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New truncation scheme for a time-dependent density-matrix approach applied
to the ground state of 16O
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The ground state of 16O is calculated by using a time-dependent density-matrix approach derived from a new
truncation scheme of the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy for reduced density matrices,
where a three-body density matrix is approximated by an antisymmetrized product of two-body density matrices.
The new scheme is compared with a simpler truncation scheme previously used for the calculation of the ground
state of 16O where the three-body density matrix is neglected and only two-particle–two-hole elements of the
two-body density matrix are considered. It is shown that the results obtained from the two truncation schemes
agree well with the exact solution.
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The equations of motion for reduced density matrices
have a coupling scheme known as the Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) hierarchy where an n-
body density matrix couples to n-body and (n + 1)-body
density matrices. The time-dependent Hartree–Fock theory
is obtained from the truncation scheme of the BBGKY
hierarchy where the two-body density matrix in the equation
of motion for the one-body density matrix is approximated by
an antisymmetrized product of the one-body density matrices.
If we replace the three-body density matrix in the equation of
motion for the two-body density matrix with antisymmetrized
products of the one-body and two-body density matrices, we
can truncate the BBGKY hierarchy and obtain a closed set
of the equations of motion for the one-body and two-body
density matrices. This is the truncation scheme used in the
time-dependent density-matrix theory (TDDM) [1,2]. TDDM
has been applied to model Hamiltonians [3,4] and realistic
cases [4–8] to investigate two-body correlation effects. On
the other hand it has been pointed out [9,10] that TDDM
can give unphysical results because an identity that the
one-body and two-body density matrices should satisfy is
not conserved in TDDM. Obviously, the problems of TDDM
originate in the truncation scheme of the BBGKY hierarchy
where genuine three-body and higher-level correlations are
completely neglected. One way of overcoming the problems
may be to include the three-body correlation explicitly, as has
been done in Ref. [11] for a model Hamiltonian. However,
such an extension of TDDM is impractical for realistic
cases. We recently proposed a new truncation scheme [12]
where the three-body density matrix is approximated by the
antisymmetrized products of the two-body density matrices.
The truncation scheme was applied to model Hamiltonians
and good agreement with the exact solutions was obtained
[12]. In the previous TDDM applications to the ground
state of 16O [4,13] were included only two-particle–two-hole
(2p-2h) and 2p-2h elements of the two-body density matrix to
facilitate numerical calculations. The aim of this paper is to
further investigate the new truncation scheme in a realistic
case of 16O and also to test the validity of the simplified
treatment of TDDM by comparing with the results of exact
diagonalization.

I consider the Hamiltonian H consisting of a one-body part
and a two-body interaction:

H =
∑

α

〈α|t |α′〉a†
αaα′ + 1

2

∑

αβα′β ′
〈αβ|v|α′β ′〉a†

αa
†
βaβ ′aα′ , (1)

where a†
α and aα are the creation and annihilation operators of

a particle at a time-independent single-particle state α. TDDM
gives the coupled equations of motion for the one-body density
matrix (the occupation matrix) nαα′ and the correlated part
of the two-body density matrix Cαβα′β ′ . These matrices are
defined as

nαα′ (t) = 〈�(t)|a†
α′aα|�(t)〉, (2)

Cαβα′β ′(t) = 〈�(t)|a†
α′a

†
β ′aβaα|�(t)〉

− [nαα′ (t)nββ ′(t) − nαβ ′ (t)nβα′(t)], (3)

where |�(t)〉 is the time-dependent total wave function
|�(t)〉 = exp[−iH t/�]|�(t = 0)〉. The equations of motion
for nαα′ and Cαβα′β ′ are written as

i�ṅαα′ =
∑

λ

(εαλnλα′ − nαλελα′ )

+
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉Cλ2λ3α′λ1

−Cαλ1λ2λ3〈λ2λ3|v|α′λ1〉
]
, (4)

i�Ċαβα′β ′ =
∑

λ

(εαλCλβα′β ′ + εβλCαλα′β ′

− ελα′Cαβλβ ′ − ελβ ′Cαβα′λ)

+Bαβα′β ′ + Pαβα′β ′ + Hαβα′β ′

+
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉Cλ2λ3βα′λ1β ′

+ 〈λ1β|v|λ2λ3〉Cλ2λ3αα′λ1β ′

− 〈λ1λ2|v|α′λ3〉Cαλ3βλ1λ2β ′

− 〈λ1λ2|v|λ3β
′〉Cαλ3βλ1λ2α′

]
, (5)

where Cαβγα′β ′γ ′ is the correlated part of a three-body density-
matrix which is neglected in the original version of TDDM.
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The energy matrix εαα′ is given by

εαα′ = 〈α|t |α′〉 +
∑

λ1λ2

〈αλ1|v|α′λ2〉Anλ2λ1 , (6)

where the subscript A means that the corresponding matrix
is antisymmetrized. The matrix Bαβα′β ′ in Eq. (5) does not
contain Cαβα′β ′ and describes 2p-2h and 2h-2p excitations,
while Pαβα′β ′ and Hαβα′β ′ contain Cαβα′β ′ and describe p-p
(and h-h) and p-h correlations to infinite order, respectively
[2]. These matrices are explicitly given in Ref. [2]. Equations
(4) and (5) satisfy the conservation laws of the total energy
and the total number of particles [1,2].

The new truncation scheme for Eq. (5) is the following [12]:
Instead of neglecting Cαβγα′β ′γ ′ we use

Cp1p2h1p3p4h2 =
∑

h

Chh1p3p4Cp1p2h2h, (7)

Cp1h1h2p2h3h4 =
∑

p

Ch1h2p2pCp1ph3h4 , (8)

where p and h refer to particle and hole states, respectively.
These expressions were derived from a perturbative consider-
ation [12] by using the following ground state |Z〉:

|Z〉 = eZ|HF〉 ≈ (1 + Z)|HF〉, (9)

with

Z = 1

4

∑

pp′hh′
zpp′hh′a†

pa
†
p′ah′ah, (10)

where |HF〉 is the Hartree–Fock (HF) ground state and zpp′hh′

is antisymmetric under the exchanges of p ↔ p′ and h ↔ h′.
In the lowest order of zpp′hh′ the two-body correlation matrices
are given by

Cpp′hh′ ≈ zpp′hh′ , (11)

Chh′pp′ ≈ z∗
pp′hh′ , (12)

and the three-body correlation matrices are given by

Cp1p2h1p3p4h2 ≈
∑

h

z∗
p3p4hh1

zp1p2h2h, (13)

Cp1h1h2p2h3h4 ≈
∑

p

z∗
p2ph1h2

zp1ph3h4 . (14)

These relations suggest the expressions for Cαβγα′β ′γ ′ in terms
of Cpp′hh′ given by Eqs. (7) and (8).

There are identities which are satisfied by exact reduced
density matrices. The identity for the one-body and two-body
density matrices is

nαα′ = 1

N − 1

∑

λ

ραλα′λ. (15)

This is also expressed by using Cαβα′β ′ as

nαα′ −
∑

λ

(nαλnλα′ − Cαλα′λ) = 0. (16)

When the three-body correlation matrix is neglected in Eq. (5),
this identity is not conserved [9]. It has been shown [12] that the

inclusion of the three-body correlation matrix using Eqs. (7)
and (8) improves the conservation of Eq. (16). This is also the
case in 16O as shown below.

The ground state in TDDM is given as a stationary solution
of the time-dependent equations [Eqs. (4) and (5)]. I use
the following adiabatic method to obtain a nearly stationary
solution [14]: Starting from the HF configuration, I solve
Eqs. (4) and (5), gradually increasing the strength of the
residual interaction such as v(r − r′) × t/T . To suppress
oscillating components which come from the mixing of excited
states, we must take large T : I use T = 2400 fm/c. To
compare with the results from the exact diagonalization of
the Hamiltonian, I use a small single-particle space: The
occupation probability nαα and the correlation matrix Cαβα′β ′

are calculated by using the 1p3/2, 1p1/2, and 1d5/2 states
for both protons and neutrons. For the calculations of the
single-particle states I use the Skyrme III force. A simplified
interaction which contains only the t0 and t3 terms of the
Skyrme III force is used as the residual interaction. The spin-
orbit force and Coulomb interaction are also omitted from the
residual interaction. Since it is difficult to satisfy antisymmetry
properties of Cαβα′β ′ by using a density-dependent force as the
residual interaction [15], I adopt the three-body version of
the Skyrme interaction, v3 = t3δ

3(r1 − r2)δ3(r1 − r3), which
gives the following density-dependent two-body residual in-
teraction: t3ρnδ

3(r − r ′), t3ρδ3(r − r ′)/2, and t3ρpδ3(r − r ′)
for the proton-proton, proton-neutron, and neutron-neutron
interactions, respectively, where ρp, ρn, and ρ are the proton,
neutron, and total densities, respectively. For simplicity I use
the time-independent HF single-particle states and neglect
the effects of ground-state correlations on the mean field.
This means that all density matrices are defined by using the
HF single-particle states and that εαα′ in Eqs. (4) and (5) is
replaced by the HF single-particle energy accordingly. To be
consistent with this treatment of the single-particle states, I
subtract from the Hamiltonian (1) the mean-field potential∑

λ〈αλ|v|αλ〉An0
λa

†
αaα , where n0

λ is the HF occupation proba-
bility (n0

λ = 1 or 0).
The occupation probabilities of the proton 1p3/2, 1p1/2,

and 1d5/2 states are shown in Figs. 1–3 as a function of
the strength of the residual interaction t/T . The solid line
depicts the result in TDDM with Cαβγα′β ′γ ′ given by Eqs. (7)
and (8). The dotted line shows the result in TDDM without
the three-body correlation matrix and the dot-dashed line the
TDDM result where the three-body density matrix and the
two-body correlation matrix other than 2p-2h and 2h-2p types
are neglected. The results for the neutron single-particle states
are similar and not shown here. The results obtained from
the exact diagonalization in the same single-particle space are
shown with the squares at t/T = 1. The deviation from the
HF values (nαα = 1 or 0) is more than 10%, which means
that the ground state of 16O is a strongly correlated state. A
recent shell-model calculation by Utsuno and Chiba [16] also
gives a similar result for the ground state of 16O. It is clear
from Figs. 1–3 that the original truncation scheme of TDDM
where the three-body correlation matrix is neglected but all
elements of Cαβα′β ′ are included overestimates the ground-state
correlations. It has been pointed out in Ref. [12] that the
three-body correlation matrix plays a role in suppressing
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FIG. 1. Occupation probability of the proton 1p3/2 state as a
function of t/T calculated in TDDM with Cαβγα′β ′γ ′ given by
Eqs. (7) and (8) (solid line). The dotted line depicts the results
in the original truncation scheme of TDDM where the three-body
correlation matrix is neglected but all components of Cαβα′β ′ are
included. The dot-dashed line shows the results of the simplified
version of TDDM where only the 2p-2h and 2h-2p elements of the
two-body correlation matrix are included. The exact solution is shown
with the square at t/T = 1.

the particle-hole correlations. In fact the neglect of Cphp′h′ is
the main reason why the results of the simplified truncation
scheme where only Cpp′hh′ and Chh′pp′ are included are
in good agreement with the results of the new truncation
scheme.

To investigate how the two-body correlation matrix de-
pends on the truncation schemes, I consider the correlation
energy Ecor defined by Ecor = ∑

αβα′β ′ 〈αβ|v|α′β ′〉Cα′β ′αβ/2.
The obtained results are shown in Fig. 4 as a function of
t/T . Figure 4 shows that the neglect of the three-body
correlation matrix overestimates the correlation energy, as
is the case for the occupation probabilities. Figure 4 also
indicates that the inclusion of only Cpp′hh′ and Chh′pp′ un-
derestimates Ecor, although the occupation probabilities are
reasonable. This underestimation is due to the omission of
other elements of the two-body correlation matrix. Therefore, I
calculate Cp1h1p2h2 , Cp1p2p3p4 , and Ch1h2h3h4 by using Cp1h1p2h2 =∑

ph Cp1ph1hChh2p2p, Cp1p2p3p4 = ∑
hh′ Cp1p2hh′Chh′p3p4/2, and

FIG. 2. Same as Fig. 1 but for the proton 1p1/2 state.

FIG. 3. Same as Fig. 1 but for the proton 1d5/2 state.

Ch1h2h3h4 = ∑
pp′ Ch1h2pp′Cpp′h3h4/2. These relations have also

been derived from a perturbative consideration [12]. The
obtained Ecor is shown in Fig. 4 with the green (gray) solid
line. Now good agreement is obtained with the result given by
Eqs. (7) and (8) and with the exact solution.

I now show that the inclusion of the three-body correlation
matrix also stabilizes the long-time behavior of the ground
state. To show the stability of the ground-state solution in
TDDM, I present the sum S of the absolute value of Eq. (16)
S = ∑

α |nαα − n2
αα + ∑

λ Cαλαλ| in Fig. 5: In the model
single-particle space considered here, nαα′ has no off-diagonal
elements. The time step 4000 corresponds to T and, for t > T ,
the interaction strength is fixed at the original value. The solid
line shows the result in TDDM with the three-body correlation
matrix given by Eqs. (7) and (8), while the result in the original
truncation scheme of TDDM where the three-body correlation
matrix is neglected is given by the dotted line. The latter
becomes unstable after the 6000th time step. The dot-dashed
line depicts the result with only Cpp′hh′ and Chh′pp′ . The green
(gray) line shows the result where Cphp′h′ , Cpp′p′′p′′′ , and Chh′h′′h′′′

are calculated with Cpp′hh′ and Chh′pp′ . Comparison of the
dot-dashed line with the green (gray) solid line shows that the

FIG. 4. (Color online) Correlation energy in TDDM as a function
of t/T . The meaning of the three lines is the same as in Fig. 1. The
green (gray) solid line depicts the result where Cphp′h′ , Cpp′p′′p′′′ , and
Chh′h′′h′′′ are calculated by using Cpp′hh′ and Chh′pp′ (see text). The exact
solution is shown with the square.
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FIG. 5. (Color online) Sum of the absolute value of Eq. (16) as a
function of time steps. The meaning of the four lines is the same as
in Fig. 4. Time step 4000 corresponds to T .

inclusion of Cphp′h′ , Cpp′p′′p′′′ , and Chh′h′′h′′′ drastically improves
the identity Eq. (16). The difference between the solid and

dotted lines demonstrates that the three-body correlation
matrix given by Eqs. (7) and (8) plays a role in stabilizing
the time evolution of the ground state.

In summary, I applied a new truncation scheme for the
time-dependent density-matrix approach to the ground state
of 16O. The scheme consists of approximating the three-body
correlation matrix with the antisymmetrized product of the
two-body correlation matrices. The validity of a simpler
truncation scheme where only the two-particle–two-hole
elements of the two-body correlation matrix are included was
also tested. It was found that the results obtained from the
two truncation schemes agree well with the exact solution
when other neglected elements of the two-body correlation
matrix in the latter approach are evaluated by using the
two-particle–two-hole elements. It was pointed out that the
three-body correlation matrix plays a role in suppressing
the particle-hole correlations and stabilizing the long-time
behavior of the ground state. This study shows that the previous
truncation scheme of TDDM applied to 16O, where only the
two-particle–two-hole elements of the two-body correlation
matrix are included, are justifiable.
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