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Nucleon-nucleon scattering with the complex scaling method and realistic interactions
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We demonstrate the validity of the complex scaling method for realistic strong, nonlocal, nucleon-nucleon
interactions by comparing the deuteron bound state and nucleon-nucleon scattering phase shifts with results from
other high-precision methods. This opens a pathway for the simultaneous ab initio solutions of the nuclear bound
and scattering problems within a unified framework.
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Introduction. One of the most important theoretical endeav-
ors of modern nuclear physics (NP) is to develop methods that
address on equal footing structure and scattering observables
using the same realistic nuclear Hamiltonian. This is the
only way to consistently understand nuclear phenomena
sensitive to continuum effects and also to avoid computing
model-dependent quantities such as spectroscopic factors and
effective single-particle energies [1]. One important region of
the nuclear chart that structure and scattering aspects overlap
is located close to the drip lines, where the nucleons are
very weakly bound or slightly unbound forming a resonant
nuclear system. These exotic systems have implications
for nuclear astrophysics. They are characterized by a very
low level density of states, with few or no bound states,
where statistical assumptions that underlie some traditional
theoretical approaches are less reliable. We show that the
complex scaling method (CSM), used successfully in quantum
chemistry, is a viable approach to strong nuclear interac-
tion systems. Therefore, the CSM will complement existing
methods that include the nuclear continuum [2–9] with the
advantage that the CSM may be combined with a variety
of bound-state techniques. This combination is particularly
important for exploiting recent advances in high-performance
computing.

Solving the many-body nuclear scattering problem is a
very formidable task. For an exact treatment one solves the
scattering equations in either momentum or coordinate space.
Then, in order to describe resonance features and also access
several elastic and inelastic channels the equations are solved
over a range of energies. Coordinate space methods include
the Faddeev-Yakubovsky, hyperspherical harmonics using the
Kohn variational principle, as well as the Alt-Grassberger-
Sandhas equations in momentum space. Especially the latter,
after the Coulomb singularity [10] issue was resolved, is
the most tractable route among the exact methods, since the
scattering boundary conditions are naturally imposed when
working in momentum space. All of the above methods
provide precision results for the description of three-nucleon
scattering using realistic nucleon-nucleon (NN) plus three-
nucleon (3N) interactions [11–14]. Nevertheless, the calcu-
lations are very involved computationally [15] making it hard
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to obtain solutions for systems with A � 4. Only recently
has the four-body scattering problem above the breakup
threshold been solved exactly using realistic interactions [16].
The combined mathematical and computational challenge
for the imposition of the appropriate scattering boundary
conditions in coordinate space techniques, the factorial scaling
of the antisymmetrization between the colliding particles,
the difficulty of including 3N interactions in momentum
space formulations for scattering, and the rapid increase of
equations one needs to solve in momentum space are the basic
bottlenecks for applications of these approaches to heavier
systems. On the other hand, bound-state techniques such as
the no-core shell model [17], Green’s functions Monte Carlo
[18] calculations, coupled cluster theory [19], in-medium
similarity renormalization group [20], and self-consistent
(Gorkov) Green’s functions [21] are not limited by the
demands of antisymmetrization. The many-body correlations
are well treated and with the increase in computer power they
have reached highly accurate numerical standards. Hence it
is very important to develop a unification of the bound-state
and scattering domains by taking full advantage of the recent
advances in the technologies for solving the bound-state
domain.

Some of the methods in NP that employ bound-state
techniques to solve the scattering problem include the Wigner’s
R matrix [22], Lorentz inverse transformation [23], momentum
lattice technique [24], continuum discretized coupled channels
[25], and CSM [9,26]. For a recent review of bound-state
techniques for the scattering problem we refer the reader
to [27]. For example the CSM was employed to solve the
four-body scattering problem above breakup threshold [28]
with phenomenological nuclear interactions acting only in the
S wave.

In this Rapid Communication we describe the bound
and scattering problems with the CSM using for the first
time nonlocal realistic interactions (JISP16) [29] and chiral
microscopic interactions (N3LO, N2LOopt) [30,31]. We apply
our technique to the proton-neutron system. We calculate the
ground state energy of the deuteron and scattering phase shifts
with a single diagonalization without imposing any scattering
boundary conditions. The method itself is a basis expansion
technique which employs L2 integrable functions for the
description of both the negative and positive energy spectrum.
We show that the method with realistic strong and nonlocal
interactions has controllable precision which portends the path
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to a unified description of structure and scattering in heavier
nuclear systems.

Formalism. In the CSM the coordinates and momenta
of the underlying Hamiltonian are rotated as r → reiθ and
p → pe−iθ . Hence a complex rotated local Hamiltonian, with
kinetic energy T and potential V, takes the form H (r,θ ) =
e−2iθ T + V (reiθ ), where θ is a real parameter and the resulting
Schrödinger equation becomes

H (r,θ )�(r,θ ) = E(θ )�(r,θ ). (1)

The Hamiltonian becomes non-Hermitian and its spectrum
contains resonant (bound states and resonances) and non-
resonant continuum states. It is then a consequence of
the Aguilar-Balslev-Combes (ABC) [32,33] theorem that
resonant states above the 2θ line are in general invariant
with respect to the rotation angle θ , while the nonresonant
continuum states are distributed along cuts rotated by an
angle of 2θ in the complex energy plane. The rotation point
of the continuum states is associated with a many-particle
threshold. Another consequence of the ABC theorem is that
the resonant solutions of the Hamiltonian have decaying
asymptotics, e.g., they behave as bound states, hence any
bound-state technique for the solution of Eq. (1) could be
employed. For an orthonormal basis ensemble φi(r), such as
the harmonic oscillator (HO) basis, the many-body solution
is approximated as �(r,θ ) = ∑N

i=1 Ci(θ )φi(r) and Eq. (1)
leads to a matrix eigenvalue problem:

∑N
j=1 Hij (θ )Cj (θ ) =

ECj (θ ). The main task is to calculate the complex scaled
(CS) matrix elements of the Hamiltonian in the real HO basis.
The transformation is trivial for the kinetic energy operator
and only a phase factor e−2iθ is introduced. For the kinetic
energy in the HO basis the CS matrix elements are given by
the analytical tridiagonal expressions multiplied by the phase
factor. When the effective potential is local and analytical
(e.g., Yukawa, Gaussian), the CS matrix elements are also
easily calculated, since the complex rotation of the coordinate
is equivalent to making potential parameters complex [9]
and the matrix elements can be calculated either numerically
or even analytically in some cases [34]. That is also the
case for realistic meson-exchange potentials as shown for
Argonne υ8′ [35]. The difficulty with such potentials that are
characterized by a hard core lies in their singular nature at
short distances, which limits the range of θ values one may
employ. It was demonstrated that results become unstable with
increasing θ [36] and the problem needs special numerical
techniques [37]. Nowadays, after the successful application
of the chiral perturbation theory in NP and also by the
application of additional renormalization techniques for the
construction of an effective NN force, the realistic nuclear
potentials are characterized by a softer short-range repulsion
which may facilitate the use of CSM. However, these poten-
tials are no longer local and have a complicated structure,
which makes the direct application of the CS transformation
cumbersome. In this work we adopt a method first proposed
in Refs. [38,39] for the calculation of CS matrix elements.
The method involves shifting the CS transformation from the
potential to the basis states which we illustrate with a local

potential:
∫ ∞

0
φn(r)V (reiθ )φn′(r)r2dr

= e−i3θ

∫ ∞

0
φn(re−iθ )V (r)φn′(re−iθ )r2dr, (2)

where φn(r) are the HO radial basis states which are
known analytically. It is straightforward to notice that the
CS transformation on the HO radial basis corresponds to
making the HO length parameter b a complex number,
scaled by b → beiθ . In order to proceed we express our
nonlocal potential operator in terms of relative HO projection
operators as Vb = ∑

C,nln′l′ A
C;b
nln′l′ |nl,C; b〉〈n′l′,C; b| where

the real numbers AC;b
nln′l′ = 〈nl,C; b|V |n′l′,C; b〉 are the relative

HO matrix elements characterized by the relative quantum
numbers n, l, the channel C of the interaction (e.g., 3P0) and
the HO length parameter b. For a general nonlocal potential in
coordinate space we have that

V (r,r ′) =
∑
n,n′

Ann′φn(r)φn′(r ′), (3)

where we suppress additional indices for compactness. In
Eq. (3) we apply the approach of Refs. [38,39] to obtain the
CS expression

V CS
b =

∫∫
r2r2′dr dr ′φbeiθ

n (r)V (r,r ′)φbeiθ

n′ (r ′). (4)

The implementation of the CSM reduces to a calculation
of this double integral. We first tested the validity of this
treatment against local Gaussian potentials where we knew
both analytical and numerical solutions [34]. In the following,
once we have obtained the CS representation of the nuclear
potential matrix elements, we diagonalize Eq. (1) for the
two-body proton-neutron (pn) system.

Results. We first apply the formalism to the ground state
(g.s.) of the deuteron (3S1-3D1 coupled channels). Our goal
is to show if the consequences of the ABC theorem, namely,
the invariance of the bound state with respect to the rotation
angle, holds for the general potentials that we are investigating
here. In this demonstration we are using the JISP16 and the
N2LOopt chiral interactions at b = �/

√
μω = 1.4399 fm or

(�ω = 40 MeV). We gather our results in Fig. 1. For this
calculation we used rotation angles ranging from 0.1 to 0.3 rad.
We see that the deuteron ground state energy is invariant. For
this application we used the cutoff N = 45 for the number of
HO basis states.

Having diagonalized the CS Hamiltonian, in addition to
the bound state(s) and resonance(s) (if they exist), we also
obtain the nonresonant scattering continua along the 2θ
rays in the complex plane. It has been shown [41] that the
scattering solutions may be used to calculate elastic scattering
phase shifts, by evaluating the CS continuum level density
(CLD). The proof is based on the utilization of an extended
completeness relation [42,43] which involves resonant and
nonresonant scattering states and was originally proposed by
Berggren [44]. Following [41] we calculate the CLD in the
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FIG. 1. (Color online) Eigenvalues of the CS coupled-channel
Hamiltonian (1) for the (a) N2LOopt and (b) JISP16 realistic potentials.
The deuteron bound state (indicated by the arrows) is shown to be
invariant under complex rotations of momenta and coordinates.

CSM which is defined as

�θ (E) = − 1

π
Im

∫
dr〈r| 1

E − Hθ
− 1

E − Hθ
0

|r′〉, (5)

where Hθ
0 is the CS asymptotic part of the Hamiltonian, which

in our case is identical to the kinetic energy and Hθ is the total
CS interacting Hamiltonian.

The phase shift then is obtained from Eq. (5) after integrat-
ing over the range of energies. We apply these formulas using
our solutions for realistic interactions and we calculate selected
uncoupled channel phase shifts with angular momentum
L = 1, 2, 3, 4. When using formula (5) for the evaluation
of the CLD and hence the scattering phase shift for the 1S 0

channel, we encounter a need, as others have shown [45], for
more advanced numerical techniques. The challenge is the
very rapid rise in the phase shift at low energy due to the
virtual (antibound) state (pole on the second Riemann sheet)
of the 1S 0 channel. This special case for phase shifts requires
larger HO basis sets beyond our current numerical techniques.
However, we would still use the standard procedure to identify
a true resonance without the phase shifts by its complex
pole (eigenvalue of the CS Hamiltonian) that is stable with
increasing θ , as we saw above for the deuteron ground state.
As expected, we find no true continuum resonance in the np
channels investigated here.

For the orbital angular momentum L � 1 uncoupled
channels we solve for the phase shifts using the CSM plus
CLD treatment and compare with results of exact calculations
using the Schrödinger equation. The results are gathered
in Figs. 2 and 3. For θ = 0.1 rad the phase shifts exhibit
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FIG. 2. (Color online) 3P1 and 3D2 channel phase shifts obtained
with the CSM with the JISP16 interaction, as compared with the exact
solution and the Nijmegen data [40]. We observe an independence of
the results starting already for values of θ as small as 0.2 rad. Even
for θ = 0.1 rad the phase-shift fluctuations are fairly small and follow
the trend of the exact phase shift.
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FIG. 3. (Color online) Same as Fig. 2 but for the 3F3 and 3G4

channel phase shifts.
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FIG. 4. (Color online) 3P 0 channel phase shift calculated with
the CSM with the N3LO SRG (λ = 2.0 fm−1) and the N2LOopt

realistic interactions. N2LOopt phase-shift data are from [46].

small fluctuations which are smeared out with increasing
rotation angle. We notice that results already for θ = 0.2
rad are practically indistinguishable, coincide with the exact
ones, and become independent of the rotation angle θ . In
order to demonstrate the general nature of our approach we
present results (Fig. 4) for the 3P 0 channel scattering phase
shift using the Entem-Machleidt N3LO interaction which was
evolved via a similarity renormalization group (SRG) [47]
transformation at a cutoff λ = 2.0 fm−1 and also with the
bare N2LOopt. Similar to the results obtained with the JISP16
interaction, our phase shifts obtained from the CS nonresonant
scattering solution of Eq. (1) show a fast convergence with
respect to the CSM rotation angle variations and already
for θ = 0.2 rad the fluctuations are diminished. For this
calculation we used N = 35. The JISP16 potential HO basis
matrix elements are characterized selecting, in Eq. (4), a
value b = 1.4399 fm (�ω = 40 MeV), while b = 1.5178 fm
(�ω = 36 MeV) for N3LO, and b = 1.6099 fm (�ω = 32
MeV) for N2LOopt. We note that for the phase-shift cal-
culations using the CLD formulas we limited ourselves to
uncoupled channels. In general, the evaluation of phase shifts
for coupled channels within the CSM could be feasible by
either of two routes. We may follow the path of Suzuki
et al. [48] where the authors defined the CLD in a matrix
form for coupled channels. One then diagonalizes the CLD
matrix and takes the eigenvalues as the partial level densities
in a specific eigenchannel. Having obtained the partial level

density we hope that one could apply formulas similar to the
ones used in the uncoupled case for the phase shifts, even
though Suzuki et al. warn that this may be problematic. An
alternative route would be to use the formalism of [49,50]
which resembles the initial work of Nuttall and Cohen [51] and
was applied for the calculation of scattering amplitudes and
phase shifts in a coupled channel case using the CSM. Then we
may employ the technology we developed for treating realistic
nonlocal interactions within the CSM.

Conclusions. The CSM is a state-of-the-art method which
truly unifies structure and scattering problems. It is a bound-
state technique which eliminates the need to impose boundary
condition for the scattering problem. We applied the CSM to
the pn system and demonstrated numerically the validity of
the ABC theorem for a general class of potentials (i.e., local
potentials were assumed for the proof of the ABC theorem).
Specifically, we showed the invariance with respect to the
rotation angle θ for the deuteron g.s. with realistic, even
nonlocal, NN interactions for the first time. In addition, using
the solutions we obtained from the CSM, we calculated single
channel scattering phase shifts by discretizing the continuum
in a HO basis and evaluating the continuum level density. The
convergence of the phase shifts as a function of the CS rotation
angle parameter is rather rapid. The success of the CSM is tied
to the fact that the modern nuclear interactions (either chiral
or phenomenological) are characterized by a manageable
short-range repulsion which eliminates possible numerical
instabilities appearing in older realistic force applications
of CSM (with strictly local and analytical forces) in NP.
Using the HO basis for our calculations one may transform
the Hamiltonian matrix elements, including 3N interactions,
into the laboratory frame and use current many-body solvers.
The fact that we are able to apply this powerful technique
without limiting the type of potential opens a window to more
reliable calculations of exotic nuclei and enables assessment to
energies below threshold, resonance parameters, and scattering
observables within a unified approach.
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