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Using neutron star observations to determine crust thicknesses, moments of inertia, and tidal
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We perform a systematic assessment of models for the equation of state (EOS) of dense matter in the context
of recent neutron star mass and radius measurements to obtain a broad picture of the structure of neutron stars.
We demonstrate that currently available neutron star mass and radius measurements provide strong constraints
on moments of inertia, tidal deformabilities, and crust thicknesses. A measurement of the moment of inertia of
PSR J0737-3039A with a 10% error, without any other information from observations, will constrain the EOS
over a range of densities to within 50%–60%. We find tidal deformabilities between 0.6 and 6 × 1036 g cm2 s2 (to
95% confidence) for M = 1.4 M�, and any measurement which constrains this range will provide an important
constraint on dense matter. The crustal fraction of the moment of inertia can be as large as 10% for M = 1.4 M�
permitting crusts to have a large enough moment of inertia reservoir to explain glitches in the Vela pulsar even
with a large amount of superfluid entrainment. Finally, due to the uncertainty in the equation of state, there is at
least a 40% variation in the thickness of the crust for a fixed mass and radius, which implies that future simulations
of the cooling of a neutron star crust which has been heated by accretion will need to take this variation into
account.
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I. INTRODUCTION

Recent neutron star (NS) mass and radius observations
have provided new constraints on the neutron star mass-radius
curve and on the equation of state (EOS) of dense matter
[1]. The EOS, in turn, is a fundamental property of quantum
chromodynamics, which probes cold and dense matter which
is otherwise difficult to access in experiment.

In the near future, mass and radius observations may be
complemented by other constraints on NS structure. Although
thousands of pulsars have been observed, there is only one
binary system where both NSs are radioactive pulsars, PSR
J0737-3039. The ability to observe pulsations from both NSs
and the extreme nature of the system [2,3] enables a potential
measurement of the moment of inertia I of one of the neutron
stars [4]. Also, the Laser Interferometer Gravitational-Wave
Observatory is expected to measure the gravitational wave
signal from a NS merger within the near future [5], and a
sufficiently large signal-to-noise observation will enable a
measurement of the neutron star tidal deformability [6–11]
(denoted by λ and sometimes also called “tidal polarizability”).
It turns out these two types of new observations are intimately
related: The moment of inertia of a NS is strongly correlated
with its tidal deformability [12,13].

NSs can accrete matter from main-sequence companions,
which results in the emission of x rays and the heating of the NS
crust. If the accretion stops (referred to as “quiescence” since
the x rays from accretion subside), then the cooling NS crust
can be directly observed [14]. The time scale for this cooling is
proportional to the square of the NS crust thickness [15], and

thus the crust thickness is important for determining the prop-
erties of the crust from observations of crust cooling [16–19].

Another potential constraint of NS structure comes from
pulsar glitches. Previous papers [20–22] have shown that, if NS
crusts are believed to be the location of the angular momentum
reservoir which contributes to the glitch spin up, then a
significant fraction of the NS’s moment of inertia must lie in the
superfluid component of the crust. Thus glitches are sensitive
to the crustal fraction of the moment of inertia, denoted �I/I .

Finally, many of these quantities are (at least weakly)
correlated with the nuclear symmetry energy [23–25]. The
nuclear symmetry energy is the difference between the energy
per baryon of neutron matter and that of nuclear matter (we
ignore quartic terms, see Ref. [26]). We denote the symmetry
energy S(nB), where nB is the baryon number density, and
S ≡ S(n0), where n0 is the nuclear saturation density. The
quantity 3n0S

′(n0) is denoted as L. The value of L determines
the pressure of neutron-rich matter at the saturation density.
The pressure of neutron-rich matter, in turn, is related to all of
the above NS structure quantities given above.

For the first time, we use existing NS mass and radius
observations to predict the expected ranges of NS properties,
such as moments of inertia, tidal polarizabilities, and crustal
thicknesses which are measurable by a diverse range of
ongoing observational programs. We generate these expected
ranges based on Monte Carlo simulations using parametriza-
tions which explore the full variation which is possible given
current uncertainties in the nature of dense matter. Our EOS
models are based on recent progress in the microscopic
calculation of neutron-rich matter near the nuclear saturation
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density. At high densities, we assume no additional correlation
with matter at lower densities and use models which allow
for strong phase transitions. Our method is in contrast to
several previous papers which have computed theoretical
predictions of moments of inertia, crust thicknesses, and tidal
polarizabilities for smaller samples of representative EOSs
[1,23,27–34]. Future observations will constitute direct tests
of the theoretical framework we use and of the systematics of
current mass-radius observations.

II. METHOD

For the first observational data set, we use (i) the five
mass and radius measurements from photospheric radius
expansion (PRE) bursts in Refs. [35–38] (by assuming that
the photosphere is extended at “touchdown” as justified in Ref.
[36]) and (ii) the five radius measurements from quiescent low-
mass x-ray binaries in Refs. [39,40] by taking the hydrogen
column densities and distances from the Harris catalog [41]
and by allowing for either hydrogen or helium atmospheres
(this is the choice from Ref. [40] with the largest value for the
evidence integral). The second data set additionally assumes
a hypothetical 10% measurement of I = (70 ± 7) M� km2

for a 1.4-M� NS. The centroid of this value is near that
predicted by the mass-radius data (to allow easier comparison).
The third type of data set includes only the I measurement
(70 ± 7, 80 ± 8, or 90 ± 9 M� km2) and no constraint from
other mass and radius observations. Larger values of I would
be implied by the radius constraint from long PRE bursts as
suggested in Ref. [42].

There is a one-to-one correspondence between the NS
mass-radius curve and the pressure as a function of energy
density P (ε). We ensure that all EOSs are causal (dP/dε < 1),
hydrodynamically stable dP/dε > 0, and that all mass-radius
curves produce a 2-M� NS in line with the recent mass
measurements in Refs. [43,44]. Strange quark matter is
assumed not to be absolutely stable, so we consider only
hybrid NSs where deconfined quark matter is surrounded by
a hadronic crust and leave the consideration of strange quark
stars to future work. Moments of inertia are computed using
the slow rotation (Hartle-Thorne) approximation [45,46], and
we use the correlation in Refs. [12,13] to compute the
tidal deformabilities. We have independently checked this
correlation based on the expressions in Refs. [7,47] and find
that the correlation generally holds to within about 1% (since
we are ignoring strange quark stars), although slightly larger
variations can be generated with strong phase transitions
just above the nuclear saturation density. However, such
configurations, although not ruled out by the observational
data, are finely tuned and relatively improbable, and thus the
results from the correlation are sufficient for our purposes.

There has been significant recent progress [48–50] on
computing the EOS of neutron-rich matter from using realistic
nuclear forces, both quantum Monte Carlo and by using
chiral effective theory interactions in many-body perturbation
theory. We assume that the binding energy of nuclear matter is
−16 MeV, the saturation density is 0.16 fm−3 (typical values
from Ref. [51]), and we choose limits for the incompressibility
of 220 MeV < K < 260 MeV from Refs. [52,53]. Two differ-
ent EOSs are employed near the nuclear saturation density. The

first is the quantum Monte Carlo model from Ref. [48], and we
refer to this model as “Gandolfi-Carlson-Reddy (GCR).” The
limits 12.5 MeV < a < 13.5 MeV and 0.47 < α < 0.53 are
increased slightly from Ref. [54] to ensure that we include
all possible models from Ref. [48]. These two parameters
principally parametrize the two-nucleon part of the interaction.
Additionally, we reparametrize b and β, parameters which
control the three-nucleon interaction, in terms of S and L.
We limit S to between 29.5 and 36.1 MeV to be consistent
with the second model described below. We limit L to be
between 30 and 70 MeV which covers the range of L from
Refs. [48,55]. We note that the GCR model is essentially a sum
of two polytropes with coefficients and exponents that were
constrained by experiment.

For the second model, we use the parametrization from Ref.
[49] [“Hebeler-Lattimer-Pethick-Schwenk (HLPS)”] and the
results on neutron matter from Ref. [56] from an interaction
based on chiral effective theory. At each point, we fix α,γ,η,
the three parameters which control nuclear saturation, to fix
the saturation density, the binding energy, and the incompress-
ibility. Note that this α is distinct from the parameter with the
same name in the GCR model. The remaining two parameters
αL and ηL, which control the properties of neutron matter, are
again reparametrized in terms of S and L. The range of S from
Fig. 1 of Ref. [56] is between 29.5 and 36.1 MeV, and the
range of L is between 44 and 65 MeV.

Both nuclear masses and theoretical models imply a
correlation between S and L, thus we additionally restrict pa-
rameters to lie between (9.17S − 266 MeV) < L < (14.3S −
379 MeV), which encloses the constraints from nuclear masses
[51], quantum Monte Carlo [48], chiral interactions [56], and
isobaric analog states [57] as summarized in Ref. [38]. The
GCR and HLPS models are used only up to the nuclear
saturation density as they may not be valid if a phase transition
is present. Increasing the density up to which we use these
models would improve our constraints on the EOS but does
not change the qualitative results. It is particularly critical
that we assume no correlation between the EOS near the
saturation density and the EOS at higher densities, except
for the constraint that P (ε) is a continuous and monotonically
increasing function.

For the NS crust, we use the tabulated crust EOSs based on
the work in Ref. [58]. The advantage of this crust EOS, relative
to the older work in Ref. [59], is that we can employ the same
values of S and L which we use in the EOS of neutron-rich mat-
ter at the saturation density. A two-dimensional grid of crust
EOSs with varying values of S and L were computed, and this
grid was interpolated to generate the crust for general values of
S and L in our simulations. For the transition between the crust
and the core, we use the correlation between nt and S and L,

nt = S30
(
0.1327 − 0.0898L70 + 0.0228L2

70

)
fm−3, (1)

where L70 is L in units of 70 MeV and S30 is S in units of
30 MeV. For our ranges of S and L, this correlation gives
transition densities between 0.06 and 0.1 fm−3, consistent
with those obtained in Ref. [60]. We use this transition density
from Eq. (1) to compute the transition pressure and find
values between 0.30 and 0.82 MeV/fm3, slightly larger than
the range of 0.25–0.65 MeV/fm3 found in Ref. [1].
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TABLE I. Predictions for the 95% confidence limits. The second and third columns show results for GCR, Model A, and the mass and
radius data set. Within this particular model, the EOS is constrained to within about a factor of 2, and neutron star radii are constrained to
around 1.5 km. Results for the HLPS model are very similar. Crust thicknesses �R are given in kilometers, and tidal deformabilities λ are
given in units of 1036 g cm2 s2. The fourth and fifth columns show results for Model C instead of Model A. Finally, the sixth and seventh
columns use only a measurement of I = 90 ± 9 M� km2 for a 1.4-M� neutron star as a data set. This table summarizes the results for 3 of the
16 combinations of models and data sets used in this paper.

Quantity (unit) GCR, Model A, GCR, Model C, GCR, Model A,
mass and radius data mass and radius data I = 90

95% lower 95% upper 95% lower 95% upper 95% lower 95% upper

P (ε = 300) (MeV/fm3) 9.318 22.86 2.253 15.83 20.39 65.70
P (ε = 450) (MeV/fm3) 33.31 71.02 25.88 68.09 60.53 132.1
P (ε = 600) (MeV/fm3) 90.98 160.8 76.56 216.3 104.6 220.3
P (ε = 1000) (MeV/fm3) 281.0 413.0 260.9 558.1 260.4 461.2
L (MeV) 30.53 65.79 30.53 68.41 35.64 69.66
nt (fm−3) 0.071 42 0.099 03 0.071 68 0.1021 0.070 61 0.097 66
Pt (MeV/fm3) 0.3125 0.8163 0.3149 0.7968 0.3119 0.8006
�R(nt = 0.06,M = 1.4) 0.6904 1.037 0.5949 0.9282 0.9550 1.488
�R(nt = 0.08,M = 1.4) 0.7455 1.206 0.6483 1.088 1.038 1.729
�R(nt = 0.10,M = 1.4) 0.8025 1.256 0.7073 1.136 1.136 1.863
�R(nt = 0.08,M = 1.0) 1.164 1.881 0.9457 1.651 1.539 2.383
�R(nt = 0.08,M = 2.0) 0.3411 0.6475 0.3252 0.6401 0.5420 1.154
R(M = 1.4) (km) 10.79 12.44 10.22 11.87 12.39 14.47
R(M = 1.7) (km) 10.74 12.40 10.31 11.95 12.36 14.82
R(M = 2.0) (km) 10.16 12.25 10.10 12.01 11.96 15.13
Rmax (km) 9.812 11.57 9.792 11.81 11.15 14.49
nB,max (fm−3) 0.8770 1.234 0.7642 1.235 0.6059 0.9794
εmax (MeV/fm3) 1055 1597 578.4 1612 624.7 1236
I (M = 1.4) (M� km2) 60.62 77.06 56.25 69.87 (fixed)
I (M = 1.7) (M� km2) 80.11 101.5 77.02 95.49 99.06 141.5
I (M = 2.0) (M� km2) 94.49 126.7 97.59 125.0 119.3 184.4
(�I/I )(nt = 0.08,M = 1.4) 0.020 45 0.060 84 0.015 55 0.047 23 0.038 95 0.1033
(�I/I )(nt = 0.08,M = 1.7) 0.012 84 0.037 03 0.010 33 0.032 11 0.023 46 0.072 33
(�I/I )(nt = 0.08,M = 2.0) 0.006 949 0.023 17 0.006 129 0.022 31 0.013 77 0.054 24
λ(M = 1.4) 1.000 2.606 0.7306 1.811 1.945 5.904
λ(M = 1.7) 0.6596 2.067 0.5258 1.527 1.716 7.505
λ(M = 2.0) 0.2039 1.276 0.2635 1.211 0.6898 6.865

For the EOS above the saturation density, we either use a
set of three piecewise polytropes (only five parameters since
the transition to the first polytrope is already fixed by the EOS
at the saturation density) referred to as “Model A” in Ref. [37].
Alternatively, we use a set of four line segments in the (ε,P )
plane, “Model C” [37]. This latter model is useful because it
provides an alternative model which tends to favor stronger
phase transitions in the core. We do not employ Model B or
Model D from Ref. [37] because they do not typically provide
significantly different results from Model A at the current level
of accuracy. The choice of either GCR or HLPS near saturation
density and either Model A or Model C at high densities gives
a total of four EOS models to use with our three data sets.

For each of the above data sets and EOS models, we perform
a Markov chain Monte Carlo simulation as first outlined in Ref.
[36]. To obtain our final results for a fixed data set we choose
the smallest range which encloses all of the EOS models as
performed in Ref. [37]. This procedure is a relatively simple
version of a fully hierarchical Bayesian analysis which is
currently too computationally expensive.

III. RESULTS

Results that use GCR for matter near saturation density,
Model A for higher densities, and that use the mass-radius
data described above are summarized in the second and third
columns of Table I. For this particular model and data set, the
results on nonrotating stars are very similar to those obtained
previously [37,54]. The moment of inertia ranges between 60
and 130 M� km2 with even smaller values for lower mass neu-
tron stars. The fraction of the moment of inertia which lies in
the neutron star crust is small, between 2% and 6% for 1.4-M�
neutron stars. The tidal deformability ranges between 0.2 and
2.6 × 1036 g cm2 s

2
, which depends on mass. The HLPS model

gives very similar neutron star radii in comparison to GCR.
The numbers in the table outline the limits of probability
distributions taken from the Monte Carlo. No assumption is
made about the shape of the probability distribution, and the
distributions can be significantly non-Gaussian.

A probability distribution for all of the relevant quantities
can be generated for any combination of EOS model and
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TABLE II. Limits for the radius of a 1.4-M� neutron star for various models and data sets.

Model Radius for M = 1.4 M� (km)

95% lower limit 95% upper limit

GCR, Model A, mass and radius 10.79 12.44
GCR, Model C, mass and radius 10.22 11.87
HLPS, Model A, mass and radius 10.82 12.42
HLPS, Model C, mass and radius 10.21 11.86
GCR, Model A, mass and radius + I = 70 11.12 12.57
GCR, Model C, mass and radius + I = 70 10.47 12.03
HLPS, Model A, mass and radius + I = 70 11.13 12.49
HLPS, Model C, mass and radius + I = 70 10.50 12.09
GCR, Model A, I = 70 11.66 13.67
GCR, Model C, I = 70 10.55 13.47
HLPS, Model A, I = 70 11.66 13.43
HLPS, Model C, I = 70 10.64 13.64
GCR, Model A, I = 80 12.04 14.14
GCR, Model C, I = 80 11.36 14.41
GCR, Model A, I = 90 12.39 14.47
GCR, Model C, I = 90 10.59 14.68

neutron star data set, and 16 combinations are explored in
this paper. The variations among models and data sets are
summarized in Table II, which gives 95% confidence limits
for the radius of a 1.4-M� neutron star. Model C gives smaller
NS radii than Model A due to the possible presence of phase
transitions. A measurement of I = 70 implies slightly larger

radii than that implied by the mass and radius data, which
is the result of the fact that the mass and radius data prefer
slightly smaller moments of inertia (i.e., columns four and five
in Table I). Larger I measurements imply larger radii as large
as 14.7 km in some cases. These large neutron star radii are
due to EOSs in which the pressure becomes significantly larger
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FIG. 1. (Color online) Probability distributions for the moment of inertia of a 1.4-M� NS (upper left), tidal deformability of a 1.4-M� NS
(upper right), radius of a 1.4-M� NS (lower left), and pressure at about three times the saturation density (lower right) given the set of mass
and radius observations. Black lines are for GCR, and red lines are for HLPS. Solid lines are for Model A, and dotted lines are for Model C.
Each of the distributions was separately normalized to have a maximum at 1.
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above the saturation density, but these are only likely if there
is some systematic uncertainty which invalidates the mass and
radius observations which were described above.

To allow more complete comparison between Model A
and Model C, Table I tabulates the results for Model C for the
same EOS at lower densities (GCR) and the same data set. The
strong phase transitions implied by Model C lead to smaller
pressures at low-energy densities and higher pressures at
high-energy densities. This result originates in the constraints
from observations (which require small radii from low-mass
neutron stars) and the constraint of a 2-M� neutron star (which
requires a higher pressure at higher densities). Generally,
radii, moments of inertia, and tidal deformabilities are smaller.
Values of L are potentially a bit larger in Model C; strong phase
transitions permit a higher pressure near the saturation density
because they make up for them with a lower pressure at higher
densities. Constraints on S are not reported because neutron
star observations do not currently constrain S. The interplay
between density regimes is difficult to observe in other studies
which presume some sort of correlation between the nature of
matter at saturation density and at higher densities.

Mass and radius observations suggest probability distri-
butions for the moment of inertia of a 1.4-M� neutron star
as given in the upper left panel of Fig. 1. It is clear that
Model C, which favors stronger phase transitions gives slightly
smaller values for I (M = 1.4 M�) as expected. Among the

four models which are plotted, the smallest 68% lower limit is
61.4 M� km2, and the largest 68% lower limit is 72.7 M� km2,
i.e., a variation of less than 20%. The corresponding range for
the radius of a 1.4-M� NS is 10.6–12.1 km, comparable to
results obtained previously [36,37,40,54]. The relative size
of the constraint on the pressure at an energy density of
450 MeV/fm3 from the M–R data is 53%. On the other hand,
since the systematic uncertainties of currently available mass
and radius observations may be larger than that from a future
I measurement, it is worth noting that a 10% I measurement
alone constrains the pressure to within 55% at that same
energy density and to within 59% at an energy density of
1000 MeV/fm3.

Current mass and radius observations imply tidal de-
formabilities for a 1.4-M� NS between (1.09 and 2.12) ×
1036 g cm2 s

2
to 68% confidence over all four EOS models.

These provide guidance on how sensitive GW observatories
will likely need to be to detect the tidal deformation in a
double neutron star merger [7,11]. This result is a natural
consequence of rather small neutron star radii implied by the
quiescent low-mass x-ray binaries (qLMXBs) [39,40]. Over
all four EOS models, none of the 95% confidence limits go
higher than 2.6 × 1036 g cm2 s

2
.

On the other hand, if we assume that the systematic
uncertainties spoil mass and radius observations, tidal de-
formabilities can be larger. The 95% confidence limits of

R
(M

M

M

=
1.

4
M

�)
(k

m
)

(km)

(MeV/fm3) (MeV)

)(

FIG. 2. (Color online) Probability distributions for four pairs of quantities with EOS model GCR and Model C at high densities. In the
upper-left panel, Pt is the pressure at the core-crust transition. All other quantities are defined in the text. The red density plot gives the
probability distributions that assume the NS M and R data along with 68% contour lines (solid black) and 95% contour lines (dotted black).
Also shown are the 68% (blue dashed) and 95% (blue dot-dashed) contour lines that correspond to the distribution given the third data set with
only a measurement of I = (70 ± 7) M� km2.
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various quantities that assume a measurement of I = (90 ±
9) M� km2 are summarized in the sixth and seventh columns
of Table I. This case shows tidal deformabilities can easily
be as large as 7 to 8 × 1036 g cm2 s

2
, which depend on mass.

The most extreme 95% limits for the tidal deformability of
a 1.4-M� over all 16 combinations of models and data are
0.64 and 6.1 × 1036 g cm2 s

2
.

As shown in Fig. 2, we find a strong correlation between
the radius of a 1.4-M� neutron star and the pressure at
ε = 300 MeV/fm3 approximately twice the nuclear saturation
density (lower-left panel). There is a slightly weaker and more
model-dependent correlation between �I/I and the transition
pressure (upper-left panel), and the correlation between �I/I
and L is extremely weak (upper-right panel) as found in
Ref. [32]. There is a significant range in crust thicknesses
due to the EOS, even for a fixed mass and radius, as shown in
the lower-right panel.

IV. DISCUSSION

There is a quandary with pulsar glitches which originates
in two results. The first is that some EOS models (such as that
of Akmal-Pandharipande-Ravenhall [61]) have small enough
crusts that the fraction of the NS’s moment of inertia contained
in the crust is somewhat small (�I/I < 0.05 for a 1.4-M�
NS). The second is that there is a large amount of entrainment
of superfluid neutrons by the lattice [62,63], thus the amount of
matter in the crust which is not strongly coupled to the lattice is
only 15%–25% of the total. Together, these limit the magnitude
of pulsar glitches to be smaller than those already observed in
the Vela pulsar which requires �I/I � 0.016 [20–22,64]. As
can be seen in the upper right of Fig. 2, NS mass and radius
data predict a similar outcome, and the quandary stands. If we
assume, however, that systematic uncertainties invalidate cur-
rent mass and radius observations (as implied by Ref. [42]) and
use our third data set which only contains a measurement of the
moment of inertia of I = (70 ± 7) M� km2, then we find many
models with �I/I > 0.09 as also shown in the upper-right
panel. Smaller mass NSs give even larger values of �I/I . As
with the tidal deformabilities above, assuming a measurement
of I = (90 ± 9) M� km2 implies that �I/I could be larger
than 0.10. Values as large as 0.11 can be obtained for lower
mass neutron stars. These large values of �I/I can accommo-
date the observations of glitches in Vela even with the most ex-
treme amounts of entrainment obtained in Ref. [62]. A similar
conclusion has also been obtained independently in Ref. [65].

The thermal evolution of a NS crust as it cools depends on
the hydrostatic structure of the crust (as well as on how photons
and neutrons are transported). Frequently, crust cooling is
studied by using a small subset of the full variation possible for
the hydrostatic structure [18,19]. We find that, even for a fixed
NS mass and radius, there is still considerable variation (due
to the uncertainty in the EOS of dense matter) in the thickness
of the crust. This is shown in the lower-right panel of Fig. 2
where the probability distribution of the radius of a 1.4-M�
NS is plotted versus the crust thickness �R. We find that, for

a NS with an 11-km radius, the crust thickness varies by 42%.
This means that a more complete variation in the parameter
space may be required to determine the properties of the crust
from crust cooling observations.

If a measurement of the moment of inertia of PSR J0737-
3039A was far outside our predicted range, then that implies
a conflict with the mass and radius observations. This conflict
could be resolved with modification of strong-field GR.
However, this modification may have to be finely tuned in order
to modify the NS structure without spoiling the agreement with
GR found in the observations of the post-Keplerian parameters
in the PSR J0737-3039 system [66].

Current NS mass and radius observations are subject to
several strong systematic uncertainties (as described in Refs.
[36,37,40]), and a moment of inertia measurement outside
our predicted range could shed light on these systematics.
Our understanding of NS structure would be best served
by several different kinds of observations with different
systematic uncertainties so that no one effect could dominate
the results. The same reasoning given above also holds true for
measurements of tidal deformabilities, crust thicknesses, and
crustal fractions of the moment of inertia. Also, there are other
neutron star observations which we could have used, but these
are unlikely to strongly modify our results. For example, there
are constraints from pulse profile modeling on the neutron star
PSR J0437-4715 [67], but these are more than likely consistent
with our results so long as the mass of this particular star is
near 1 M�. In particular, the 68% limit for the radius of a
1-M� star from that measurement is 11.3–14 km, and this
overlaps the ranges given for all of the models presented in
Table I. The exception to this is if the systematic uncertainties
in the qLMXB and PRE burst observations are so large that the
associated constraints on mass and radius should be ignored
and a moment of inertia measurement was made for a lower
mass star which was relatively small (i.e., I < 70 M� km2 for
a 1.4-M� neutron star.

A large increase in the NS maximum mass, such as that
implied by Refs. [68,69], would significantly change these
results. Larger maximum masses imply larger radii (larger
pressure is needed at smaller densities to compete with gravity
as the mass becomes larger) and thus larger moments of inertia
and tidal deformabilities.
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N. Schunck, M. V. Stoitsov, and S. Wild, Phys. Rev. C 82,
024313 (2010).

[52] S. Shlomo, V. Kolomietz, and G. Colò, Eur. Phys. J. A 30, 23
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