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Resonance-state properties from a phase shift analysis with the S-matrix
pole method and the effective-range method

B. F. Irgaziev1,2,* and Yu. V. Orlov3,†
1Institute of Applied Physics, National University of Uzbekistan, Uzbekistan

2GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
3Skobeltsyn Nuclear Physics Institute, Lomonosov Moscow State University, Russia

(Received 25 November 2014; revised manuscript received 13 January 2015; published 17 February 2015)

Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing an important role in
nuclear physics and astrophysics. We derive a new useful relationship between ANCs of the Gamow radial wave
function and the renormalized (due to the Coulomb interaction) Coulomb-nuclear partial scattering amplitude.
We use an analytical approximation in the form of a series for the nonresonant part of the phase shift which
can be analytically continued to the point of an isolated resonance pole in the complex plane of the momentum.
Earlier, this method which we call the S-matrix pole method was used by us to find the resonance pole energy.
We find the corresponding fitting parameters for the 5He, 5Li, and 16O concrete resonance states. Additionally,
based on the theory of the effective range, we calculate the parameters of the p3/2 and p1/2 resonance states of
the nuclei 5He and 5Li and compare them with the results obtained by the S-matrix pole method. ANC values
are found which can be used to calculate the reaction rate through the 16O resonances which lie slightly above
the threshold for the α12C channel.
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I. INTRODUCTION

It is known that many reactions important for nuclear
astrophysics proceed through subthreshold bound states and
lower-lying resonance states above the threshold, and the
single-channel approach can be applied to describe these
states. To calculate the rate of such reactions, we need to
find the asymptotic normalization coefficient (ANC) of the
radial wave function for bound and resonance states. The
ANC method has been explored as an indirect experimental
method for the determination of the cross sections of peripheral
reactions at low energy [1]. There are several methods to
determine the bound state ANC from experimental data (see
[2,3] and references therein). Recently the effective-range
expansion method has been developed to find the ANC for
bound and resonant states from an elastic scattering phase
shift analysis (see [4,5] and references therein). We note that a
sufficiently precise measurement of elastic scattering can give
crucial information concerning the ANC. However, finding the
ANC for a resonance is more difficult than for a bound state.
It was shown earlier that for narrow resonances the ANC is
proportional to the square root of the width � of the resonance
considered [6]. It is known that the normalization procedure
for the Gamow wave function of a resonance, particularly
in the case of a broad resonance when one cannot apply
the Zel’dovich formula [7], is difficult because the outgoing
wave increases exponentially due to the complex momentum.
However, having the ANC, we know the asymptotic part of
the wave function which allows us to normalize it correctly if
we choose a nuclear potential of the interaction between the
two nuclei considered, thus describing the resonant state.
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The problem of the exponential increase of the Gamow
resonance wave function in the asymptotic region can be
solved by using a complex scaling method based on the
so-called ABC theorem [8]. This method can be applied to
charged particles as well (see, for example, [9]) because the
Coulomb potential satisfies the scaling condition of the ABC
theorem. The complex scaling method using the Zel’dovich
formula appears quite widely in the literature (see [10] and
references therein). However, the application of this method
to a numerical normalization of the Gamow wave function is
rather difficult. In [10] the problem of calculating the resonance
pole was solved using a similar S-matrix pole approach but for
a potential model, unlike in our present work.

Usually R-matrix theory is applied to define the parameters
of low-lying resonances and to describe nuclear resonance
reactions. One of the shortcomings of this theory is the need
to fix a value of the channel radius, which is impossible to
measure experimentally. Therefore, it is important to develop
a theory based on the general properties of the scattering
or reaction amplitudes, which can be used for an analytical
continuation to the nonphysical Riemann energy surface.
We would like to point out that knowing the parameters of
low-lying isolated resonances (in particular the ANC values)
allows us to predict accurately the crucial reaction rates for
nuclear astrophysics.

II. THE ANC FROM THE ELASTIC SCATTERING
AMPLITUDE BASED ON THE ANALYTIC

PROPERTIES OF THE S MATRIX

As we mentioned above, the application of the analytic
properties of the S matrix makes it easy to link the ANC to
the width � of an isolated narrow resonance [6]. However, this
relationship is not valid for a wide resonance. In this section,
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we show how to obtain this relationship for a resonance with
a broad width as well.

The partial amplitude of the nuclear scattering modified by
the Coulomb interaction is1

fl(k) = ei2σl (ei2δl − 1)

2ik
, (1)

where k is the relative momentum of the colliding nuclei, and δl

is the nuclear scattering phase shift for the orbital momentum
l modified by the Coulomb interaction. (This also depends
on the total angular momentum J , which we omit because
Coulomb effects do not depend on the spin.) The σl is the pure
Coulomb scattering phase shift

σl = arg �(l + 1 + iη), (2)

or

ei2σl = �(l + 1 + iη)

�(l + 1 − iη)
, (3)

where �(x) is the gamma function, η = z1z2μα/k is the
Sommerfeld parameter, α is the fine-structure constant, and
μ is the reduced mass of the colliding nuclei with the charge
numbers z1 and z2.

In the single-channel elastic scattering case the partial
S-matrix element, without the pure Coulomb part, is

Sl(k) = ei2δl . (4)

Near an isolated resonance it can be represented as [11]

Sl(k) = e2iνl (k) (k + kr )(k − k�
r )

(k − kr )(k + k�
r )

, (5)

where kr = k0 − iki is the complex wave number of a
resonance [k0 > ki > 0, and the symbol (*) means the complex
conjugate operation]. Energy Er of this resonance and its width
� are

Er = k2
0 − k2

i

2μ
, � = 2k0ki

μ
. (6)

The partial scattering nonresonant phase shift νl(k) is a smooth
function near the pole of the S-matrix element, corresponding
to the resonance. The S-matrix element defined by Eq. (5)
fulfills the conditions of analyticity, unitarity, and symmetry.
Using Eq. (5), one can rewrite Eq. (4) in the form

Sl(k) = e2i(νl+δr+δa ), (7)

where

δr = − arctan
ki

k − k0

represents the resonance phase shift, while

δa = − arctan
ki

k + k0

is the additional phase shift which contributes to the whole
scattering phase shift. Thus the total phase shift is

δl = νl + δr + δa. (8)

1Here and below we use the unit system � = c = 1.

The amplitude (1) has a complicated analytical property in
the complex momentum plane due to the Coulomb factor.
According to Refs. [4,12,13], we renormalize the partial
amplitude of the elastic scattering multiplying it by the
function

hl(k) = (l!)2eπη

[�(l + 1 + iη)]2
. (9)

Applying Eq. (3), we can write the renormalized amplitude as

f̃l(k) = (ei2δl − 1)

2ik

�(l + 1 + iη)

�(l + 1 − iη)

(l!)2eπη

[�(l + 1 + iη)]2
. (10)

After simplification and replacing ei2δl by Sl(k) we get

f̃l(k) = Sl(k) − 1

2ikρl(k)
, (11)

where ρl is equal to

ρl(k) = 2πη

e2πη − 1

l∏
n=1

(
1 + η2

n2

)
. (12)

This renormalized amplitude f̃l(k) can be analytically contin-
ued like the partial scattering amplitude, corresponding to the
short-range interaction, and has its pole at point kr according to
Eq. (5). But we should note that the Coulomb interaction leads
to an essential singularity at zero energy and also (see [14]) to
an infinite number of poles of f̃l(k) in addition to the poles of
a purely nuclear nature.

In the vicinity of the pole kr , the partial scattering
amplitude (11) can be represented as

f̃l(k) = W

k − kr

+ f̃nonres(k), (13)

where the function f̃nonres(k) is regular at the point kr .
The simple derivation of the residue W leads to the

expression

W = resf̃l = lim
k→kr

[(k − kr )f̃l(k)] = −kie
i2νl (kr )

k0ρl(kr )
. (14)

According to the definition of the nuclear vertex constant G̃l

(NVC), [15] the relationship between NVC and the residue W
can be written as

W = − μ2

2πkr

G̃2
l . (15)

So we get

G̃2
l = 2π

μ2

krkie
i2νl (kr )

k0ρl(kr )
= π�

μk0

(1 − iki/k0)ei2νl (kr )

ρl(kr )
. (16)

Using the relationship between NVC G̃l and ANC Cl [15], we
obtain

Cl = i−lμ√
π

�(l + 1 + iηr )

l!
e− πηr

2 G̃l

= i−l

√
μ�

k0
e− πηr

2
�(l + 1 + iηr )

l!

× eiνl (kr )
√

(1 − iki/k0)/ρl(kr ). (17)
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The derived equations are valid for both narrow and broad
resonances. For narrow resonances, when � � Er (ki � k0),
one can simplify Eq. (17) for the ANC replacing kr by k0 and
using the equality

e− πη
2

�(l + 1 + iη)

l!
√

ρl(k0)
= eiσl (18)

to obtain

Ca
l =

√
μ�

k0
ei(νl (k0)+σl (k0)−πl/2), (19)

which coincides with the result obtained in Ref. [6].
The nonresonant phase shift νl(k) is the analytical function

excluding the origin. In Ref. [16], the authors presented the
behavior of νl(k) near origin as

νl(k) = − 2π

(l!)2
k2l+1η2l+1al e

−2πη, (20)

where al is the scattering length for colliding nuclei. We see
that k = 0 is an essential singularity of the scattering phase
shift. However, as a function of the momentum k, it has
normal analytical properties near the point corresponding to
the resonance. Therefore we can expand νl(k) to a series

νl(k) =
∞∑

n=0

cn(k − ks)
n (21)

in the vicinity of the pole corresponding to the resonance. The
point ks denotes a centered point, and the radius of convergence
should be shorter than the distance from the centered point to
the closest singular point. The last can be due to an exchange
Feynman diagram for the elastic scattering, leading to the
logarithmic singularity which is absent in our model.

If we wish to determine the value of the phase shift νl(k) by
applying Eq. (21) at a point on the complex plane close to the
centered point ks , then only the first few items of the convergent
series for calculating νl(k) can be taken into account with
certain precision. The expansion coefficients cn of Eq. (21) as
well as k0 and ki are determined by fitting the experimental
values of the elastic scattering phase shifts δl given by Eq. (8).

III. EFFECTIVE-RANGE METHOD

The effective-range theory is also based on the analytical
property of the elastic scattering amplitude when an ingoing
particle collides with another nuclei at low energy. This is a
very good method to find the NVC and ANC of the bound
states from phase shift analyses (see Refs. [4,5] and references
therein).

Substituting the expression Eq. (4) of the partial S matrix
into Eq. (11) we easily obtain the renormalized amplitude in
the following form:

f̃l(k) = 1

k(cot δl − i)ρl(k)
, (22)

where the function ρ(k) is defined by Eq. (12) and δl is the
nuclear phase shift modified by the Coulomb interaction. From
Eq. (22) it follows that the position of the pole corresponds to

the condition

cot δl − i = 0. (23)

Exactly the same condition (23) is fulfilled for the pole of
the elastic scattering amplitude of the uncharged particles.
Following Ref. [17] we write the effective-range function,
which is an analytical function, except for possible poles (zeros
of the scattering amplitude), and relates to the phase shift δl as

Kl(k
2) = k2l+1Dl(η)

[
C2

0 (η)(cot δl − i) + 2ηh(η)
]
, (24)

where

C2
0 (η) = 2πη

exp(2πη) − 1
, (25)

h(η) = ψ(iη) + (2iη)−1 − ln(iη), (26)

Dl(η) =
l∏

n=1

(1 + η2/n2), D0(η) = 1, (27)

and ψ(x) is the di-gamma function. We note that the effective-
range function Kl(k2) is real in the positive energy region.

If the interaction of colliding particles is purely nuclear, i.e.,
without the Coulomb tail, the effective-range function (24) is
simplified and expressed through the partial scattering phase
shift by the well-known equation

Kl(k
2) = k2l+1 cot δl. (28)

Since the effective-range function is an analytic function
(except for possible poles), it can be expanded in a power
series over k2 in the low-energy region, where only the elastic
scattering channel is open. Typically, the following expansion
is used

Kl(k
2) = − 1

al

+ 1

2
r2
l k2 − Plr

3
l k4 + · · · , (29)

where al , rl , and Pl are real and called the scattering
length, effective range, and shape parameter, respectively. An
alternative form to Eq. (29) is the Padé approximation used in
Ref. [18].

The expansion coefficients of Eq. (29) are defined by fitting
the effective-range function expressed through experimental
phase shifts for the positive energy in the form of Eq. (24)
or Eq. (28), depending on whether a charged or uncharged
particle is scattered by the target nucleus. The effective-range
function Eq. (29) with the fitted parameters is used to find the
pole of the elastic scattering amplitude, corresponding to the
condition of (23) which leads to the equation

Kl(k
2) − 2ηk2l+1Dl(η)h(η) = 0. (30)

Actually, Eq. (30) can be taken as a condition for parameter
fitting when a resonance pole energy and a width are included
as an input like the phase shift data.

For the pole of the elastic scattering amplitude in the case
of an uncharged particle, the pole condition is simplified to

Kl(k
2) − ik2l+1 = 0. (31)

Solving Eq. (30) or (31), we find the pole momentum value
of the elastic scattering amplitude and the energy which has
complex value for a resonance, respectively. Then we calculate
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the residue W of the renormalized scattering amplitude of a
charged particle (22) at this pole point. The equation for W is

W = k2l

d
dk

[Kl(k2) − 2ηk2l+1Dl(η)h(η)]

∣∣∣∣
k=kr

(32)

for a charged particle, and

W = k2l

d
dk

[Kl(k2) − ik2l+1]

∣∣∣∣
k=kr

, (33)

in the case of an uncharged particle scattering. The expressions
for the NVC and ANC are defined through the residue W by
Eqs. (15) and (17), which are given in the previous section.

IV. RESULTS FOR THE 5He AND 5Li GROUND
AND FIRST EXITED STATES

The 5Li and 5He nuclei are interesting in that the ground and
first excited states are resonance states which can be treated
as single-channel systems. The phase shift of the elastic Nα
scattering with total angular momentum and parity equal to
Jπ = 3/2− passes rapidly through π/2 and therefore leads to
a narrow resonance. However, the phase shift of the elastic
Nα scattering with Jπ = 1/2− does not pass through π/2 and
therefore the corresponding resonance is wide enough. This
fact leads to certain difficulties, not only in determining the
position of the resonance and its width, but also in finding
such characteristics as the NVC and ANC.

The coefficient values of the effective-range expansion
obtained from a phase shift analysis of the elastic scattering
data in the region up to 3 MeV for neutron and 5 MeV for
proton were found by the authors of Ref. [19]. Using these
parameters, the authors of Ref. [20] determined the values
of the energy and width of the resonances. The article [20]
was cited in Ref. [21] where a separable potential fits the
resonance parameters for the nα scattering in the p1/2 and
p3/2 states. Agreement of the phase shifts calculated in [21]
with the experimental ones is good for the narrow p3/2

resonance but is poor for the broad p1/2 resonance. The N/D
method was applied in [12,22] for calculating the values of
the parameters of these resonances. Additionally, the residues
W of the renormalized scattering amplitude were calculated
at the resonance poles in the complex k plane using the
effective-range method in [4].

We applied the Nα phase shifts data presented in Ref. [23]
to calculate W , NVC, and ANC. According to the authors
of Ref. [23] the Nα phase shifts are obtained by an accurate

FIG. 1. (Color online) Comparison of the fitted phase shifts for
the n(p)-4He elastic scattering obtained by the S-matrix pole method
with the experimental values. The experimental data are taken from
Ref. [23]. The energy is given in the laboratory frame.

R-matrix analysis of the elastic scattering data. In Fig. 1 we
show the results of fitting the phase shifts for the n-4He and
p-4He elastic scattering, using the S-matrix pole method.
A good agreement is achieved in the wide energy region,
including the resonances considered.

In Table I we present the parameter values related to the
5He and 5Li nuclei, which are calculated using the analytic
properties of the S matrix outlined in Sec. II. In Fig. 2 we com-
pare the fitted effective-range function with the corresponding
values calculated by the effective-range method, using the
experimental phase shift data taken from [23]. The obtained
agreement is quite good. Table II shows the calculation results
of the same parameters for the same nuclei and states, but
found using the effective-range method described in Sec. III.
A comparison of the results presented in Tables I and II shows
that both methods lead to quite consistent results. The essential
difference between some of the results for the two methods
considered may be explained by the fact that these results
are more sensitive to the applied approach in the case of broad
resonances. The same conclusion was noted in Ref. [24], where
the authors also analyzed the parameters of the Nα states given
in Refs. [25,26]. We would like to point out that the difference
between the energies of states 1/2− and 3/2− for 5He received
by both methods applied is ∼0.9 MeV, which is comparable to
the difference ∼1.1 − 1.3 MeV between results given by other
authors. (See the tables in [4,24]). The same differences for the
states 5Li are 1.17 and 0.71 MeV, which are obtained using the
presentation of the S-matrix [Eq. (5)] and the effective-range
method, respectively. The results found by the other authors
lead to values where the limits are relatively wide. As to the
widths of the corresponding levels, the range of differences
of the values obtained by the different authors is similar to

TABLE I. Nucleus, channel, state, energy, and width, corresponding values of the residue (|W |), NVC (G̃2
l ), and ANC (Cl) obtained by

fitting the elastic Nα scattering phase shifts presented in Ref. [23]. Results are found using the analytical properties of the S matrix outlined in
Sec. II. Four terms of Eq. (21) are used for fitting. The last column shows the ANC (Ca

l ) calculated by Eq. (19). The energy of the resonance is
given in the center-of-mass system of Nα.

Nucleus J π Er (MeV) �(MeV) |W | G̃2
l (fm) Cl (fm−1/2) Ca

l (fm−1/2)

5He; nα 3/2− 0.629 0.448 0.147 0.005− i0.009 −0.105 −i0.190 −0.095 −i0.214
1/2− 1.476 3.520 0.194 −0.019−i0.016 −0.320 −i0.116 −0.391 −i0.314

5Li; pα 3/2− 1.328 0.994 0.320 0.018−i0.027 −0.115 −i0.231 −0.103 −i0.269
1/2− 2.504 4.667 0.261 −0.011−i0.040 −0.276 −i0.196 −0.355 −i0.374
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FIG. 2. (Color online) Comparison of the fitted effective-range
functions for the n(p)-4He elastic scattering with the experimental
values calculated by using the experimental data taken from Ref. [23].
The energy is given in the c.m. frame.

the range of differences for the real parts of the resonance
energies [4,24].

According to our results, the difference in the level energies
calculated by the two methods described above are 6–7% for
5He and 11% for 5Li, while the width differences are 7% at
state Jπ = 3/2 and 18% for Jπ = 1/2 of 5He. For the levels
of 5Li, differences in the widths calculated by the two methods
are very small. Comparing the results of Tables I and II we
can see that most of the calculated data have similar values
with a maximum difference of ∼20%. From this comparison
it can be concluded that it is difficult to decide which method
of calculation is preferable. Comparing the values of the ANC
of the penultimate and last columns, we see a difference in
∼60%, which gives us grounds to say that the asymptotic
formula defined by Eq. (19) leads to incorrect values of the
ANC for broad resonances. The values of the residue [Eqs. (14)
and (32)] calculated by both methods are similar in absolute
values to the corresponding values presented in Refs. [4,22].

V. RESULTS FOR THE 16O LOW-LYING RESONANCES
SITUATED ABOVE THE α12C THRESHOLD

In our previous work [27], we determined the position and
the width of the resonance in 16O, using Eqs. (8) and (21)
by fitting the phase shift for the elastic scattering of the α
particles on the nucleus 12C given in Ref. [28]. It was found
that the dependence of the results on the location of ks is
insignificant if it is within the area of the maximum increase
of the full scattering phase shift. To verify the almost linear
behavior of the phase shift νl(k), we checked its dependence
on the momentum k by subtracting the sum of the phase shifts
δr (k) and δa(k) from the experimental phase shift within the
resonance region. In Fig. 3 we demonstrate a good description
of the energy dependence of the experimental α12C elastic
scattering phase shifts which is obtained using the S-matrix

FIG. 3. (Color online) Comparison of the fitted phase shifts for
the α-12C elastic scattering obtained by the S-matrix pole method
with the experimental values. The experimental data are taken from
Ref. [28]. The energy is given in the laboratory frame.

pole method. As examples, we take the Jπ = 1− and Jπ = 3−
states, when the resonances are broad enough.

We note that all known methods of fitting the elastic
scattering phase shift lead to the same values of the energy
and width for narrow resonances. However, the results diverge
for broad resonances. Therefore, we can expect a difference
in the results of the ANC evaluations for broad resonances
compared with calculations by Eq. (19). Table III shows our
calculation results for the energy and width of the resonances
for the nucleus 16O, and the corresponding NVC and ANC
values. In the second and third columns of Table III we show
the results obtained by a R-matrix analysis [28] while our
results received by a S-matrix analysis are displayed in the
fourth and fifth columns. Readers can see that these results for
the energy and width coincide when the resonance is narrow,
but there are essential differences for broad resonances (in
particular for states 1− and 3−). The values of the renormalized
NVCs (G̃2

l ) and ANCs (Cl), which were found by using our
calculated values of the energies, widths, and the nonresonant
phase shifts are shown in the next two columns. In the last
column the values of ANCs (Ca

l ) which were calculated by
using Eq. (19) are presented. We note that these values are
found at real momentum values.

As the experimental phase shifts are determined with some
uncertainties, it is reasonable to assess the change of NVC
and ANC as functions of the resonance energy and width.
Therefore, we calculated the value of the nonresonant phase
shift νl and found the values of NVC and ANC at the resonance

TABLE II. Same as in Table I, but in the frame of the effective-range method outlined in Sec. III.

Nucleus J π Er (MeV) � (MeV) |W | G̃2
l (fm) Cl (fm−1/2) Ca

l (fm−1/2)

5He; nα 3/2− 0.675 0.560 0.171 0.007 −i0.010 −0.111 −i0.212 −0.076 −i0.245
1/2− 1.563 4.155 0.220 −0.015 −i0.026 −0.323 −i0.187 −0.384 −i0.367

5Li; pα 3/2− 1.481 1.041 0.295 0.019 −i0.025 −0.109 −i0.236 −0.062 −i0.281
1/2− 2.213 4.640 0.305 −0.016 −i0.043 −0.300 −i0.193 −0.375 −i0.369
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TABLE III. States, energies, and widths of 16O nucleus levels above the α12C threshold from our fit, as well as the corresponding values of
the calculated NVC and ANC from the elastic α12C scattering phase shifts [28]. Four terms of Eq. (21) are used for fitting. The energies of the
resonances are given in the center-of-mass system of α12C.

J π Er (MeV) [28] � (keV) [28] Er (MeV) � (keV) G̃2
l (fm) Cl (fm−1/2) Ca

l (fm−1/2)

0+ 4.887 3.0 4.887 3.0 0.0023 −i0.0042 0.0122− i 0.0104 0.0122−i 0.0104
1− 2.416 388.0 2.364 356.2 4.9703 −i1.7969 0.1530−i 0.1032 0.1759−i 0.1135
2+ 2.683 0.76 2.683 0.76 0.0031 −i0.0002 0.0038−i 0.0086 0.0038−i 0.0086
2+ 4.339 83.0 4.350 79.1 0.0383 −i0.0079 −0.0125−i 0.0831 −0.0124−i 0.0838
3− 4.320 864.0 4.214 811.7 0.2762 −i0.1420 −0.2332−i 0.0201 −0.2718− i 0.0311
4+ 3.196 25.6 3.199 26.5 0.0284 −i0.0014 −0.0491+ i 0.0190 −0.0494+ i 0.0190

point for the state Jπ = 3−, fixing the resonance energy and
width fitted by R-matrix method [28]. It was found that the
differences in energy and resonance were 2.5% and 6.4%,
respectively, while the renormalized NVC and ANC differ
by 2.9% and 5.3%, respectively. It should be noted that
the percentage difference of the NVC and ANC values is a
consequence of the calculation of ANC through the value
NVC, because it is multiplied by the �(x) function at the
different values of the Coulomb factor. One can see that
the uncertainties of NVC and ANC are roughly the same as
those of the resonance energy value. For narrow resonances,
it is quite reasonable to evaluate ANC using Eq. (19), taking
the value of the nonresonant phase shift for the real values
of energy or momentum from the experimental data. It is
obvious that for broad resonances the width of which is
greater than their energy, the uncertainty of the ANC value
should be related to the uncertainty of the width which is
determined by fitting the experimental scattering phase shifts.
The effective-range method is not able to reproduce the widths
of the 16O resonances. This may be due to the single-channel
approximation which we use in this work.

VI. CONCLUSION

The S-matrix pole prescription [Eq. (5)] and expansion
of the nonresonant phase to series [Eq. (21)] give consistent
resonance parameters for the ground and first excited states of
5He and 5Li as well as for the low-lying states of 16O situated
above the α12C threshold in spite of their resonance widths.

The standard expansion of the effective-range function
Kl(k2) to find the NVC G̃l and other parameters of the two first
resonance states of 5He and 5Li are used successfully. We have
found results which are a little different from those obtained
by other methods used. In our opinion, these differences can be
explained by the fact that in the first method, a centered point
of the expansion of the nonresonant phase shift to a series is
the point which is closest to the position of the resonance,
while in the method of the effective range, we use a centered
point of the expansion at zero momentum, which is far from
the resonance pole.

In the case of a bound state, the binding energy can be
considered as an additional parameter unlike in the S-matrix
method with the phase shift fitting. Therefore, we expect that
the method using the S-matrix pole prescription [Eq. (5)] can
lead to quite different results, and so we recommend using
the S-pole prescription to specify resonance parameters. At
the same time, the effective-range expansion method in the
convergence energy region is applicable in the case of a bound
state when the the S-matrix pole prescription does not work.
The results of this paper can be used for solving nuclear
astrophysical problems and may be applied in the theory of
nuclear reactions using Feynman diagrams to describe the
reaction mechanisms.
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