependent one-pion-exchange (CD-OPE), tiny but es-
sential electromagnetic and relativistic effects, and a judicious
selection of the scattering database could actually provide
a satisfactory fit with χ2/datum ∼ 1 for a total number
of data consisting, as of 1993, of 1787 pp and 2514 np
(normalizations included) at the 3 σ level. These criteria have
set the standard for PWA’s and the design of high quality
phenomenological potentials [4–12]. The inference point of
view is mainly phenomenological and requires a balanced
interplay between which data qualify as constraints and which
models provide the most likely description of the data. None
of these choices is free of prejudices and they are actually
intertwined—a circumstance that should be kept in mind when
assessing the reliability and predictive power of the theory

aiming at a faithful representation of the input data and their
uncertainties.

The quantum mechanical nature of the PWA with a given
cutoff in energy leads to inverse scattering ambiguities which
increase at short distances (see, for example, Refs. [13,14]
and references therein). Remarkably, a universal and model-
independent low-energy interaction arises when unobserved
high energy components above the cutoff are explicitly
integrated out of the Hilbert space preserving the scattering
amplitude [15,16]. While this Vlow−k framework is an ex-
tremely appealing setup based on Wilsonian renormalization,
to date this universal interaction has not been determined
from data directly and one has to proceed via a fitted and
bare NN interaction because off-shellness is required [17].
However, inferring an NN interaction from data, is not the full
story, and three-nucleon, and possibly higher multinucleon,
interactions are needed to describe residual contributions to
nuclear binding energies [18]. As is well known, their strength
and form are also affected by the chosen off-shell behavior
of the NN interaction and a universal Vlow−k three-nucleon
interaction remains to be found.

In an ideal situation all steps in the inference process,
including the scattering data selection itself, should be carried
out with the “true” theory, which for nuclear physics is
quantum chromodynamics (QCD), the fundamental theory of
interacting quarks and gluons. Assuming, as we do, that the
theory is correct, QCD would just tell us which experiments
are right and which are wrong, or whether the reported uncer-
tainties are realistic with a given confidence level on the side of
the experiment. At the same time one would set constraints on
the QCD parameters such as the light quark masses and �QCD,
or equivalently the pion mass mπ and the pion weak decay
constant Fπ. While there was impressive progress in bringing
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lattice QCD simulations for light quarks closer to nuclear
physics working conditions (see Refs. [19,20] and references
therein), we do not yet envisage, at least not in the near future,
the realization of conditions that would allow one to establish,
on QCD grounds, the correctness of the about 8000 currently
available published pp and np scattering data below pion
production threshold. Instead, already in the early 1990s the
phenomenological analysis carried out by the Nijmegen group
made it possible to pin down the pion masses with a precision
of 1 MeV from their PWA of pp and np data [21].

In practice, we must content ourselves with an approxi-
mation scheme to the true theory in conjunction with a phe-
nomenological approach. This specifically means assuming
a sufficiently flexible parametrization of the interaction in
terms of the relevant degrees of freedom which does not
overlook some relevant physical feature. In what follows it
is instructive to briefly review both the process and criteria
taken into account to select a consistent database as well as the
QCD-based theory used to describe it. Our aim is to make the
reader aware of all the fine details which are needed to credibly
falsify the theoretical model, QCD grounded or not, against
the data and keep an open mind about the out-coming result.

On the theoretical side, we will assume along with
Weinberg [22] that there is a chiral effective field theory
(χEFT) capable of systematically describing the strong in-
teractions among nucleons, � isobars, and pions, as well as
the electroweak interactions of these hadrons with external
(electroweak) fields. In the specific case of two nucleons, the
requirements imposed by χEFT can be incorporated into a
nonrelativistic quantum mechanical potential, constructed by
a perturbative matching, order by order in the chiral expansion,
between the on-shell scattering amplitude and the solution of
the Schrödinger equation (see, for example, the review paper
by Machleidt and Entem [23]). Such a theory provides the
most general scheme accommodating all possible interactions
compatible with the relevant symmetries of QCD at low
energies, in particular chiral symmetry. By its own nature,
χEFT needs to be organized within a given power counting
scheme and the resulting chiral potentials can conveniently be
separated into long- and short-distance contributions, the latter
(short-distance ones) featuring the needed counterterms for
renormalization. At leading order in the chiral expansion one
has the venerable one-pion-exchange (OPE) potential which,
as already mentioned, emerges as a universal and indispensable
long-distance feature for an accurate description of proton-
proton and neutron-proton scattering data [3]. Higher orders in
the chiral expansion incorporate the two-pion-exchange (TPE)
potential [24] from leading and subleading πN couplings
(the subleading couplings c1, c3, and c4 can consistently be
obtained from low energy πN scattering data). The inclusion
of TPE allows one to reduce the short-range cutoff separating
long- and short-distance contributions, which helps in reducing
the impact of details in the unknown short-distance behavior
of the potentials. Nonetheless, we will note in Sec. IV that
uncertainties are dominated by this diffuse separation between
short and long distances.

There are many practical advantages deriving from a χEFT
that explicitly includes �-isobar degrees of freedom, the most
immediate one being a numerical consistency between the

values of the low-energy constants c1, c3, and c4 inferred from
either πN or NN scattering. Such a theory also naturally leads
to three-nucleon forces induced by TPE with excitation of an
intermediate � (the Fujita-Miyazawa three-nucleon force) as
well as to two-nucleon electroweak currents (see, for example,
Ref. [25]). In addition, there are somewhat strong indications
from phenomenology that � isobars play an important role in
nuclear structure and reactions. An illustration of this are the
three-nucleon forces involving excitation of intermediate �
resonances, needed to reproduce the observed energy spectra
and level ordering of low-lying states in s- and p-shell
nuclei or the correct spin-orbit splitting of P-wave resonances
in low-energy n-α scattering (for a review, see Ref. [18]).
Another illustration is the relevance of electroweak N -to-�
transition currents in radiative and weak capture processes
involving few-nucleon systems [26], specifically the radiative
captures of thermal neutrons on deuteron and 3He [27,28]
or the weak capture of protons on 3He (the so-called hep
process) [29]. It is for these reasons that in the present
work we construct a minimally nonlocal coordinate space
chiral potential, that includes � intermediate states in its
TPE component—it is described in detail in Sec. II. Such
a coordinate-space representation offers many computational
advantages for ab initio calculations of nuclear structure and
reactions, in particular for the type of quantum Monte Carlo
calculations of s- and p-shell nuclei very recently reviewed in
Ref. [18].

On the experimental side, there are currently ∼8000
published pp and np scattering data below pion production
threshold corresponding to 24 different scattering observables,
including differential cross sections, spin asymmetries, and
total cross sections [30,31]; see Ref. [12] for updated pp and
np abundance plots in the (Elab,θcm) plane. However, not all
of these data are mutually compatible and a decision has to be
made as to which are more likely to be correct. In principle, the
NN scattering amplitude can be determined uniquely, provided
a complete set of experiments is given—a rare situation for
the case under consideration. Therefore, a theoretical model
is needed to provide a smooth energy dependence which
allows one to interpolate between different energy values,
and helps in deciding on the mutual consistency of nearby
data in the (Elab,θcm) plane. The PWA carried out in Granada
parametrizes [10]1 the interaction, for internucleon distances
r less than 3 fm, in terms of a set equidistant delta shells
separated by �r = 0.6 fm (in other words, a coarse-grained
parametrization), while retaining only the OPE component
for r > 3 fm. The choice of �r corresponds to the shortest
de Broglie wavelength at about pion production threshold,
and consequently all the data are weighted with their quoted
experimental uncertainty. The result of the analysis was a 3 σ
self-consistent database comprising a total of 6713 pp and np
scattering data. More details on the data analysis specific to
our potential are presented in Sec. III. One important aspect
of the Granada PWA is the correlation pattern among the
fitting parameters, namely different partial waves are mostly

1The Granada database is located at the HADRONICA website
[http://www.ugr.es/∼amaro/hadronica/].
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uncorrelated which, together with the large number of selected
data, speaks in favor of a lack of bias in the selection process.
Actually the correlation length which decides on the specific
form of the potential should be smaller than the distance
�r = 0.6 fm in the coarse-grained parametrization.

Chiral potentials have been subjected to PWA and con-
fronted to pp and np scattering data up to laboratory energy
of 350 MeV. Within the χEFT framework the Nijmegen group
used the TPE potential [24] to carry out pp [6] and np + pp [8]
analyses determining the chiral constants c3 and c4 from
these data while constraining c1 from πN data. Taking the
chiral constants from πN analyses, Entem and Machleidt [32]
used a next-to-next-to-next-to-leading order (N3LO or Q4,
Q generically specifying the low momentum scale) chiral
potential to fit pp and np scattering data up to laboratory
energy of 290 MeV. The resulting χ2/datum were 1.1 for 2402
np data and 1.50 for 2057 pp data, and consequently a global
χ2/datum of 1.28. The chiral TPE potential [24] was also used
within the coarse grained framework to determine the chiral
constants in Ref. [11] with a global χ2/datum of 1.07, based
on 6713 pp and np scattering data.

Other available chiral potentials [33,34] have not been
confronted to scattering data directly but rather to phase shifts
obtained in the Nijmegen analysis (the recent upgrade [35]
of Ref. [33] relies on the same procedure, while in Ref. [34]
a study of peripheral phase shifts is carried out with two-
and three-pion exchange potentials up to order Q5). As we
will show in Sec. IV, there is a substantial difference between
fitting scattering data and fitting phase shifts mainly because
of the existing correlations among the many partial waves and
mixing angles. Actually, a good χ2 fit to phase shifts may
yield quite a bad χ2 in a fit to data. Moreover, the spread
in phase-shift values among different high-quality potentials
fitting the same data reflects the differences in the potential
representation and turns out to be larger than the estimated
statistical errors (compare Fig. 1 of Ref. [36] with Fig. 3 of
Ref. [37]). The consequences of these larger errors have been
discussed in Ref. [38].

The previous comments address the use of chiral po-
tentials to fit selected NN scattering databases which have
been obtained from phenomenological representations of the
interactions. An obvious question which comes to mind is
whether chiral potentials, being credible and general low
energy representations of QCD in the NN sector, should be
used themselves to select the database. Within the coarse
grained framework the impact of chiral interactions on the
selection of the database has also been studied in Ref. [11].
The result was that a larger number of data were rejected
but at the same time the number of parameters was reduced.
This poses the interesting question on what is the meaning of
improvement—a particularly critical issue when the potential
itself (chiral or not) must be tested against the selected data.
Obviously an incorrect model will appear to be correct if
a sufficiently large number of data is discarded. However,
the theory with just delta shells+OPE is more general than
that with delta shells+(OPE+TPE), and hence data selection
based on the former is more reliable. In any case, the results
of Ref. [11] show also that the long-range part of the next-
to-next-to-leading order (N2LO or Q3) chiral potential can

indeed fit the delta shells+OPE selected data satisfactorily
with a χ2/datum of 1.07, when the potential is taken to be valid
for internucleon distances ranging from 1.8 fm outwards.

The present paper is organized as follows. In the next
section we describe the potential, while in Sec. III we provide
a brief discussion of the data fitting. In Sec. IV we report
the χ2 values obtained in the fits as well as the values for
the low-energy constants that characterize the potential, and
show the calculated phase shifts for the lower partial waves
(S, P, and D waves) and compare them to those from recent
PWA’s. There, we also provide tables of the pp, np, and
nn effective range parameters and of deuteron properties,
including a figure of the deuteron S and D waves. Finally,
in Sec. V we summarize our conclusions. A number of details
are relegated to Appendixes A–E.

II. POTENTIALS

The two-nucleon potential includes a strong interaction
component derived from χEFT up to next-to-next-to-next-
to-leading order (N3LO or Q4) and denoted as v12, and
an electromagnetic interaction component, including up to
terms quadratic in the fine structure constant α (first- and
second-order Coulomb, Darwin-Foldy, vacuum polarization,
and magnetic moment interactions), and denoted as vEM

12 .
The vEM

12 component is the same as that adopted in the
Argonne v18 (AV18) potential [5]. The component induced by
the strong interaction is separated into long- and short-range
parts, labeled, respectively, vL

12 and vS
12. The vL

12 part includes
the one pion-exchange (OPE) and two pion-exchange (TPE)
contributions, illustrated in Fig. 1. Figure 1(a) represents the
OPE contribution at leading order (LO or Q0); Figs. 1(b)–1(g)
represent the TPE contributions at next-to-leading order (NLO
or Q2) without and with � isobars in the intermediate states;
lastly, Figs. 1(h)–1(p) represent subleading TPE contributions
at next-to-next-to-leading order (N2LO or Q3). The NLO and
N2LO loop corrections contain ultraviolet divergencies, which
are isolated in dimensional regularization and then reabsorbed
into contact interactions by renormalization of the associated
low energy constants (LEC’s) [39,40]. Additional loop correc-
tions at NLO and N2LO only lead to renormalization of OPE
and contact interactions [39,41], and will not be discussed any
further here.

The LO, NLO, and N2LO terms are well known, and
explicit expressions for them can be found in Refs. [39,40,42–
44]. The LO and NLO terms depend on the pion decay
amplitude Fπ , and the nucleon and N -to-� axial coupling
constants, respectively, gA and hA = 3 gA/

√
2 (this value

for hA is from the large Nc expansion or strong-coupling
model [45], and is in good agreement with the value inferred
from the empirical � width). The subleading N2LO terms also
depend on the LEC’s c1, c2, c3, and c4 and the combination
of LEC’s (b3 + b8), respectively, from the second-order πN

and πN� chiral Lagrangians L(2)
πN [46] and L(2)

πN� [43]. The
values of these LEC’s, as determined by fits to πN scattering
data [43], and of the masses and other physical constants
adopted in the present study are listed in Tables I and II.

In the static limit, the momentum-space LO, NLO, N2LO
terms are functions of the momentum transfer k; hereafter,
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(a) (b) (e) (f) (g)(c) (d)

(h) (i) (j) (k) (l) (m) (n) (o) (p)

FIG. 1. OPE and TPE contributions at LO (a), NLO (b)–(g), and N2LO (h)–(p). Nucleons, � isobars, and pions are denoted, respectively,
by the solid, thick solid, and dashed lines; both direct and crossed box contributions are retained in diagrams (d), (f)–(g), (k), and (n)–(p). The
open circles denote πN and πN� couplings from the subleading chiral Lagrangians L(2)

πN [46] and L(2)
πN� [43]. Note that relativistic 1/MN

corrections (MN is the nucleon mass) included in L(2)
πN Lagrangian are not considered here. In particular the contributions of diagrams (i), (k),

and (n) are neglected.

we define k = p′ − p and K = (p′ + p)/2, where p and p′
are the initial and final relative momenta of the two nucleons.
Coordinate-space expressions for the TPE terms are obtained
by using the spectral function representation [44], however,
with no spectral cutoff,2

v
l,TPE
L (r) = 1

2π2r

∫ ∞

2mπ

dμμ e−μrf l(μ) Im
[
ṽ

l,TPE
L (0+−iμ)

]
,

(2.1)

in terms of the left-cut discontinuity at k = 0+ −
i μ. Here f c(μ) = f τ (μ) = 1, f σ (μ) = f στ (μ) = 2/3, and
f t (μ) = f tτ (μ) = −(3 + 3μr + μ2r2)/(3 r2), and the func-
tions ṽ

l,TPE
L (k) are the momentum-space TPE components of

the potential at NLO and N2LO,

ṽ
L,TPE
12 =

6∑
l=1

ṽ
l,TPE
L (k) Õ l

12, (2.2)

with Õ
l=1,...,6
12 = [1 , σ1 · σ2 , σ1 · k σ2 · k] ⊗ [1 , τ 1 · τ 2] de-

noted as c,τ,σ,στ,t,tτ . Those corresponding to diagrams
(b)–(d) and (h)–(k) in Fig. 1 are known in closed form (see,
for example, Ref. [44]) and are listed in Appendix A for
completeness; the remaining ones corresponding to diagrams
(e)–(g) and (l)–(p) have been derived in terms of a parametric
integral, and they too are given in Appendix A. The radial
functions vl

L(r) are singular at the origin (they behave as 1/rn

with n taking on values up to n = 6; see Refs. [47,48] for
analytical expressions), and each is regularized by a cutoff of

2This detail is important because the lack of a spectral cutoff
ensures the correct analytical properties of the partial wave scattering
amplitude in the complex pcm plane, namely the proper branch-cut
structure of the TPE potential with the opening of the left cut at pcm =
±i mπ . Moreover, it produces the correct asymptotic behavior of the
potential avoiding midrange distortions. We refer to Refs. [47,48] for a
discussion of these issues. As a matter of fact, the N3LO- /� upgrade
in Ref. [35] improves over the work in Ref. [33] by removing the
spectral cutoff.

the form,

CRL (r) = 1 − 1

(r/RL)6 e(r−RL)/aL + 1
, (2.3)

where in the present work three values for the radius RL

are considered RL = (0.8,1.0,1.2) fm with the diffuseness aL

fixed at aL = RL/2 in each case. The potential vL
12, including

the well-known OPE components at LO regularized by the
cutoff in Eq. (2.3), then reads in coordinate space,

vL
12 =

[
6∑

l=1

vl
L(r) Ol

12

]
+ vσT

L (r) OσT
12 + vtT

L (r) OtT
12 , (2.4)

where

O
l=1,...,6
12 = [1 , σ1 · σ2 , S12] ⊗ [1 , τ 1 · τ 2], (2.5)

OσT
12 = σ1 · σ2 T12, and OtT

12 = S12 T12, and T12 = 3 τ1zτ2z −
τ 1 · τ 2 is the isotensor operator. The terms proportional to
T12 account for the charge-independence breaking induced
by the difference between the neutral and charged pion
masses in the OPE. However, this difference is ignored in the
NLO and N2LO loop corrections which have been evaluated
with mπ = (2 mπ+ + mπ0 )/3. Additional (and small) isospin
symmetry breaking terms arising from OPE [49] and TPE [50]
and from OPE and one-photon exchange [51,52] have also
been neglected.

The potential vS
12 includes charge-independent (CI) con-

tact interactions at LO, NLO, and N3LO, and charge-
dependent (CD) ones at LO and NLO, in momentum-space

TABLE I. Values of (fixed) low energy constants (LEC’s): gA

and hA = 3 gA/
√

2 are adimensional, Fπ = 2 fπ is in MeV, and the
remaining LEC’s are in GeV−1.

gA hA Fπ c1 c2 c3 c4 b3 + b8

1.29 2.74 184.80 −0.57 −0.25 −0.79 1.33 1.40
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TABLE II. Values of charged and neutral pion masses, proton and neutron masses, �-nucleon mass difference, and electron mass (all in
MeV), and of the (adimensional) fine structure constant α. Note that �c is taken as 197.32697 MeV fm.

mπ0 mπ± Mn Mp �M me α−1

134.9766 139.5702 939.56524 938.27192 293.1 0.510999 137.03599

vS
12(k,K) = v

S,CI
12 (k,K) + v

S,CD
12 (k,K) with

v
S,CI
12 (k,K) = (CS + C1 k2 + D1 k4) + (C2 k2 + D2 k4)τ 1 · τ 2 + (CT + C3 k2 + D3 k4)σ1 · σ2

+ (C4 k2 + D4 k4)σ1 · σ2 τ 1 · τ 2 + (C5 + D5 k2)S12(k) + (C6 + D6 k2)S12(k) τ 1 · τ 2

+ i(C7 + D7 k2)S · (K × k) + i D8 k2 S · (K × k)τ 1 · τ 2 + D9[S · (K × k)]2 + D10(K × k)2

+D11(K × k)2σ1 · σ2 + D12 k2K2 + D13 k2K2σ1 · σ2 + D14 K2 S12(k) + D15 K2 S12(k) τ 1 · τ 2, (2.6)

v
S,CD
12 (k,K) = [

CIT
0 + CIT

1 k2 + CIT
2 k2 σ1 · σ2 + CIT

3 S12(k) + i CIT
4 S · (K × k)

]
T12

+[
CIV

0 + CIV
1 k2 + CIV

2 k2 σ1 · σ2 + CIV
3 S12(k) + i CIV

4 S · (K × k)
]
(τ1z + τ2z), (2.7)

where S12(k) = 3 σ1 · k σ2 · k − k2 σ1 · σ2, CS and CT are the
LO LEC’s in standard notation, while Ci=1,...,7 and Di=1,...,15

are generally linear combinations of those in the “standard”
set, as defined, for example, in Ref. [23]. In the NLO and
N3LO contact interactions terms proportional to K2 and K4,
which would lead to p2 and p4 operators in coordinate space
(p −→ −i∇ is the relative momentum operator), have been
removed by a Fierz rearrangement, for example,

Km −→ −1 + τ 1 · τ 2

2

1 + σ1 · σ2

2

km

2m
, (2.8)

with m = 2 or 4. Of course, mixed terms of the type
k2 K2 or K × k cannot be Fierz-transformed away. In the
potential v

S,CD
12 (k,K) only terms up to NLO, involving charge-

independence breaking (proportional to T12) and charge-
symmetry breaking (proportional to τ1z + τ2z), are accounted
for. The associated LEC’s, while providing some additional
flexibility in the data fitting discussed below (especially CIV

0
in reproducing the singlet nn scattering length), are not well
constrained.

A couple of comments are now in order. The first is that
strict adherence to power counting would require inclusion of
additional one-loop as well as two-loop TPE and three-pion
exchange contributions at order Q4. These contributions have
been neglected, because they are known to be small (see, for
example, Ref. [23]). Furthermore it is the Di LEC’s at Q4 that
are critical for a good reproduction of phase shifts in lower
partial waves, particularly D waves, and a good fit to the NN
database [23] in the 0–300 MeV range of energies considered
in the present study.

The second comment is in reference to isospin symmetry
breaking. We have not included explicitly contributions from
OPE and one-photon exchange [51,52]. As noted in Ref. [11],
this π -γ interaction is small and ambiguous, and requires
regularization at short distances. So its main effect can be
effectively shifted into a counterterm. While this can be
improved, we will see below our final fitting results do not
seem to require these long-range isospin breaking effects.

The potential vS
12(k,K) is regularized via a Gaussian cutoff

depending only on the momentum transfer k,

C̃RS (k) = e−R2
Sk2/4 −→ CRS (r) = 1

π3/2R3
S

e−(r/RS)2
, (2.9)

which leads to a coordinate-space representation only mildly
nonlocal, containing at most terms quadratic in the relative
momentum operator. It reads (see Appendix B)

vS
12 =

[
19∑
l=1

vl
S(r) Ol

12

]
+ {vp

S (r) + v
pσ
S (r) σ1 · σ2

+ v
pt
S (r) S12 + v

ptτ
S (r) S12 τ 1 · τ 2 ,p2}, (2.10)

where O
l=1,...,6
12 have been defined above,

O
l=7,...,11
12 = L · S , L · S τ 1 · τ 2 , (L · S)2 , L2 , L2 σ1 · σ2,

(2.11)
referred to as b, bτ , bb, q, qσ , and

O
l=12,...,19
12 = [1 , σ1 · σ2 , S12 , L · S] ⊗ [

T12 , τ z
1 + τ z

2

]
,

(2.12)

referred to as T , τz, σT , στz, tT , tτz, bT , bτz. The four
additional terms, denoted as p, pσ , pt , and ptτ , in the
anticommutator of Eq. (2.10) are p2 dependent. We consider, in
combination with RL = (0.8,1.0,1.2) fm, Rs = (0.6,0.7,0.8)
fm, corresponding to typical momentum-space cutoffs �S =
2/RS from about 660 MeV down to 500 MeV. While the use of
a Gaussian cutoff mixes up orders in the power counting—for
example, the LO contact interactions proportional to CS and
CT in Eq. (2.6) generate contributions at NLO and N3LO—
such a choice nevertheless leads to smooth functions for the
potential components vl

S(r) and the resulting deuteron waves.
Sharper cutoffs, like those ∝exp [−(r/R)n] with n = 4, as
suggested in Ref. [53], or n = 6, as in one of the earlier versions
of the present model, generate wiggles in the deuteron waves
at r ∼ R (as well as mixing of power-counting orders).
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III. DATA ANALYSIS

Setting aside electromagnetic (EM) contributions
(Coulomb and higher order ones) for the time being, the
invariant on-shell scattering amplitude M for the NN system
can be expressed in terms of five independent complex
functions—the Wolfenstein parametrization—as

M(p′,p) = a + m σ1 · n̂ σ2 · n̂ + (g − h) σ1 · m̂ σ2 · m̂

+ (g + h) σ1 · l̂ σ2 · l̂ + c(σ1 + σ2) · n̂, (3.1)

where l̂, m̂, n̂ are three orthonormal vectors along the directions
of p′ + p, p′ − p, and p × p′, and p′, p are the final and initial
relative momenta, respectively. The functions a,m,g,h, and
c are taken to depend on the energy in the laboratory (lab)
frame and the scattering angle θ in the center-of-mass (c.m.)
frame. Any scattering observable can be constructed out of
these amplitudes [30,31].

The NN amplitude is diagonal in pair spin S, and pair
isospin and isospin projection T MT , and is expanded in
partial waves as

M
S,T MT

M ′
S MS

(E,θ ) =
√

4π
∑
JLL′

iL−L′ √
2L + 1

1 − (−)L+S+T

2

×〈L′(MS − M ′
S),SM ′

S |JMS〉
× 〈L0,SMS |JMS〉Y

MS−M ′
S

L′ (θ,0)

× S
JS,T MT

L′L (p) − δL′L

ip
, (3.2)

where L and J denote, respectively, the orbital and total
angular momenta, the 〈 . . . 〉 are Clebsch-Gordan coefficients,
the Y

ML

L (θ,φ) are spherical harmonics, the δL′L are Kronecker
deltas, and the S

JS,T MT

L′L are S-matrix elements. Denoting
phase shifts as δ

JS,T MT

L′L , the S matrix is simply given by

SJS
JJ = e2iδJS

, (3.3)

in single channels with L = L′ = J , and by

SJ =
[

e2iδJ
− cos 2εJ iei(δJ

−+δJ
+) sin 2εJ

iei(δJ
−+δJ

+) sin 2εJ e2iδJ
+ cos 2εJ

]
, (3.4)

in coupled channels with S = 1 and L,L′ = J ∓ 1 (εJ is
the mixing angle). Hereafter, for notational simplicity we
drop from the phase shifts unnecessary subscripts as well as
the superscripts T MT , with T = 1 and MT = 1,0,−1 for,
respectively, pp, np, and nn. The S-matrix elements and
phase shifts are obtained from solutions of the Schrödinger
equation with suitable boundary conditions, as discussed
Appendix C. In terms of the amplitudes MS

M ′
S MS

, the functions
a,m,g,h, and c then read

a = (
M1

11 + M1
00 + M0

00 + M1
−1−1

)
/4, (3.5)

c = i
(
M1

10 − M1
01 + M1

0−1 − M1
−10

)/
(4

√
2), (3.6)

m = (−M1
1−1 + M1

00 − M0
00 − M1

−11

)/
4, (3.7)

g = (
M1

11 + M1
1−1 + M1

−11 + M1
−1−1 − 2 M0

00

)/
8, (3.8)

h = cos θ
(
M1

11 − M1
1−1 − M1

−11 + M1
−1−1 − 2 M1

00

)/
8

+
√

2 sin θ
(
M1

10 + M1
01 − M1

0−1 − M1
−10

)/
8, (3.9)

and this can be further simplified by noting that M1
0−1 = −M1

01,
M1

1−1 = M1
−11, M1

−10 = −M1
10, and M1

11 = M1
−1−1.

When EM interactions are included, the full scattering
amplitudes M are conveniently separated into a part from
nuclear interactions and another one stemming from EM
interactions,

M = MEM + MN. (3.10)

The pp EM amplitudes contain Coulomb with leading
relativistic corrections, vacuum polarization, and magnetic
moments contributions, whereas the np ones contain magnetic
moment contributions only (see Ref. [10] for a compendium of
formulas and references to the original papers; for complete-
ness, however, the determination of the pp phase shifts relative
to EM functions and of the pp effective range expansion is
summarized in Appendix D). Because of the finite range of
the NN force, the nuclear part of the scattering amplitudes
MN converges with a maximum total angular momentum of
J = 15. In contrast, EM scattering amplitudes MEM require
a summation of about a thousand partial waves from the
long range and tensor character of the dipolar magnetic
interactions. While these corrections are numerically tiny, they
are nevertheless indispensable for an accurate description of
the data [54].

We use the database developed in Granada and specified in
detail in Ref. [10], where a selection of the large collection
of np and pp scattering data taken from 1950 until 2013
was made. The adopted criterium was to represent the NN
interaction with a general and flexible parametrization, based
on a minimal set of theoretical assumptions so as to avoid any
systematic bias in the selection process. The aim of the method,
first suggested by Gross and Stadler [9], was to obtain a 3σ
self-consistent database. This entails removing 3σ outliers and
re-fitting iteratively until convergence. The procedure results in
a database with important statistical features [12] and therefore
amenable to statistical analysis, and leads to the identification
of a consistent subset among the large body of 6713 np and
pp experimental cross sections and polarization observables.3

In the present study, in particular, we are concerned with
a subset of this 3 σ -self-consistent database, namely data
below 300-MeV laboratory energy. This database is organized
in the following way: There are N sets of data, each one
corresponding to a different experiment. Each data set contains
measurements at fixed Elab and different scattering angles θ .
However a few observables are measured at different Elab and
fixed θ , like, for example, total cross sections because their
measurement does not involve the scattering angle (θ = 0). An
experiment may have a specified systematic error (normalized
data), no systematic error (absolute data), or an arbitrarily large
systematic error (floated data).

3This implies that experiments where the errors are overestimated
or underestimated by the experimentalists may be rejected, not by the
model itself, but by the incompatibility with the rest of the copious
data proven to be faithfully represented by the model. An extensive
discussion of these issues is presented in Refs. [10,12].
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TABLE III. Total χ 2 for model a with (RL,RS) = (1.2,0.8) fm, model b with (1.0,0.7) fm, and model c (0.8,0.6) fm, and the AV18;
Npp (Nnp) denotes the number of pp (np) data, including observables and normalizations.

Lab energy (MeV) χ 2(pp) χ 2(np)

N a
pp N b

pp N c
pp N 18

pp va
12 vb

12 vc
12 v18 N a

np N b
np N c

np N 18
np va

12 vb
12 vc

12 v18

0–300 2262 2260 2258 2269 3353 3345 3430 4191 2957 2954 2949 2961 3548 3523 3636 3391

We briefly describe the fitting procedure. The total figure
of merit is defined as the usual χ2 function,

χ2 =
N∑

t=1

χ2
t , (3.11)

where χ2
t refers to the corresponding contribution from each

data set, which we explain next. In all cases, the χ2
t for a data

set is given by

χ2
t =

n∑
i=1

(oi/Zt − ti)2

(δoi/Zt )2
+ (1 − 1/Zt )2

(δsys/Zt )2
, (3.12)

where oi and ti are the measured and calculated values of
the observable at point i, δoi , and δsys are the statistical
and systematic errors, respectively, and Zt is a scaling factor
chosen to minimize the χ2

t ,

Zt =
(

n∑
i

oi ti

δo2
i

+ 1

δ2
sys

) / (
n∑
i

t2
i

δo2
i

+ 1

δ2
sys

)
. (3.13)

The last term in Eq. (3.24) is denoted χ2
sys. For absolute data

Z = 1 and χ2
sys = 0, while for floated data use of Eq. (3.25)

is made with δsys = ∞ so that χ2
sys = 0. Normalized data have

in most cases Z �= 1 such that χ2
sys �= 1 and the normalization

is counted as an extra data point.4 For some normalized data
the systematic error can give a somewhat large χ2

sys because of
an underestimation of δsys. To account for this, we float data
that have χ2

sys > 9 and no extra normalization data is counted.
This is in line with the criterion used to build the pp and np
database. Finally, the total χ2 is the sum of all the χ2

t for each
pp and np data set.

The minimization of the objective function χ2 with respect
to the LEC’s in Eqs. (2.6) and (2.7) is carried out with the
Practical Optimization Using no Derivatives (for Squares),
POUNDerS [55]. This derivative-free algorithm is designed for
minimizing sums of squares and uses interpolation techniques
to construct residuals at each point. In the optimization
procedure, we fit first phase shifts and then refine the fit
by minimizing the χ2 obtained from a direct comparison
with the database. In fact, sizable changes in the total χ2

4This actually introduces some model dependence because nor-
malization of experimental data is in the eyes of the beholder,
that is, different models fitting the same data may yield strictly
speaking different values of Z although not statistically significant
differences in the values; what changes from potential to potential
are the correlations between the normalization of data and the energy
dependence.

are found when passing from phase shifts to observables, so
this refining is absolutely necessary to claim reasonable fits
to data. This is a general feature which is often found, and
reflects the different weights in the χ2 contributions of the two
different fitting schemes. Indeed, the initial guiding fit to phase
shifts chooses a prescribed energy grid arbitrarily, which does
not correspond directly to measured energies, nor necessarily
samples faithfully the original information provided by the
experimental data. Moreover, there are different PWA’s which
describe the same data but yield different phase shifts with
significantly larger discrepancies than reflected by the inferred
statistical uncertainties [10–12].

IV. RESULTS

We report results for the potentials v12 + vEM
12 correspond-

ing to three different choices of cutoffs (RL,RS): model a
with (1.2,0.8) fm, model b with (1.0,0.7) fm, and model
c with (0.8,0.6) fm. Models a, b, and c were fitted to the
Granada database of pp and np cross sections, polarization
observables, and normalizations up to laboratory energies of
300 MeV, to the pp, np, and nn singlet scattering lengths, and
to the deuteron binding energy. We list the number of pp and
np data (including normalizations) and corresponding total
χ2 for the three models in Table III, where we also report
for comparison the χ2 corresponding to the AV18 [5] (of
course, without a refit of it) and the same database. The total
number of data points changes slightly for each of the various
models because of fluctuations in the number of normalizations
included in the database according to the criterion discussed at
the end of the previous section. In the range (0–300) MeV, the
χ2(pp)/datum and χ2(np)/datum are about 1.48, 1.48, 1.52
and 1.20, 1.19, 1.23 for models a, b, and c, respectively; the
corresponding global χ2(pp + np)/datum are 1.33, 1.33, 1.37.
For the AV18, the χ2(pp)/datum, χ2(np)/datum, and global
χ2(pp + np)/datum are 1.84, 1.14, and 1.46, respectively.
Note that the global χ2 values above have been evaluated
by taking into account the number of fitting parameters
characterizing these models (34 in the case of models a, b,
and c). Errors for pp data are significantly smaller than for np,
thus explaining the consistently higher χ2(pp)/datum. The
quality of the fits deteriorates slightly as the (RL,RS) cutoffs
are reduced from the values (1.2,0.8) fm of model a down to
(0.8,0.6) fm of model c.

The fitted values of the LEC’s in Eqs. (2.6) and (2.7)
corresponding to models a, b, and c are listed in Table IV.
The values for the πN LEC’s in the OPE and TPE terms
of these models have already been given in Tables I and II.
It is interesting to examine the extent to which these LEC’s
satisfy the requirement of naturalness. To this end, following
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TABLE IV. Fitted values of the LEC’s corresponding to potential
models a, b, and c. The notation (± n) means 10±n.

LECs Model a Model b Model c

CS (fm2) 0.2003672(+1) 0.8841864(+1) 0.2588776(+2)
CT (fm2) −0.1660743(+1) −0.4168038(+1) −0.9160861(+1)

C1 (fm4) −0.1759574 −0.9367926(−1) −0.4455626(−3)
C2 (fm4) −0.2029026 −0.2520756 −0.3082608
C3 (fm4) −0.1856897 −0.2589016 −0.3222661
C4 (fm4) −0.5745498(−1) −0.2453381(−1) 0.3773411(−1)
C5 (fm4) −0.8813877(−1) −0.4685034(−1) −0.5156581(−2)
C6 (fm4) −0.5857848(−1) −0.2804770(−1) −0.2762013(−1)
C7 (fm4) −0.1140923 0.7338611 0.7568732

D1 (fm6) −0.9498379(−1) −0.6986704(−1) −0.2565252(−1)
D2 (fm6) −0.7149729(−2) 0.1681828(−3) 0.4909682(−2)
D3 (fm6) −0.6502509(−2) −0.6355876(−2) −0.1721433(−1)
D4 (fm6) −0.3217370(−2) −0.1153354(−2) 0.2592172(−2)
D5 (fm6) 0.2692050(−2) 0.2258031(−2) 0.2101464(−2)
D6 (fm6) −0.6654712(−2) −0.2757790(−2) −0.4252508(−2)
D7 (fm6) −0.2318069(−1) 0.1451856(−1) 0.4247406(−1)
D8 (fm6) −0.2899833(−1) −0.2897869(−1) −0.1122591(−1)
D9 (fm6) 0.2634392(−2) 0.3909073(−1) 0.4966263(−1)
D10 (fm6) −0.1787025 −0.2061108 −0.1628166
D11 (fm6) 0.1758785(−1) 0.3667628(−2) −0.2316157(−1)
D12 (fm6) 0.1126531 0.1023936 0.5361795(−1)
D13 (fm6) −0.1649902(−1) −0.9890485(−2) 0.1744601(−2)
D14 (fm6) 0.1989863(−2) 0.3066270(−2) 0.7219031(−2)
D15 (fm6) 0.4540768(−2) 0.2426771(−2) 0.2979197(−2)

CIV
0 (fm2) −0.8730299(−1) −0.1162192 0.6195324

CIT
0 (fm2) 0.5804662(−1) 0.6669167(−1) 0.7020630(−1)

CIV
1 (fm4) 0.6961072(−1) 0.5088496(−1) 0.2174468(−1)

CIV
2 (fm4) 0.3507986(−1) 0.2288370(−1) −0.8112580(−2)

CIV
3 (fm4) 0.3862077(−1) −0.7707131(−2) −0.6115902(−1)

CIV
4 (fm4) −0.7617836 −0.1581137(+1) −0.1533212(+1)

CIT
1 (fm4) −0.2382471(−1) −0.2373048(−1) 0.7623486(−2)

CIT
2 (fm4) −0.1325513(−1) −0.1013726(−1) 0.1205547(−2)

CIT
3 (fm4) −0.1399371(−1) −0.1098114(−3) 0.2109716(−1)

CIT
4 (fm4) 0.2582607 0.5180368 0.4955952

Machleidt and Entem [23], we note that this criterion would
imply that the LEC’s of the charge-independent part v

S,CI
12 of

the contact potential have the following magnitudes:

|CS,T | ∼ 1

f 2
π

 4.6 fm2, |Ci | ∼ 1

�2
χ f 2

π

 0.18 fm4,

|Di | ∼ 1

�4
χ f 2

π

 0.0070 fm6, (4.1)

where fπ = 92.4 MeV and �χ = 1 GeV. A glance at Table IV
indicates that the LEC’s are generally natural, but for the
following exceptions: CS,T in model c, C7 in models b and
c, and D1, D10, and D12 in all three models considered.
As already noted, however, the use of a (momentum-space)
Gaussian cutoff mixes orders in the power expansion, because

e−R2
S k2/4 = 1 − R2

S k2

4
+ R4

S k4

32
+ · · · (4.2)

and, as an example, the spin-isospin independent central
component of v

S,CI
12 , after inclusion of this cutoff, is modified

as

CS +
(

C1 − R2
S

4
CS

)
k2 +

(
D1 − R2

S

4
C1+R4

S

32
CS

)
k4+ · · · ,

(4.3)
suggesting that some of the LEC’s multiplying terms linear
and quadratic in k2 may not be natural after all.

To estimate the size of the (nominally) LO (Q0) and NLO
(Q2) LEC’s associated with the charge-dependent part v

S,CD
12

of the contact potential, we note that the terms proportional
to CIV

0 and CIT
0 in Eq. (2.7) should scale, respectively, as

ε m2
π and �m2

π , where ε is related to the u-d quark mass
difference—we assume that ε ∼ e = √

4πα, e being the
electric charge and α the fine structure constant—and �m2

π is
the squared-mass difference between the charged and neutral
pions. Consequently, one would expect for the LO LEC’s,∣∣CIV

0

∣∣ ∼
√

4πα

�2
χ

 0.012 fm2,

(4.4)∣∣CIT
0

∣∣ ∼ �m2
π

m2
π

1

f 2
π

 0.15 fm2,

and for the NLO LEC’s,∣∣CIV
i

∣∣ ∼
√

4πα

�4
χ

∼ 0.0005 fm4,

(4.5)∣∣CIT
i

∣∣ ∼ �m2
π

m2
π

1

�2
χf 2

π

 0.0058 fm4.

These expectations are not borne out by the actual values
reported in Table IV. Particularly striking are the very large
values obtained for the LEC’s CIV

4 and CIT
4 associated with the

spin-orbit term.
The S-wave, P-wave, and D-wave phase shits for np (in

T = 0 and T = 1) and pp are displayed in Figs. 2–4 up to
300 MeV laboratory energies. The phases calculated with the
full models a, b, and c including strong and electromagnetic
interactions are represented by the band. The np phases are
relative to spherical Bessel functions, while the pp phases are
with respect to electromagnetic functions (see Appendix D).
The cutoff sensitivity, as represented by the width of the shaded
band, is very weak for pp, and generally remains modest
for np, except for the T = 0 3D3 phase and ε1 mixing angle,
particularly for energies larger than 150 MeV. The calculated
phases are compared to those obtained in partial-wave analyses
(PWA’s) by the Nijmegen [3,4], Granada [10], and Gross-
Stadler [9] groups. Note that the recent Gross and Stadler’s
PWA was limited to np data only. We also should point out
that, because the Nijmegen’s PWA of the early nineties which
was based on about 1780 pp and 2514 np data in the laboratory
energy range 0–350 MeV, the NN elastic scattering database
has increased very significantly. Indeed, in the same energy
range the 2013 Granada database contains a total of 2972 pp
and 4737 np data. Especially for the higher partial waves in
the np sector and at the larger energies there are appreciable
differences between these various PWA’s. It is also interesting
to observe that these differences are most significant for the
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FIG. 2. (Color online) S-wave, P-wave, and D-wave phase shifts in the np T = 0 channel, obtained in the Nijmegen [3,4], Gross and
Stadler [9], and Navarro Pérez et al. [10] partial-wave analyses, are compared to those of models a, b, and c, indicated by the band. For the
mixing angle ε1 (phase shift 3D3) the lower limit of the band corresponds to model a (model b) and the upper limit to model c (model c).

T = 0 3D3 phase and ε1 mixing angle, and therefore correlate
with the cutoff sensitivity displayed in these cases by models
a, b, and c.

The low-energy scattering parameters are listed in Table V,
where they are compared to experimental results. The singlet
and triplet np, and singlet pp and nn, scattering lengths are
calculated with and without the inclusion of electromagnetic
interactions. Without the latter, the effective range function is
simply given by F (k2) = k cot δ = −1/a + r k2/2 up to terms
linear in k2. In the presence of electromagnetic interactions,
a more complicated effective range function must be used; it

is reported in Appendix D, along with the relevant references.
The latest determinations of the empirical values for the singlet
scattering lengths and effective ranges, obtained by retaining
only strong interactions (hence the superscript N), are [7,56–
58] (as reported in Ref. [23])

1aN
pp = −17.3 ± 0.4 fm, 1rN

pp = 2.85 ± 0.04 fm, (4.6)

1aN
np = −23.74 ± 0.02 fm, 1rN

np = 2.77 ± 0.05 fm, (4.7)

1aN
nn = −18.95 ± 0.4 fm, 1rN

nn = 2.75 ± 0.11 fm, (4.8)

FIG. 3. (Color online) Same as in Fig. 2, but for the S-wave, P-wave, and D-wave phase shifts in the np T = 1 channel. For the mixing
angle ε2 the lower limit of the band corresponds to model c and the upper limit to model b.
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FIG. 4. (Color online) S-wave, P-wave, and D-wave phase shifts in the pp T = 1 channel, obtained in the Nijmegen and Navarro Pérez
et al. partial-wave analyses, are compared to those of models a, b, and c, indicated by the band.

which imply that charge symmetry and charge independence
are broken, respectively, by

�aCSB = aN
pp − aN

nn = 1.65 ± 0.60 fm,
(4.9)

�rCSB = rN
pp − rN

nn = 0.10 ± 0.12 fm,

and

�aCIB = (
aN

pp + aN
nn

)/
2 − aN

np = 5.6 ± 0.6 fm,
(4.10)

�rCIB = (
rN
pp + rN

nn

)/
2 − rN

np = 0.03 ± 0.13 fm.

The more significant values for �aCSB and �aCIB can be
compared to those inferred from Table V: (�aCSB,�aCIB) =
(2.13, 5.11) fm for model a, (2.34, 5.12) fm for model b, and
(1.90, 5.08) fm for model c.

In the left upper panel of Fig. 5 we show the 1S0 phase shifts
for pp, np, and nn calculated with and without the inclusion
of electromagnetic interactions (only model b is considered).
There is excellent agreement between these phases and those
obtained in the the Granada, Gross and Stadler, and Nijmegen
PWA’s, when electromagnetic effects are fully accounted for.

Particularly at low energies (see Fig. 6), the latter provide most
of the splitting between the pp and np phases, with remaining
differences originating from isospin symmetry breaking from
the OPE term in vL

12 and the central terms in v
S,CD
12 , proportional

to the LEC’s CIT
i and CIV

i with i = 0−2. In the absence of
electromagnetic interactions, the splitting between the pp and
nn 1S0 phases is induced by the charge-symmetry breaking
terms of v

S,CD
12 proportional to the LEC’s CIV

i with i = 0−2; it
is smaller than that between pp and np 1S0 phases.

The effects of isospin symmetry breaking are also seen in
the pp and np 3PJ phases with J = 0,1,2 in the upper right and
lower panels of Fig. 5, especially at the higher energies. The
calculated phases, which correspond again to model b, include
electromagnetic effects, but the latter are negligible beyond
100 MeV. The splitting between the pp and np 3PJ phases
is mostly from the isotensor and isovector terms of v

S,CD
12 ,

in particular those proportional to the LEC’s CIV
i and CIT

i

with i = 3 and 4 associated, respectively, with the tensor and
spin-orbit components of v

S,CD
12 —we have already remarked

on the unnaturally large values obtained for CIV
4 and CIT

4 in

TABLE V. The singlet and triplet np, and singlet pp and nn, scattering lengths and effective ranges corresponding to the three potential
models with (RL,RS) = (1.2,0.8) fm (model a), (1.0,0.7) fm (model b), and (0.8,0.6) fm (model c).

Experiment va
12 w/o vEM

12 vb
12 w/o vEM

12 vc
12 w/o vEM

12

1app −7.8063(26) −7.766 −17.014 −7.766 −16.956 −7.763 −17.137
−7.8016(29)

1rpp 2.794(14) 2.742 2.818 2.743 2.820 2.730 2.802
2.773(14)

1ann −18.90(40) −18.867 −19.148 −19.025 −19.301 −18.719 −19.039
1rnn 2.75(11) 2.831 2.827 2.799 2.795 2.738 2.732
1anp −23.740(20) −23.752 −23.196 −23.755 −23.248 −23.745 −23.167
1rnp 2.77(5) 2.665 2.670 2.672 2.677 2.638 2.644
3anp 5.419(7) 5.408 5.391 5.404 5.389 5.412 5.396
3rnp 1.753(8) 1.741 1.740 1.737 1.734 1.740 1.745
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FIG. 5. (Color online) The pp, np, and nn 1S0 and the pp and np 3P0, 3P1, and 3P2 phase shifts obtained with potential model b, including
the full electromagnetic component.

the fits. There is no evidence on the basis of the Granada and
Nijmegen PWA’s for such a large splitting, and so the latter
is likely to be an artifact of the parametrization adopted for
v

S,CD
12 .

The static deuteron properties are shown in Table VI and
compared to experimental values [59–63]. The binding energy
Ed is fitted exactly and includes the contributions (about
20 keV) of electromagnetic interactions, among which the
largest is that from the magnetic moment term. The asymptotic

S-state normalization AS, and the D/S ratio η, are both ∼2
standard deviations from experiment for all models considered.
The deuteron (matter) radius rd is exactly reproduced with
model b, but is underpredicted (overpredicted) by about
1.4% (0.7%) with model a (model c). It is should be noted
that this observable has negligible contributions from two-
body electromagnetic operators [64]. The magnetic moment
μd , and quadrupole moment Qd , experimental values are
underestimated by all three models, but these observables are
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FIG. 6. (Color online) The pp, np, and nn 1S0 up to laboratory energy of 50 MeV including (panel left) and ignoring (panel right) the full
electromagnetic component of potential model b.
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TABLE VI. Same as in Table V but for the deuteron static
properties; experimental values are from Refs. [59–63].

Experiment va
12 vb

12 vc
12

Ed (MeV) 2.224575(9) 2.224575 2.224574 2.224575
AS (fm−1/2) 0.8781(44) 0.8777 0.8904 0.8964
η 0.0256(4) 0.0245 0.0248 0.0246
rd (fm) 1.97535(85) 1.948 1.975 1.989
μd (μ0) 0.857406(1) 0.852 0.850 0.848
Qd (fm2) 0.2859(3) 0.257 0.268 0.269
Pd (%) 4.94 5.29 5.55

known to have significant corrections from (isoscalar) two-
body terms in nuclear electromagnetic charge and current [64].
Their inclusion would bring the calculated values considerably
closer to, if not in agreement with, experiment. Finally, the
S- and D-wave components of the deuteron wave function
are displayed in Fig. 7, where they are compared to those
of the Argonne v18 (AV18) model. There is significant cutoff
dependence as (RL,RS) are reduced from the values (1.2, 0.8)
fm of model a down to (0.8, 0.6) fm of model c. For r � 1
fm, the S wave becomes smaller (is pushed out), while the D
wave becomes larger (is pushed in) in going from model a
to model c. The D-state percentage increases correspondingly
(see Table VI).

We note in closing that in Appendix E we provide figures of
the various components of potential models a, b, and c (their
charge-independent parts only) as well as tables of numerical
values for the pp and np S, P, D, F, and G phase shifts obtained
with model b.

V. CONCLUSIONS

In the present study, we have constructed a coordinate-space
nucleon-nucleon potential with an electromagnetic interac-
tion component including first- and second-order Coulomb,
Darwin-Foldy, vacuum polarization, and magnetic moment
terms, and a strong interaction component characterized by
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FIG. 7. (Color online) The S-wave and D-wave components of
the deuteron wave function corresponding to models a (dashed
lines), b (dotted-dashed lines), and c (dotted-dashed-dotted lines)
are compared with those corresponding to the AV18 (solid lines).

long- and short-range parts. The long-range part includes OPE
and TPE terms up to N2LO, derived in the static limit from
leading and subleading πN and πN� chiral Lagrangians. Its
strength is fully determined by the nucleon and nucleon-to-�
axial coupling constants gA and hA, the pion decay amplitude
Fπ , and the subleading LEC’s c1, c2, c3, c4, and b3 + b8,
constrained by reproducing πN scattering data (the values
adopted for all these couplings are listed in Table I). In
coordinate space, this long-range part is represented by charge-
independent central, spin, and tensor components without and
with the isospin dependence τ 1 · τ 2 (the so-called v6 operator
structure), and by charge-dependence-breaking central and
tensor components induced by OPE and proportional to the
isotensor operator T12.

The short-range part is described by charge-independent
contact interactions specified by a total of 24 LEC’s (two at
LO, seven at NLO, and 15 at N3LO) and by charge-dependent
ones characterized by 10 LEC’s (two at LO and eight at
NLO), five of which multiply charge-symmetry breaking terms
proportional to τ1z + τ2z and the remaining five multiply
charge-dependence breaking terms proportional to T12. In the
NLO and N3LO contact interactions, Fierz transformations
have been used to rearrange terms that in coordinate space
would otherwise lead to powers of p—the relative momentum
operator—higher than two. The resulting charge-independent
(coordinate-space) potential contains, in addition to the v6

operator structure, spin-orbit L2, quadratic-spin-orbit, and p2

components, while the charge-dependent one retains central,
tensor, and spin-orbit components.

The 34 LEC’s in the short-range potential have been
constrained by fitting 5291 pp and np scattering data (in-
cluding normalizations) up to 300 MeV laboratory energies,
as assembled in the Granada database, and the pp, np, and
nn scattering lengths, and the deuteron binding energy. The
global χ2(pp + np)/datum is 1.33 for the three different
models we have investigated, each specified by a pair of
(coordinate-space) cutoffs, respectively, RL and RS for the
long- and short-range parts: (RL,RS) = (1.2,0.8) fm for model
a, (1.0,0.7) fm for model b, and (0.8,0.6) fm for model c.
These cutoffs are close to the 1/(2 mπ ) ∼ 0.7 fm TPE range.
The values of the LEC’s corresponding to the three models
are given in Table IV. They are generally of natural size,
but for a few exceptions, most notably the LEC’s CIV

4 and
CIT

4 multiplying the charge-dependent spin-orbit terms, which
lead to relatively large splitting between the pp and np 3P0

and 3P1 phase shifts—a splitting that is not consistent with that
obtained in both the Nijmegen and Granada PWA’s. It should
also be noted that the degree of unnaturalness increases as the
short-distance cutoffs are reduced.

Our results suggest that discrepancies between the phases
calculated here and those from available PWA’s in some of
the partial waves, such as the ε1 mixing angle, could hardly
be resolved by carrying out the database selection using the
present interaction. We should also note that the renowned
Entem and Machleidt N3LO fit up to Elab = 290 MeV provides
a χ2/datum of 1.1 for 2402 np data and 1.5 for 2057 pp, and
hence a global χ2/datum of 1.3. In our case, we describe
2161 (2764) scattering data and 148 (218) normalizations for
pp (np), which means that the average contribution to the χ2
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from each additional datum is homogeneous and of order one
out of about 800 extra data. So, our fit is as good as the one of
Entem and Machleidt with these additional data.

According to our findings the largest uncertainty in the
chiral theory when fitting up to a maximum laboratory energy
of 300 MeV is provided by the cutoff dependence. Under
these circumstances it makes little sense to analyze further
uncertainties, but it is nonetheless surprising that precisely
the model implementing many QCD motivated theoretical
constraints should end up magnifying the uncertainty to a
larger extent than the spread historically found in all so far
successful PWA’s to pp and np scattering data. On the other
hand, the reliability of the long distance chiral interaction does
not depend on how the short distance unknown interaction is
organized. This was proven by the first chiral potential fits
by the Nijmegen group from their pp [6] and np + pp [8]
analyses and more recently verified with increased statistics
by the Granada group [11]. This leaves open the possibility
that better fits than those found here should be possible by
properly altering the short distance structure. This point has
recently been discussed in Ref. [65].

Of course, this cutoff uncertainty could be greatly reduced
if the fitting energy range were to be lowered so as to ensure
that differences between fitted data and fitting theory fulfill
the normality requirement and, at the same time, statistical
uncertainties remain at the same level as cutoff uncertainties.
Following the recent suggestion [65], we find that this happens
with the current form of the potential when Elab � 125 MeV.
In a companion paper we will analyze the statistical properties
of the present fit and how there is a trade-off of different
uncertainty sources.

We conclude by observing that, apart from the p2-dependent
terms, the potential constructed here has the same operator
structure of the AV18, and is of slightly better quality than
the AV18 [the AV18 global χ2(pp + np)/datum on the same
database up to 300-MeV laboratory energies is 1.46]. It should
be fairly straightforward to incorporate it in the few-nucleon
calculations based on hyperspherical-harmonics expansion
techniques favored by the Pisa group [66], or in the quantum
Monte Carlo ones preferred by the ANL/ASU/JLab/LANL
collaboration [18]. The Fortran computer program gen-
erating the potential will be made available upon
request.
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APPENDIX A: COORDINATE-SPACE REPRESENTATION OF THE POTENTIAL vL
12

The LO (OPE) terms corresponding to diagram (a) in Fig. 1 are given by

vLO
στ (r) = Y0(r) + 2 Y+(r)

3
, (A1)

vLO
tτ (r) = T0(r) + 2 T+(r)

3
, (A2)

where

Yα(r) = g2
A

12 π

m3
πα

F 2
π

e−xα

xα

, (A3)

Tα(r) = Yα(r)

(
1 + 3

xα

+ 3

x2
α

)
, (A4)

and xα = mπα
r . The NLO terms corresponding to diagrams (b)–(d) read [24]

vNLO
τ (r; /�) = 1

8π3r4

mπ

F 4
π

[
x
[
1 + 10g2

A − g4
A(23 + 4x2)

]
K0(2x) + [

1 + 2g2
A(5 + 2x2) − g4

A(23 + 12x2)
]
K1(2x)

]
, (A5)

vNLO
σ (r; /�) = 1

2π3r4

g4
A

F 4
π

mπ [3x K0(2x) + (3 + 2x2)K1(2x)], (A6)

vNLO
t (r; /�) = − 1

8π3r4

g4
A

F 4
π

mπ [12x K0(2x) + (15 + 4x2)K1(2x)], (A7)
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where x = mπr (mπ is the average pion mass) and Kn are modified Bessel functions of the second kind. The NLO terms
corresponding to diagrams (e) and (f) with a single � intermediate state are given by

vNLO
c (r; �) = − 1

6π2r5 y

g2
Ah2

A

F 4
π

e−2x(6 + 12x + 10x2 + 4x3 + x4), (A8)

vNLO
τ (r; �) = − 1

216π3r5

h2
A

F 4
π

[ ∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(12x2 + 5μ2 + 12y2)

− 12y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(2x2 + μ2 + 2y2) arctan

μ

2y

]

− 1

216π3r5

g2
Ah2

A

F 4
π

[
−

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(24x2 + 11μ2 + 12y2)

+ 6

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(2x2 + μ2 + 2y2)2 arctan

μ

2y

]
, (A9)

vNLO
σ (r; �) = − 1

72π3r5

g2
Ah2

A

F 4
π

[
2

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

− 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(μ2 + 4y2) arctan

μ

2y

]
, (A10)

vNLO
στ (r; �) = 1

54π2r5 y

g2
Ah2

A

F 4
π

e−2x (1 + x)
(
3 + 3x + x2

)
, (A11)

vNLO
t (r; �) = 1

144π3r5

g2
Ah2

A

F 4
π

[
2

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

− 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4y2)(3 + 3

√
μ2 + 4x2 + μ2 + 4x2) arctan

μ

2y

]
, (A12)

vNLO
tτ (r; �) = − 1

54π2r5 y

g2
Ah2

A

F 4
π

e−2x(1 + x)(3 + 3x + 2x2), (A13)

where y = �Mr (�M is the �-nucleon mass difference) and the parametric integral over μ is carried out numerically. The NLO
terms corresponding to diagram (g) with 2 � intermediate states are

vNLO
c (r; 2�) = − 1

108π3r5

h4
A

F 4
π

[ ∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2

[
4y2 + 2

(2x2 + μ2 + 2y2)2

(μ2 + 4y2)

]

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(2x2 + μ2 + 2y2)(2x2 + μ2 − 6y2) arctan

μ

2y

]
, (A14)

vNLO
τ (r; 2�) = − 1

1944π3r5

h4
A

F 4
π

[ ∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2

[
(24x2 + 11μ2 + 24y2) + 6

(2x2 + μ2 + 2y2)2

(μ2 + 4y2)

]

− 3

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(2x2 + μ2 + 2y2)(2x2 + μ2 + 10y2) arctan

μ

2y

]
, (A15)

vNLO
σ (r; 2�) = − 1

1296π3r5

h4
A

F 4
π

[
− 6

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(μ2 + 12y2) arctan

μ

2y

]
, (A16)

vNLO
στ (r; 2�) = − 1

7776π3r5

h4
A

F 4
π

[
− 2

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(−μ2 + 4y2) arctan

μ

2y

]
, (A17)
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vNLO
t (r; 2�) = 1

2592π3r5

h4
A

F 4
π

[
− 6

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)(μ2 + 12y2) arctan

μ

2y

]
, (A18)

vNLO
tτ (r; 2�) = 1

15552π3r5

h4
A

F 4
π

[
− 2

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)(−μ2 + 4y2) arctan

μ

2y

]
. (A19)

Moving on to the loop corrections at N2LO, the terms corresponding to diagrams (h)–(k) are given by

vN2LO
c (r; /�) = 3

2 π2r6

g2
A

F 4
π

e−2x[2c1x
2(1 + x)2 + c3(6 + 12x + 10x2 + 4x3 + x4)], (A20)

vN2LO
στ (r; /�) = 1

3 π2r6

g2
A

F 4
π

c4e
−2x(1 + x)(3 + 3x + 2x2), (A21)

vN2LO
tτ (r; /�) = − 1

3 π2r6

g2
A

F 4
π

c4e
−2x (1 + x)

(
3 + 3x + x2) , (A22)

while those corresponding to diagrams (l)–(o) are given by

vN2LO
c (r; �) = 1

18π3r6

h2
A y

F 4
π

[ ∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
[−24c1x

2 + c2(5μ2 + 12x2 + 12y2) − 6c3(μ2 + 2x2)]

+ 6

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 2x2 + 2y2)[4c1x

2 − 2c2y
2 + c3(μ2 + 2x2)] arctan

μ

2y

]
, (A23)

vN2LO
τ (r; �) = − 1

54π3r6

(b3 + b8) hA y

F 4
π

[
+

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(5μ2 + 12x2 + 12y2)

− 12 y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 2x2 + 2y2) arctan

μ

2y

]

− 1

54π3r6

(b3 + b8) hA g2
A y

F 4
π

[
−

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(11μ2 + 24x2 + 12y2)

+ 6

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 2x2 + 2y2)2 arctan

μ

2y

]
, (A24)

vN2LO
σ (r; �) = − 1

18π3r6

(b3 + b8) hA g2
A y

F 4
π

[
2
∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

− 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(μ2 + 4y2) arctan

μ

2y

]
, (A25)

vN2LO
στ (r; �) = − 1

108π3r6

c4 h2
A y

F 4
π

[
2

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

− 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(μ2 + 4y2) arctan

μ

2y

]
, (A26)

vN2LO
t (r; �) = 1

36π3r6

(b3 + b8) hA g2
A y

F 4
π

[
2
∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

− 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)(μ2 + 4y2) arctan

μ

2y

]
, (A27)
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vN2LO
tτ (r; �) = 1

216π3r6

c4 h2
A y

F 4
π

[
2

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

− 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)(μ2 + 4y2) arctan

μ

2y

]
. (A28)

Lastly, the contributions corresponding to diagram (p) read

vN2LO
c (r; 2�) = − 2

81π3r6

(b3 + b8) h3
A y

F 4
π

[ ∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
[6

(μ2 + 2x2 + 2y2)2

μ2 + 4y2
+ 11μ2 + 24x2 + 12y2]

− 3

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 2x2 + 10y2)(μ2 + 2x2 + 2y2) arctan

μ

2y

]
, (A29)

vN2LO
τ (r; 2�) = − 1

243π3r6

(b3 + b8) h3
A y

F 4
π

[ ∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
[6

(μ2 + 2x2 + 2y2)2

μ2 + 4y2
+ 11μ2 + 24x2 + 12y2]

− 3

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 2x2 + 10y2)(μ2 + 2x2 + 2y2) arctan

μ

2y

]
, (A30)

vN2LO
σ (r; 2�) = − 1

162π3r6

(b3 + b8) h3
A y

F 4
π

[
− 6

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(μ2 + 12y2) arctan

μ

2y

]
, (A31)

vN2LO
στ (r; 2�) = − 1

972π3r6

(b3 + b8) h3
A y

F 4
π

[
− 6

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(μ2 + 4x2)(μ2 + 12y2) arctan

μ

2y

]
, (A32)

vN2LO
t (r; 2�) = 1

324π3r6

(b3 + b8) h3
A y

F 4
π

[
− 6

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)(μ2 + 12y2) arctan

μ

2y

]
, (A33)

vN2LO
tτ (r; 2�) = 1

1944π3r6

(b3 + b8) h3
A y

F 4
π

[
− 6

∫ ∞

0
dμ

μ2√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)

+ 1

y

∫ ∞

0
dμ

μ√
μ2 + 4x2

e−
√

μ2+4x2
(3 + 3

√
μ2 + 4x2 + μ2 + 4x2)(μ2 + 12y2) arctan

μ

2y

]
. (A34)

The radial functions of the charge-independent part of the potential vL
12 in Eq. (2.4) are defined as

vc
L(r) = vNLO

c (r; �) + vNLO
c (r; 2�) + vN2LO

c (r; /�) + vN2LO
c (r; �) + vN2LO

c (r; 2�), (A35)

vτ
L(r) = vNLO

τ (r; /�) + vNLO
τ (r; �) + vNLO

τ (r; 2�) + vN2LO
τ (r; �) + vN2LO

τ (r; 2�), (A36)

vσ
L (r) = vNLO

σ (r; /�) + vNLO
σ (r; �) + vNLO

σ (r; 2�) + vN2LO
σ (r; �) + vN2LO

σ (r; 2�), (A37)

vστ
L (r) = vLO

στ (r) + vNLO
στ (r; �) + vNLO

στ (r; 2�) + vN2LO
στ (r; /�) + vN2LO

στ (r; �) + vN2LO
στ (r; 2�), (A38)

vt
L(r) = vNLO

t (r; /�) + vNLO
t (r; �) + vNLO

t (r; 2�) + vN2LO
t (r; �) + vN2LO

t (r; 2�), (A39)

vtτ
L (r) = vLO

tτ (r) + vNLO
tτ (r; �) + vNLO

tτ (r; 2�) + vN2LO
tτ (r; /�) + vN2LO

tτ (r; �) + vN2LO
tτ (r; 2�), (A40)

while those of its charge-dependent part are defined as

vσT
L (r) = Y0(r) − Y+(r)

3
, (A41)

vtT
L (r) = T0(r) − T+(r)

3
. (A42)
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Each is multiplied by the cutoff CRL (r),

vl
L(r) −→ CRL (r) vl

L(r), (A43)

with l = c,τ,σ,στ,t,tτ,σT ,tT .

APPENDIX B: COORDINATE-SPACE REPRESENTATION OF THE POTENTIAL vS
12

The coordinate-space representation of a (regularized) term O(K,k) in Eqs. (2.6) and (2.7) follows from

O(r) =
∫

dk
(2π )3

∫
dK

(2π )3
ei k·(r′+r)/2 O(K,k) ei K·(r′−r), (B1)

where r is the relative position and K −→ p = −i ∇′δ(r′ − r), the relative momentum operator. For the momentum-space
operator structures present in Eqs. (2.6) and (2.7) one finds

1 −→ CRS (r) , (B2)

k2 −→ −C
(2)
RS

(r) − 2

r
C

(1)
RS

(r), (B3)

k4 −→ C
(4)
RS

(r) + 4

r
C

(3)
RS

(r), (B4)

S12(k) −→ −
[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
S12, (B5)

i S · (K × k) −→ −1

r
C

(1)
RS

(r) L · S, (B6)

K2 −→ {
p2 , CRS (r)

}
, (B7)

(K × k)2 −→ − 1

r2

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
L2 −

{
p2 ,

1

r
C

(1)
RS

(r)

}
− 1

r
C

(3)
RS

(r), (B8)

[S · (K × k)]2 −→ − 1

r2

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
(L · S)2 −

{
p2 (1+σ1 · σ2)

2
− σ1 · p σ2 · p,

1

r
C

(1)
RS

(r)

}
, (B9)

where

C
(n)
RS

(r) = dnCRS (r)

drn
. (B10)

Using the above expressions, the functions vl
S(r) are obtained as

vc
S(r) = CS CRS (r) + C1

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
+ D1

[
C

(4)
RS

(r) + 4

r
C

(3)
RS

(r)

]
, (B11)

vτ
S (r) = C2

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
+ D2

[
C

(4)
RS

(r) + 4

r
C

(3)
RS

(r)

]
, (B12)

vσ
S (r) = CT CRS (r) + C3

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
+ D3

[
C

(4)
RS

(r) + 4

r
C

(3)
RS

(r)

]
, (B13)

vστ
S (r) = C4

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
+ D4

[
C

(4)
RS

(r) + 4

r
C

(3)
RS

(r)

]
, (B14)

vt
S(r) = −C5

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
+ D5

[
C

(4)
RS

(r) + 1

r
C

(3)
RS

(r) − 6

r2
C

(2)
RS

(r) + 6

r3
C

(1)
RS

(r)

]
, (B15)

vtτ
S (r) = −C6

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
+ D6

[
C

(4)
RS

(r) + 1

r
C

(3)
RS

(r) − 6

r2
C

(2)
RS

(r) + 6

r3
C

(1)
RS

(r)

]
, (B16)

vb
S(r) = −C7

1

r
C

(1)
RS

(r) + D7

[
1

r
C

(3)
RS

(r) + 2
1

r2
C

(2)
RS

(r) − 2

r3
C

(1)
RS

(r)

]
, (B17)

vbτ
S (r) = D8

[
1

r
C

(3)
RS

(r) + 2
1

r2
C

(2)
RS

(r) − 2

r3
C

(1)
RS

(r)

]
, (B18)
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vbb
S (r) = −D9

1

r2

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B19)

v
q
S (r) = −D10

1

r2

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B20)

v
qσ
S (r) = −D11

1

r2

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B21)

v
p
S (r) = D12

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
, (B22)

v
pσ
S (r) = D13

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
, (B23)

v
pt
S (r) = −D14

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B24)

v
ptτ
S (r) = −D15

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B25)

vT
S (r) = CIT

0 CRS (r) + CIT
1

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
, (B26)

vτz
S (r) = CIV

0 CRS (r) + CIV
1

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
, (B27)

vσT
S (r) = CIT

2

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
, (B28)

vστz
S (r) = CIV

2

[
−C

(2)
RS

(r) − 2

r
C

(1)
RS

(r)

]
, (B29)

vtT
S (r) = −CIT

3

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B30)

vtτz
S (r) = −CIV

3

[
C

(2)
RS

(r) − 1

r
C

(1)
RS

(r)

]
, (B31)

vbT
S (r) = −CIT

4
1

r
C

(1)
RS

(r), (B32)

vbτz
S (r) = −CIV

4
1

r
C

(1)
RS

(r). (B33)

Note that in Eqs. (B8) and (B9) only the terms proportional to L2 and (L · S)2 are retained.

APPENDIX C: SOLUTION OF THE SCHRÖDINGER EQUATION WITH v12

In this Appendix, we discuss the solution of the Schrödinger equation with v12, which contains p2-dependent central and
tensor terms. For simplicity, we ignore the electromagnetic and charge-dependent parts of v12—the treatment in the presence of
vEM

12 is discussed in the following appendix. In spin S and isospin T channel, the potential reads

vT S
12 = vc

T S(r) + vt
T (r) S12 + vb

T (r) L · S + v
q
T S(r) L2 + vbb

T (r)(L · S)2 + {
v

p
T S(r) + v

pt
T (r) S12 , p2

}
, (C1)

with

p2 = L2

r2
− 2

r

d

dr
− d2

dr2
. (C2)

For single channels (J = L, where L and J are the orbital and total angular momenta), the Schrödinger equation for the reduced
radial function uT SJ (r) reads

−(1 + v)u′′ − v ′u′ +
[
v − v ′′

2
− k2

]
u = 0, (C3)
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where

vT SJ = 2 μ

[
vc

T S + δS,1
(
2 vt

T − vb
T

) + J (J + 1)

(
v

q
T S + 2

v
p
T S

r2
+ δS,1 4

v
pt
T

r2

)
+ δS,1v

bb
T

]
+ J (J + 1)

r2
, (C4)

vT S = 4 μ
(
v

p
T S + δS,1 2 v

pt
T

)
, (C5)

μ is the reduced mass, and the subscripts have been dropped for brevity. The dependence on the first derivative u′ is removed by
setting

u = λ w, (C6)

and by requiring that terms proportional to w′ vanish. One finds that λ must satisfy

2(1 + v)λ′ + v ′λ = 0, (C7)

which has the solution,

λ = (1 + v)−1/2. (C8)

The function w then satisfies

w′′ = f w, (1 + v)f = v − (v ′/2)2

1 + v
− k2, (C9)

with the boundary condition (reinstating the appropriate superscripts and subscripts for the case under consideration),

wT SJ (r)

r
 1

2

[
h

(2)
J (kr) + SJST

JJ (k) h
(1)
J (kr)

]
, (C10)

where the Hankel functions are defined as h
(1,2)
L (kr) = jL(kr) ± i nL(kr), jL(kr) and nL(kr) being the regular and irregular

spherical Bessel functions, respectively. The differential equation above is solved with the standard Numerov method.
In coupled channels (L = J ± 1) it is convenient to introduce the 2 × 2 matrices V and V with matrix elements given,

respectively, by

vT J
−− = 2μ

[
vc

T 1 − 2
J − 1

2J + 1
vt

T + (J − 1)vb
T + J (J − 1)

(
v

q
T 1 + 2

v
p
T 1

r2
− 4

J − 1

2J + 1

v
pt
T

r2

)
+ (J − 1)2vbb

T

]
+ J (J − 1)

r2
, (C11)

vT J
++ = 2μ

[
vc

T 1 − 2
J+2

2J+1
vt

T − (J + 2)vb
T + (J+1)(J + 2)

(
v

q
T 1 + 2

v
p
T 1

r2
− 4

J + 2

2J + 1

v
pt
T

r2

)
+ (J + 2)2vbb

T

]
+ (J + 1)(J + 2)

r2
,

(C12)

vT J
−+ = 12 μ

√
J (J + 1)

2J + 1

(
vt

T + 2
J 2 + J + 1

r2
v

pt
T

)
,

(C13)
vT J

+− = vT J
−+,

and

vT J
−− = 4 μ

(
v

p
T 1 − 2

J − 1

2J + 1
v

pt
T

)
, (C14)

vT J
++ = 4 μ

(
v

p
T 1 − 2

J + 2

2J + 1
v

pt
T

)
, (C15)

vT J
−+ = 24 μ

√
J (J + 1)

2J + 1
v

pt
T , vT J

+− = vT J
−+, (C16)

where the subscript − or + specifies the orbital angular momentum L = J − 1 or L = J + 1. With these definitions, the
coupled-channel Schrödinger equation can be written as

−(1 + V )U ′′ − V
′
U ′ +

[
V − V

′′

2
− k2

]
U = 0, (C17)

where the transpose of the U vector is given by UT = (u−−,u+−) or UT = (u−+,u++), depending on whether the incoming
wave has L = J − 1 or L = J + 1. Introducing the 2 × 2 matrix � with

U = �W, (C18)
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and requiring that terms proportional to W ′ vanish lead to

2(1 + V )�′ + V
′
� = 0. (C19)

The set of first-order differential equations above is solved with the Runge-Kutta method by integrating out −→ in. Note that
in the limit r → ∞, � reduces to the identity matrix (and hence the asymptotic behavior of w∓ is the same as that of u∓).
Straightforward manipulations allow one to cast the Schrödinger equation for W in the standard form,

W ′′ = F W,
(C20)

(1 + V )�F �−1 = V − 1
4 V

′
(1 + V )−1 V

′ − k2,

with the boundary conditions (again, reinstating superscripts and subscripts),

wT SJ
L′L (r)

r
 1

2

[
δL′L h

(2)
L′ (kr) + SJST

L′L (k) h
(1)
L′ (kr)

]
, (C21)

where L = J ∓ 1 is the orbital angular momentum of the incoming wave.

APPENDIX D: pp PHASE SHIFTS AND EFFECTIVE
RANGE EXPANSION

We discuss briefly the calculation of the pp phase shifts
and effective range expansion with inclusion of the full
electromagnetic potential vEM

12 [5]. Radial wave functions
behave in the asymptotic region (r � 30 fm) as

uL(r)

r
 1

2

[
h

(2)
L (kr; η′) + e2iδEM

L h
(1)
L (kr; η′)

]
, (D1)

where L = J for single channels or L = L′ = J ∓ 1 for
coupled channels (the pair isospin and spin subscripts T and S

have been dropped for simplicity), h
(1,2)
L (kr; η′) are defined

in terms of regular, FL(kr; η′), and irregular, GL(kr; η′),
electromagnetic (EM) functions as

h
(1,2)
L (kr) = FL(kr; η′)

kr
∓ i

GL(kr; η′)
kr

, (D2)

δEM
L are the EM phase shifts shown in Sec. IV, and the Coulomb

parameter η′ is defined [67] as

η′ = αMp

2 k

1 + 2 k2/M2
p√

1 + k2/M2
p

. (D3)

The EM functions, generically denoted as XL(kr; η′), are
solutions of the radial equation,[

d2

dr2
+ k2 − L(L + 1)

r2
− Mp[VC1(r) + VC2(r)

+VV P (r)]

]
XL(kr; η′) = 0, (D4)

where VC1 (VC2) and VV P are, respectively, the first-order
(second-order) Coulomb and vacuum polarization terms.
These terms include form factors to remove singularities in
the r = 0 limit [5]. Note that the Darwin-Foldy and magnetic
moment corrections are not included above because at large
r the former falls off exponentially and the latter behaves as
1/r3.

Following Ref. [68] and treating the VC2(r) and VV P (r)
corrections in first-order perturbation theory, one finds that

FL(kr; η′ and GL(kr; η′) can be expressed as

FL(kr; η′)

= FL(kr; η′)
[

1 −
∫ ∞

r

dr ′ GL(kr ′; η′) V (r ′) FL(kr ′; η′)
]

+GL(kr; η′)
[

tan(ρL + τL)

+
∫ ∞

r

dr ′ FL(kr ′; η′) V (r ′) FL(kr ′; η′)
]
, (D5)

GL(kr; η′)

= GL(kr; η′)
[

1 +
∫ ∞

r

dr ′ GL(kr ′; η′) V (r ′) FL(kr ′; η′)
]

−FL(kr; η′)
[

tan(ρL + τL)

+
∫ ∞

r

dr ′ GL(kr ′; η′) V (r ′) GL(kr ′; η′)
]
, (D6)
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FIG. 8. The effective range function of Eq. (D10) for the potential
model b with (RL,RS) = (1.0,0.7) fm. The dashed line is a straight
line fit.
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TABLE VII. pp phase shifts in degrees for potential model b with (RL,RS) = (1.0,0.7) fm. The phases are relative to electromagnetic
functions.

Elab
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4

1 32.69 0.00 0.00 0.14 −0.08 −0.00 0.02 −0.00 −0.00 0.00
5 55.00 0.04 0.00 1.64 −0.90 −0.00 0.22 −0.05 −0.01 0.01
10 55.49 0.17 0.00 3.90 −2.06 −0.03 0.64 −0.19 −0.01 0.02
25 49.13 0.69 0.04 9.21 −4.95 −0.23 2.42 −0.80 0.06 0.04
50 39.52 1.68 0.16 12.77 −8.38 −0.70 5.73 −1.71 0.27 0.14
100 25.66 3.77 0.43 11.21 −13.42 −1.58 11.02 −2.73 0.73 0.47
150 15.44 5.75 0.71 6.21 −17.63 −2.28 14.16 −3.05 1.10 0.97
200 7.20 7.38 1.01 0.50 −21.38 −2.90 15.90 −2.97 1.30 1.55
250 0.22 8.59 1.33 −5.18 −24.68 −3.52 16.89 −2.65 1.27 2.16
300 −5.88 9.36 1.66 −10.62 −27.55 −4.20 17.45 −2.19 0.98 2.76

TABLE VIII. T = 1 np phase shifts in degrees for potential model b with (RL,RS) = (1.0,0.7) fm. The phases are relative to spherical
Bessel functions.

Elab
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4

1 62.10 0.00 0.00 0.18 −0.11 −0.00 0.02 −0.00 0.00 0.00
5 63.65 0.04 0.00 1.67 −0.92 −0.00 0.24 −0.05 0.01 0.00
10 60.00 0.16 0.00 3.80 −2.02 −0.03 0.68 −0.19 0.02 0.00
25 50.83 0.67 0.03 8.71 −4.72 −0.20 2.53 −0.76 0.11 0.01
50 40.22 1.69 0.14 11.90 −7.88 −0.63 5.95 −1.63 0.33 0.08
100 25.84 3.86 0.40 10.06 −12.42 −1.46 11.35 −2.58 0.81 0.38
150 15.46 5.90 0.69 4.97 −16.17 −2.12 14.49 −2.81 1.20 0.84
200 7.13 7.58 1.00 −0.77 −19.50 −2.70 16.17 −2.64 1.44 1.41
250 0.09 8.81 1.33 −6.48 −22.43 −3.27 17.05 −2.24 1.45 2.01
300 −6.04 9.59 1.67 −11.93 −24.96 −3.89 17.49 −1.72 1.21 2.60

TABLE IX. Same as in Table VIII but for T = 0 np phase shifts.

Elab
1P1

1F3
3D2

3G4
3S1 ε1

3D1
3D3 ε3

3G3

1 −0.19 −0.00 0.01 0.00 147.81 0.10 −0.00 0.00 0.00 −0.00
5 −1.53 −0.01 0.22 0.00 118.32 0.63 −0.17 0.00 0.01 −0.00
10 −3.15 −0.07 0.85 0.01 102.80 1.06 −0.65 0.00 0.08 −0.00
25 −6.55 −0.43 3.70 0.17 80.86 1.53 −2.77 0.00 0.55 −0.04
50 −9.87 −1.16 8.89 0.73 63.00 1.62 −6.42 0.18 1.62 −0.25
100 −14.05 −2.33 17.21 2.20 43.53 1.67 −12.31 1.16 3.54 −0.97
150 −17.48 −3.12 22.33 3.71 31.32 1.92 −16.61 2.34 4.87 −1.88
200 −20.78 −3.69 25.02 5.10 22.35 2.34 −19.83 3.17 5.72 −2.83
250 −24.04 −4.14 26.09 6.36 15.26 2.84 −22.27 3.40 6.23 −3.76
300 −27.23 −4.56 26.10 7.46 9.40 3.39 −24.11 3.01 6.52 −4.62

024003-21



M. PIARULLI et al. PHYSICAL REVIEW C 91, 024003 (2015)

0 0.5 1 1.5 2
r [fm]

-100

-80

-60

-40

-20

0

c L00
 [M

eV
] Model a

Model b
Model c

0 0.5 1 1.5 2
r [fm]

-800

-600

-400

-200

0

c L11
 [M

eV
]

FIG. 9. (Color online) Central components of the long-range potential vL
12 in pair spin-isospin channels ST = 00 and 11.
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FIG. 10. (Color online) Same as in Fig. 9, but for the short-range charge-independent potential vS,CI
12 .
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FIG. 11. (Color online) Same as in Fig. 9 but in pair spin-isospin channels ST = 01 and 10.
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FIG. 12. (Color online) Same as in Fig. 10 but in pair spin-isospin channels ST = 01 and 10.
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FIG. 13. (Color online) Tensor components of the long-range potential vL
12 in pair isospin channels T = 0 and 1.
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FIG. 14. (Color online) Same as in Fig. 13 but for the short-range charge-independent potential vS,CI
12 .
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FIG. 15. (Color online) Spin-orbit components of the short-range charge-independent potential vS,CI
12 in pair isospin channels T = 0 and 1.

where the FL and GL are standard Coulomb functions, the
function V (r) is proportional to VC2(r) and VV P (r),

V (r) = Mp

k
[VC2(r) + VV P (r)], (D7)

and the phase shifts ρL and τL corresponding, respectively, to
VC2 and VV P are given (in first-order perturbation theory) by

tan(ρL + τL)  ρL + τL

= −
∫ ∞

0
dr FL(kr; η′) V (r) FL(kr; η′). (D8)

In the absence of VC2 and VV P , the solutions FL and GL

reduce to the regular and irregular Coulomb functions. In the
computer programs Eqs. (D5)–(D6) are used to construct the
EM functions and Eq. (D8) to obtain the phase shifts ρL and τL.
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FIG. 16. (Color online) Spin and isospin independent quadratic
spin-orbit components of the short-range charge-independent poten-
tial vS,CI

12 .

The effective range expansion in the 1S0 channel is obtained
as [67–69]

FEM(k2) = − 1

aEM
+ 1

2
rEM k2 + · · · , (D9)

with

FEM(k2) = k C2
0 (η′)

(1 + χ0) cot δEM
0 − tan τ0

(1 + A1)(1 − χ0)

+ 2 k η′ h(η′) (1 − A2) + k2 d[C4
0 (η′) − 1] + k l̃0,

(D10)

where

C2
0 (η′) = 2π η′

e2πη′ − 1
,

(D11)

h(η′) = −γ − ln η′ +
∞∑

n=1

η′2

n (n2 + η′2)
,

χo = − 4α

3π
η′

∫ ∞

0
dr

I (r)

r
F0(kr; η′) G0(kr; η′),

l̃0 = −4 α

3π
η′

∫ ∞

0
dr

I (r)

r

[
C2

0 (η′) G2
0(kr; η′) − 1

]
,

(D12)

d = α

Mp

,

A1 = 4 d k η′[ln(2 d k η′) + h(η′) + 2 γ − 1], (D13)

A2 = 2 d k η′(2 ln α + 2 γ − 1) + A1

2
,

γ is Euler’s constant, and the function I (r) entering the vacuum
polarization potential VV P (r) is defined as in Ref. [68],

I (r) =
∫ ∞

1
dx e2merx

(
1 + 1

2 x2

)√
x2 − 1

x2
. (D14)

The effective range function FEM(k2) corresponding to
model b is shown in Fig. 8. The numerical methods are stable
down to laboratory energies of 1 keV.
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APPENDIX E: TABLES OF PHASE SHIFTS AND FIGURES OF POTENTIAL COMPONENTS

The pp and np phase shifts calculated with model b are listed in Tables VII–IX, while the various components of the
long-range (vL

12) and short-range (vS,CI
12 ) potentials corresponding to models a, b, and c and projected out in pair spin and isospin

S = 0,1 and T = 01, are shown in Figs. 9–19.
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FIG. 17. (Color online) Quadratic orbital angular momentum components of the short-range charge-independent potential vS,CI
12 in pair

spin channels S = 0 and 1.
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FIG. 18. (Color online) Quadratic relative momentum components of the short-range charge-independent potential vS,CI
12 in pair

spin channels S = 0 and 1.
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FIG. 19. (Color online) Quadratic-relative-momentum-tensor components of the short-range charge-independent potential vS,CI
12 in pair

isospin channels T = 0 and 1.
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