
PHYSICAL REVIEW C 91, 015811 (2015)

Reliability of the double-folding potential for fusion cross sections of light systems
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We study the fusion reaction of light systems with one-dimensional barrier penetration model using
the α-α double-folding cluster (DFC) potential. We especially analyze the fusion cross sections of the
12C + 12C, 16O, 24Mg, 28Si, 16O + 16O, 24Mg + 24Mg, 28Si, and 28Si + 28Si reactions. The results are
compared with the one obtained with M3Y double folding (DFM) and the Akyüz-Winther (A-W) potentials. It
is found that the calculations with DFM and DFC potentials can reproduce the experimental data much better
than the calculations using the A-W potential. We also carried out an analysis on the astrophysical aspect of
the 12C + 12C, 16O, and 16O + 16O reactions. The calculations using DFC and DFM potentials could fit the
S-factor data reasonably well. However, the calculated reaction rates are lower than the compilation of Caughlan
and Fowler at low temperatures. In the important range of temperatures in stellar evolution, the DFC potential
reproduces very satisfactory fitting to the experimental cross section and the S-factor data and gives a consistent
prediction of astrophysical reaction rates. This finding indicates that the DFC potential could be used as an
alternative potential to study the fusion reactions in the astrophysical interest.
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I. INTRODUCTION

For over more than four decades, heavy-ion fusion reactions
have been studied extensively. The basic approach to the
heavy-ion fusion reactions, which is based on the one-
dimensional barrier penetration model, has been successful in
describing the experimental fusion cross sections at energies
above the Coulomb barrier [1,2]. However, it is found that this
model fails to explain the enhancement of the fusion cross
section at energies below the Coulomb barrier, which is called
the sub-barrier fusion reaction. It is now well established that
this enhancement can be explained by the coupled-channel
formalism and it is widely utilized for low-energy heavy-ion
fusion reactions [1,3–5].

The nuclear interaction between the projectile and the target
nuclei with the mass number AP and AT , respectively, within
their distance of closest approach, r , is described by the
Woods-Saxon shaped potential and is given by [6]

VN (r) = −V0

1 + exp[(r − R0)/a0]
+ i

−W0

1 + exp[(r − RW )/aW ]
,

(1)

where R0 = r0(A1/3
P + A

1/3
T ) and RW = rW (A1/3

P + A
1/3
T ). The

real part is characterized by the surface diffuseness parameter,
a0, the potential depth, V0, and the radius parameter, r0, which
can be obtained using the Akyüz-Winther parametrization [6].
This potential is usually called the Akyüz-Winther (A-W)
potential. The aW ,W0, and rW are the surface diffuseness
parameter, the potential depth, and the radius parameter for the
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imaginary part, respectively, but the values are not necessarily
to be the same as for the real part.

It was noted that the usage of the Woods-Saxon shaped
potential has not been possible to simultaneously reproduce
different reaction observable, such as fusion [7], elastic
scattering [8,9], and quasielastic scattering [10–12]. Another
current inadequacy of understanding the nuclear potential is
the fusion hindrance where the measurements of fusion cross
sections below the ∼100 μb level exhibit a behavior that is
different from the coupled-channel predictions [13]. A much
steeper falloff was observed at extreme sub-barrier energies for
heavy and medium systems [14]. For light heavy-ion systems,
this effect is not well established since the experimental data
of the fusion cross sections are still not low enough to confirm
its existence [15,16].

Due to the importance in the detailed understanding of
the nuclear potential, various models have been developed
to analyze the experimental data. In the past three decades,
the double folding model [8,17–19] has been widely used in
describing the heavy-ion scattering, due to its simple handling
in numerical calculations. Further developments in improving
the model for obtaining a better description of the experimental
data is done by using the M3Y effective nucleon-nucleon (NN)
interaction in the calculations. Up to now, several versions of
the double folding with M3Y interaction (DFM) have been
proposed [20].

Apart from that, another type of double folding potential,
based on α-α interaction folded with the α-cluster distributions
in the colliding nuclei, has been described by Azab et al.
[21]. A nucleus of mass number A is considered to be the
composed of an integral number, m of α particles, i.e., A = 4m.
This type of potential is known as the α-α double-folding
cluster (DFC) potential. Several studies using this potential
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have been conducted by emphasizing elastic scattering [21,22].
The studies reported that this model can successfully explain
the differential cross section of elastic scattering data for a
few reactions. Recently, a study by Kocak et al. [23] has also
shown that this potential could describe the broad features of
the fusion, the S factor, and the elastic scattering angular data,
simultaneously.

Therefore, in this paper, we concentrate on the in-
vestigation of the DFC potential behavior, specifically on
fusion. We would like to see how well it could re-
produce the fusion experimental data compared to the
DFM and the A-W potentials for light systems with A �
28, i.e., the 12C + 12C, 16O, 24Mg, 28Si, 16O + 16O, 24Mg +
24Mg, 28Si, and 28Si + 28Si reactions. Since the reactions
of 12C + 12C,16O, and 16O + 16O systems are important in
stellar carbon and oxygen burnings, the investigation on the
astrophysical aspect will also be carried out.

The paper is organized as follows. In the next section, we
briefly explain the main formula used for DFM and DFC
potentials. The results of the calculations are presented in
the Sec. III for fusion cross sections and in Sec. IV for the
astrophysical aspect of the fusion reactions. We summarize
the paper in Sec. V.

II. THE FORMALISM

The interaction potential between two nuclei is written as

U (R) = UC(R) + Un(R) + Urot(R), (2)

where UC is the Coulomb interaction, Un is the nuclear
interaction, and Urot is the rotational term. The Coulomb
interaction and the rotational term are well known. However,
the nuclear part of the interaction is less defined. In this
work, the real part of the nuclear interaction is calculated
using two different double-folding potentials, i.e., the DFC and
DFM potentials. In practice, the strength of the double-folding
potential has often been renormalized by a certain factor to
give the best fit to the experimental scattering data. This factor
is attributed to the higher-order terms, which cannot be easily
calculated.

Although a detailed description for both potentials can
be found in many references [18–21,23], the main formula
is presented in this paper in order to clearly differentiate
the interaction used for both potentials. Details of both
calculations are discussed below.

A. M3Y double-folding model potential

The nuclear part of this potential, VDFM, consists of two
terms: the direct term, VDFMD, and the exchange term, VDFME,
which are in general energy dependent. The direct part of the
interaction between two colliding nuclei is given by

VDFMD(R,Ep)

= g(EP )
∫

d�rP

∫
d�rT ρPA(�rP )υD(�s)ρT A(�rT ), (3)

where ρPA and ρT A are the nucleon densities of the colliding
nuclei, while g(EP ) = 1 − kEP is a multiplier that depends
upon the energy per nucleon EP = Elab/AP . The direct part

TABLE I. The coefficients of the Reid and Paris M3Y interactions
[20].

Coefficients Reid Paris

GD1 (MeV) 7999 11062
GD2 (MeV) −2134 −2537.5
GD3 (MeV) 0 0
rv1 (fm) 0.25 0.25
rv2 (fm) 0.40 0.40
rv3 (fm) 1.414 1.414
GEδ (MeV fm3) −276 −592
k (MeV−1) 0.002 0.003

of the nuclear interaction, υD , which depends on the relative
position of the interacting nuclei, �s, is given by the M3Y
effective nucleon-nucleon interaction,

υD(s) =
3∑

i=1

GDi[exp(−s/rvi)]/(s/rvi). (4)

It is determined by the radius parameter, rvi , and the coefficient,
GDi , where the values are given by either Reid or Paris
interactions as given in Table I.

Current development on the double-folding potential in
order to obtain a better description of the elastic scattering data
has lead to the introduction of the realistic density dependent
for the effective NN interaction and the explicit treatment of
the exchange potential using a realistic local approximation.
In general, the calculation of the exchange potential is quite
complicated due to its nonlocality. To avoid explicit treatment
of the nonlocality in the calculation of the exchange potential,
a simple zero-range exchange (ZE) pseudopotential is still
widely used instead of the finite-range exchange. Therefore,
in order to make a direct comparison with the DFC potential,
the DFM potential with density-independent of zero-range
exchange for M3Y-Reid interaction has been chosen, which
is given by υEδ(�s) = GEδδ(�s). By using this type of exchange
interaction, one can easily evaluate the potential by only
replacing υD(�s) with υEδ(�s) in the integral of Eq. (3).

The density distribution for both the projectile and the target
nuclei is given by the two-parameter Fermi (2pF) formula [24]

ρP (T )Z(r) = ρ0P (T ){1 + exp[(r − RP (T ))/aP (T )]}−1, (5)

where the nucleon density is taken to be proportional to the
proton density: ρP (T )A = ρP (T )ZA/Z and ρ0 arises from the
normalization process. The parameters RP (T ) and aP (T ) are
defined using the electron elastic scattering data from Table 1
of Ref. [24]. The radius parameters for the nucleon and proton
densities are taken to be equal to those for the charge density,
whereas the diffuseness parameters are corrected for the finite
width of the charge distribution of a single proton, which can
be calculated via the equation [8]

a2
Z = a2

ch − 5

7π2

(〈
r2

1p

〉 + 〈
r2

1n

〉N
Z

)
. (6)

Here 〈r2
1p〉 (msrp) and 〈r2

1n〉 (msrn) are the mean-square radii
of the proton and neutron charge distributions, respectively.
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B. The α-α double-folding cluster model potential

The DFC potential is constructed in a way similar to the
ordinary DFM potential. The only differences are in the treat-
ment of the nucleon-nucleon interaction and the nuclear matter
density. In the DFC potential, the folded α-α effective interac-
tion with α-cluster distribution densities is formulated as

VDFC(�r) =
∫∫

ρcP (�rP )ρcT (�rT )υαα(�s)d�rT d�rP . (7)

The vector �s = | �R + �rT − �rP | while ρcP and ρcT are the α-
cluster distributions for the projectile and target nuclei and υαα

is the effective α-α interaction. The α-α potential considered
in this calculation is taken from Buck et al. [25], since it is the
most favorable and simplest potential available, and is given by

υαα = −122.6225 exp(−0.22r2). (8)

The matter density distribution of both the projectile and
the target nuclei can be written as

ρM (�r) = ρ0M (1 + ωr2) exp(−βr2), (9)

which is a modified form of the Gaussian shape, while the
corresponding α density is

ρα(�r) = ρ0α exp(−λr2). (10)

If ρc is the α-cluster distribution function inside the nucleus,
then the nuclear matter density distribution function of the
nucleus, ρM , can be related to that of the α-particle nucleus,
ρα , as

ρM (�r) =
∫

ρc(�r ′)ρα(|�r − �r ′|)d �r ′. (11)

The densities of the nucleus and the α particle can be
calculated from Eqs. (9) and (10) by using the Fourier
transform on Eq. (11) [8]. Thus, the α-cluster distribution
function ρc is obtained as

ρc(�r ′) = ρ0c(1 + μr ′2) exp(−ξr ′2) (12)

with

η = λ − β, ξ = βλ/η, μ = 2ωλ2

η(2η − 3ω)
,

ρ0c = A

4

√
ξ 3

π3

2ξ

2ξ + 3μ
. (13)

All the important parameters for the nuclei considered in this
study are given in Table II.

TABLE II. The nuclear density parameters.

Nucleus ρ0 ω β(λ) 〈r2〉1/2 Ref.
(fm−3) (fm−2) (fm−2) (fm)

4He 0.4229 0 0.7024 1.461 [8]
12C 0.1644 0.4988 0.3741 2.407 [26]
16O 0.1317 0.6457 0.3228 2.640 [26]
24Mg 0.1499 0.4012 0.2383 3.050 [22]
28Si 0.2050 0.1941 0.2112 3.140 [27]

III. FUSION CROSS SECTION

In this work, the fusion cross section is calculated with one-
dimensional barrier penetration model by using the DFM and
DFC potential to replace the real part of the nuclear interaction
in Eq. (1). The nuclear interaction is then written as

UN (r) = NRVDFC(M)(r) + i
−W0

1 + exp[(r − RW )/aW ]
.

(14)
The normalization factor, NR , is varied in order to optimize
the fit to the experimental data. The best fit could be obtained
by minimizing the χ2/N value, where N is the number of
data points.

The imaginary potential parameters considered in this
calculation are energy independent. The values are taken to
be W0 = 50 MeV, rW = 1.0 fm, and aW = 0.4 fm. These are
chosen in order to simulate the compound nucleus formation.
The calculated fusion cross section is insensitive to these
parameters as long as it is strong enough and well localized
inside the Coulomb barrier. This is to make sure that any
differences arise only from the real part of the potential.

The double-folding potentials are calculated using the C-
CODE [28], which is designed to calculate the nucleus-nucleus
interaction energy for two spherical nuclei. Since the potential
is calculated using the Fourier transform, the α-α potential
considered in DFC potential has been transformed into the
k-space configuration:

υαα(k) = −122.6225

√
π3

0.010648
exp

(−k2

0.88

)
. (15)

In this work, the Reid interaction of zero-range exchange
NN interaction is chosen for the calculation of DFM and the
details of the calculation have been described in Refs. [20] and
[28]. The nuclear potentials of DFM and DFC are then fed into
the CCQEL code [29] to calculate the cross section for some
selected reactions. The cross section calculated using DFM

FIG. 1. The nuclear potentials obtained with DFM (dashed line)
and DFC (solid line) potentials, respectively, for the 16O + 16O
reaction.
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and DFC potentials are then compared to the cross section
obtained with the A-W potential.

The result shows that DFC and DFM potentials produce
very deep potentials, as demonstrated in Fig. 1. The DFC
potential seems to be less attractive compared to the DFM
potential. The potential can be calculated using Eq. (2). It
is found that the barrier height produced by DFC potential

TABLE III. The barrier height, B, and position, RB, obtained
using A-W, DFM, and DFC potentials, respectively, for the reactions
considered in this paper. The corresponding value of χ2 fitting is also
listed.

Reaction Potential NR B RB χ 2 BZ

12C + 12C 7.86
A-W 6.13 7.82 54.17
DFM 1.00 6.32 7.58 50.82

1.45 6.13 7.85 52.93
DFC 1.00 6.20 7.79 42.83

1.17 6.13 7.89 59.41
12C + 16O 9.98

A-W 7.97 8.02 2.03
DFM 1.00 8.12 7.87 5.42

1.27 7.97 8.04 2.13
DFC 1.00 8.02 8.03 2.52

1.09 7.97 8.09 2.00
16O + 16O 12.70

A-W 10.03 8.53 1.63
DFM 1.00 10.47 8.14 10.79

1.72 10.03 8.55 1.67
DFC 1.00 10.38 8.26 6.98

1.35 10.16 8.48 1.42
12C + 24Mg 13.92

A-W 11.52 8.33 6.63
DFM 1.00 11.52 8.31 4.45
DFC 1.00 11.34 8.50 13.13

0.82 11.52 8.34 4.43
12C + 28Si 15.77

A-W 13.24 8.47 31.96
DFM 1.00 13.38 8.37 20.12
DFC 1.00 13.00 8.63 49.93

0.78 13.27 8.42 21.53
24Mg + 24Mg 24.96

A-W 21.76 8.83 4.59
DFM 1.00 21.32 8.98 20.54

0.788 21.76 8.76 3.95
DFC 1.00 21.03 9.14 50.39

0.66 21.77 8.76 4.00
24Mg + 28Si 28.37

A-W 25.03 8.96 15.54
DFM 1.00 24.75 9.03 29.27

0.875 25.03 8.91 13.83
DFC 1.00 24.19 9.26 165.14

0.67 25.03 8.87 13.04
28Si + 28Si 32.27

A-W 28.81 9.09 18.90
DFM 1.00 28.74 9.08 19.56

0.97 28.81 9.06 16.20
DFC 1.00 27.85 9.37 157.02

0.677 28.81 8.98 12.03

FIG. 2. (Color online) Comparison of total potential obtained
with DFM (thick-dotted line), DFC (dashed line), and A-W (solid
line) potentials, respectively, for 24Mg + 24Mg reaction.

is always lower than DFM potential (see Table III). As an
example, we showed in Fig. 2 the total potential for the 24Mg +
24Mg reaction. In order to illustrate the difference between
double folding and A-W potentials, we plot in Fig. 3 the barrier
height, B, and the percentage of fractional difference, Diff =
100(BDFM(C) − BA−W )/(BA−W ) versus BZ = ZP ZT /(A1/3

P +
A

1/3
T ) MeV.
The fusion cross sections calculated from the double folding

potentials underestimated the experimental data for 12C + 16O
and 16O + 16O reactions. However, for the rest of the reactions,
they give higher values than the measured cross sections. In
order to fit the experimental data then the renormalization
constants are required. It is found that the constants are greater
than unity for the 12C + 16O and 16O + 16O reactions, and for
the other the reactions, the constants are around 0.66–0.97.
The details are listed in Table III.

It seems that the DFM potential could give the best fit to the
12C + 24Mg and 12C + 28Si reactions with no adjustment on
the potential strength. The best fitting for both double-folding
potentials could be obtained if the strength of the potentials
is adjusted in such a way that the barrier height is similar to
that calculated from A-W potential. This explains the similar
trend of the renormalization constant with the difference in
the barrier height between the double-folding and the A-W
potentials as plotted in Fig. 3. However, for the 12C + 12C
reaction, although the barrier heights obtained from both
double-folding potentials are higher than the A-W potential,
they could produce the best fitting without renormalization.
Overall, both double-folding potentials with the adjustment on
the potential strength could reproduce the fusion cross section
better than the A-W potential.

IV. ASTROPHYSICAL ASPECTS

The heavy-ion reactions involving 12C and 16O nuclei play
an important role in the behavior of highly developed stars.
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FIG. 3. (Color online) (a) The calculated fusion barrier energies
of DFM (solid circle) and DFC (solid star) potentials in comparison
with the one obtained by using A-W potential (open circle) as a
function of BZ . (b) The percentage differences between DFM and
A-W potentials (solid circle) and between DFC and A-W potentials
(solid star). (c) The normalization constant, NR , gives the best fit to
the experimental fusion cross section for the calculations by using
DFM (solid circle) and DFC (solid star) potentials, respectively.

The reaction properties govern the pathway of the evolution of
stars and produce heavier elements observed in the universe.

Although the nuclear astrophysical process occurs at very
high temperature, the Gamow energy, which is the most
effective energy where the reaction mostly occurs, is still
very low. For example, the temperature for the carbon to burn
ranges from 0.8 to 1.2 GK, corresponding to the center-of-mass
energies from 1 to 3 MeV. However, the Gamow energy is only
around EG = 1.5 ± 0.3 MeV with the Coulomb barrier height
for the 12C + 12C system at around 6.3 MeV. In this region,
the cross sections are extremely small, which in many cases
are not yet experimentally accessible.

Therefore, the astrophysical S factor has been introduced,
which is a slowly varying function over a certain energy range
and can be extrapolated to very low energies at astrophysical
interest. However, for systems involved in this work, the
interaction radius of the two heavy ions and the energy involved
are so large that a factor gE should be introduced in order to
make the S factor more plateau-like. Hence, the modified form
of S factor is introduced and can be written as

S∗(E) = S(E) exp(−gE), (16)

FIG. 4. (Color online) The calculated (a) cross section and (b)
modified astrophysical S factor for 12C + 12C reaction. The solid
and the dashed lines are the results of the calculations using the
A-W and the DFC potentials, respectively. The thick dotted line is
obtained using the DFM potential. The dotted line shows the results
of Gasquess et al. [32], whereas the dashed-dotted line shows the
results of Afanasjev et al. [31]. The experimental data are taken from
Ref. [33].

with the units of S∗(E) in MeV barns, and S(E) is the normal
S factor given by S(E) = σ (E)E exp(2πη). The factor in the
exponential term, 2πη = 0.9896Z1Z2(μ/E)1/2, corresponds
to the energy dependence of the penetration of a Coulomb
barrier while g = 0.46 MeV−1 [30] is the correction term
added to the normal S factor so that S∗(E) would be nearly
constant at low energies.

Since the determination of fusion cross section data from
the experimental measurements at very low energy is an
extremely difficult task and hardly accessible, therefore the
calculation of the fusion cross section in the theoretical
framework is desirable in addition to the phenomenological
extrapolation method of the S factor. Current work that
proposes the analytical model of S factor for nonresonant
reactions between heavy nuclei performed using the São Paulo
potential in the frame of the barrier penetration model has been
done by Afanasjev et al. [31]. Another analytical expression of
S(E) for the fusion reaction of 12C + 12C system is proposed
by Gasques et al. [32], covering a wide energy range:

S(E)=5.15×1016 exp

(
−0.428E− 3E0.308

1 + e0.613(8−E)

)
. (17)
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The S∗(E) presented in Fig. 4 for 12C + 12C is calculated
using Eq. (16), where σ (E) is the calculated cross section using
DFM and DFC potentials, in comparison with the analytical S
factor of Afanasjev et al. [31] and Gasques et al. [32]. All the
extrapolations give a good description of the average of the
data in the energy range of E = 2.5 to 7 MeV with very small
order-of-magnitude differences between A-W and the double-
folding potential calculations. Only the analytical prediction
from Afanasjev et al. [31] gives very low extrapolation of the
data at very low energy. The predictions of S∗(E) by different
potential models are presented in Figs. 5 and 6 for 12C + 16O
and 16O + 16O reactions, respectively. The figures clearly show
that all the calculations are in good agreement between each
other.

One important basic quantity needed for understanding the
nature of stellar evolution and nucleosynthesis is the reaction
rate. The astrophysical reaction rate can be calculated by using
[30]

〈σν〉 =
(

8

πμ

)1/2 1

(kT )3/2

∫ ∞

0
σ (E)E exp

(
− E

kT

)
dE

(18)

where the temperature T is always defined as T9 × 109 K.

FIG. 5. (Color online) The calculated (a) cross section and (b)
modified astrophysical S factor for 12C + 16O reaction. The solid and
the dashed lines are the results of the calculations using the A-W and
the DFC potentials, respectively, and the thick-dotted line is obtained
using the DFM potential. Experimental data are taken from Ref. [34].

FIG. 6. (Color online) The same as for Fig. 5 but for the 16O +
16O reaction. Experimental data are taken from Ref. [35].

During the helium burning process, the core of the star
contracts gravitationally, which increases the temperature and
density to ignite the 12C and 16O ashes. Since the 12C + 12C re-
action has the smallest Coulomb barrier, this reaction becomes
the first to interact and therefore initiates the next burning stage,
which is referred to as carbon burning. Typical temperatures
in the core during carbon burning range from around 0.6 to
1.0 GK, depending on the mass of the star, while explosive
carbon burning takes place in the range of 1.8 to 2.5 GK.

The calculated reaction rate from the present extrapolations
for 12C + 12C reaction is depicted in Fig. 7 and is compared to
the compilations of Caughlan and Fowler [36]. Obviously, the
extrapolations from both double-folding potentials are in good
agreement with each other but lower than the rate obtained
by Caughlan and Fowler [36] at very low temperature. The
straight vertical line indicates the location of the Gamow
peak for temperature of the typical core carbon burning, i.e.,
T ≈ 0.85 GK. It is shown that the different rates of the
double-folding potentials and Caughlan and Fowler’s result
occur below the typical core carbon-burning temperature. The
difference between the rates is about a factor of 3 to 5 at lower
temperatures and slowly decreases until they are consistent
with each other at higher temperatures.

The calculated reaction rate for 12C + 16O reaction, which
occurs near the end of the carbon-burning phase, is presented
in Fig. 8. This reaction is not expected to play a major role due
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FIG. 7. (Color online) The calculated reaction rates for the fusion
reaction of 12C + 12C system. The dashed and the thick-dotted lines
are the results of the calculations using the DFC and DFM potentials,
respectively, and the solid line is the result of Caughlan and Fowler
[36].

to the larger Coulomb barrier than in the former reaction. The
rate obtained from the present calculation produces the same
trend as in 12C + 12C reaction.

The typical temperature for core oxygen burning is about
T ≈ 2.2 GK, with explosive oxygen burning around T =
3.6 GK. As expected, the reaction rates for this reaction ob-
tained with double-folding potentials are lower than Caughlan
and Fowler’s at low temperature [36]. However, at the vicinity
of the Gamow temperature, the rates agree with each other,
as depicted in Fig. 9. The difference that mainly occurs at
very low temperature is probably due to the uncertainties of
the cross sections at low energy; for example, the reported
cross sections for 12C + 12C reaction at energy below 3 MeV

FIG. 8. (Color online) The same as in Fig. 7 but for the fusion
reaction of 12C + 16O system.

FIG. 9. (Color online) The same as for Fig. 7 but for the fusion
reaction of 16O + 16O system.

are rather uncertain and show large discrepancies between
different measurements [33].

V. CONCLUSION

We have studied two types of double-folding potentials,
namely, the double-folding potential with zero range ex-
change of M3Y interaction (DFM) potential and the α-α
double-folding (DFC) potential, and their applications in
investigating the fusion reaction of light systems, i.e., the 12C +
12C, 16O, 24Mg, 28Si, 16 O+ 16O, 24Mg + 24Mg, 28Si,
and 28Si + 28Si reactions. The DFC potential seems to be less
attractive and produces a higher barrier height than the DFM
potential. These potentials are then used to calculate the fusion
cross sections using the one-dimensional barrier penetration
model. The results suggest the necessity of utilizing the
normalization factor for the potential strength in order to repro-
duce the experimental data except for 12C + 12C, 16O, 24Mg,
and 28Si reactions, where the normalization factor is unity.
Overall, the fitting to the experimental data from both double-
folding potentials are much better than the Akyüz-Winther
potential. The value of the adjustment constant is very much
dependent on the barrier height produced by the double-folding
potentials.

Since the 12C + 12C, 16O, and 16O + 16O systems are
important reactions in stellar evolution, discussion on astro-
physical aspects is considered in this work. It is shown that
both double-folding potentials could produce very good fitting
to the extrapolation of S factor for the three astrophysical
reactions. However, the calculated reaction rates obtained by
these potentials are lower than the compilation of Caughlan
and Fowler at low temperatures [36]. The calculation of the
cross section needs to be improved in order to reduce the
uncertainties in the extrapolation of the reaction rates.

Overall, in the important range of temperatures where
the reactions mainly occur, the DFC potential produces very
satisfactory fitting to the experimental cross section and the
S-factor data. It also provides a consistent prediction of the
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astrophysical reaction rates. This finding indicates that the
DFC potential could be used as an alternative potential to study
the reactions of light systems in the astrophysical interest.
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