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Parametrization of the statistical rate function for select superallowed transitions
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We present a parametrization of the statistical rate function, f , for 20 superallowed 0+ → 0+ nuclear β

transitions between T = 1 analog states, and for 18 superallowed “mirror” transitions between analog T = 1/2
states. All these transitions are of interest in the determination of Vud . Although most of the transition QEC

values have been measured, their precision will undoubtedly be improved in the future. Our parametrization
allows a user to easily calculate the corresponding new f value to high precision (±0.01%) without complicated
computing.
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I. INTRODUCTION

Precise measurements of nuclear β decay provide a valuable
window into the electroweak standard model. In particular,
superallowed 0+ → 0+ transitions between T = 1 analog
states are used to set a limit on the presence of scalar
interactions and to determine Vud , the upper left element of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix and a key
contributor to the most demanding available test of the unitarity
of that matrix. While these transitions currently lead to the
most precise determination of Vud , mirror transitions between
T = 1/2 analog states are becoming of interest as a means
of confirming Vud via a different experimental approach. To
be useful, not only must the QEC value for each of these
transitions be measured very precisely but the statistical rate
function, f , which uses the QEC as input, must be calculated
with equivalent precision.

Because there is no widely available means for calculating
f to the required level of precision, we have devised a simple
parametrization that reproduces the results of our full code
for energies spanning a small range around the currently
known QEC values for both types of superallowed transition.
Together, these should provide a convenient resource for
experimentalists to use in future to obtain high-precision f
values from improved QEC-value measurements for these
transitions.

Our goal in what follows is to parametrize f and present
tables of the parameters for the two sets of transitions: (1)
the 20 superallowed 0+ → 0+ nuclear β transitions between
T = 1 analog states, whose properties have been surveyed in
Refs. [1,2]; and (2) the 18 superallowed “mirror” β transitions
between the analog T = 1/2 states surveyed in Ref. [3]. For
each transition, we have computed f for 100 values of QEC

taken over a range of ±60 keV around the transition QEC

value1 and fitted these results to determine the coefficients
in our parametrization. Our aim in fitting these 100 values is
to achieve an accuracy of 0.01%, nearly a factor of 10 more
precise than is currently required.

*towner@comp.tamu.edu
†hardy@comp.tamu.edu
1For 70Br the QEC value is less precisely known, so the QEC value

range for fitting was extended to ±600 keV.

II. PARAMETRIZATION OF THE STATISTICAL RATE
FUNCTION

To achieve 0.01% accuracy, the electron wave function must
be determined with great precision. In our detailed evaluation
of f [4], we accomplished this by solving the Dirac equation
for the emerging electron moving in the Coulomb field of
the nuclear charge distribution. The full expression for the
computation of f is

f = ξR(W0)
∫ W0

1
pW (W0 − W )2F (Z,W )f1(W )

×Q(Z,W )r(Z,W )dW, (1)

where W is the electron total energy in electron rest-mass
units, W0 is the maximum value of W , p = (W 2 − 1)1/2 is the
electron momentum, Z is the charge number of the daughter
nucleus (positive for electron emission, negative for positron
emission), F (Z,W ) is the Fermi function, and f1(W ) is the
shape-correction function as defined by Holstein [5] (but with
kinematic recoil corrections omitted).

Further, Q(Z,W ) is a screening correction for which we
use the analytic prescription of Rose [6] (see Eq. (A44)
in Ref. [4]), and r(Z,W ) is an atomic overlap correction
described in Ref. [1]. The kinematic recoil corrections that
Holstein includes in f1(W ) are here written as R(W0). The
expression for R(W0) is derived in the Appendix, with the
result that

R(W0) � 1 − 3W0

2MA

, (2)

where MA is the average of the initial and final nuclear
masses expressed in electron-mass units. Last, for allowed
transitions it is customary to remove the leading nuclear matrix
element from the definition of f . Thus we have introduced
ξ in Eq. (1), where ξ = 1/|MF |2 for superallowed Fermi
transitions, MF being the Fermi matrix element. For mixed
Fermi and Gamow-Teller transitions, ξ = 1/[M2

F + g2
AM2

GT ]
with MGT being the Gamow-Teller matrix element and gA the
axial-vector coupling constant.
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TABLE I. Values of the coefficients a0 and a1 that yield the statistical rate function f0 from Eq. (7), and coefficients b0, b1, b2, and b3 that
yield the correction δS from Eq. (12). Coefficients a2 and a3 are held fixed at the values a2 = −2/15 and a3 = 1/4. The cases shown are the
superallowed Fermi transitions between T = 1, J π = 0+ analog states surveyed in Refs. [1,2].

Parent a0 a1 b0(%) b1(%) b2(%) b3(%)
nucleus

10C 0.029 7225 − 0.143 1540 0.011 78 0.020 06 0.052 03 − 0.000 96
14O 0.028 5463 − 0.141 7222 0.031 76 0.031 23 0.065 06 − 0.001 01
18Ne 0.027 4005 − 0.139 8743 0.047 50 0.049 95 0.089 45 − 0.001 34
22Mg 0.026 3237 − 0.137 4785 0.070 36 0.063 93 0.107 96 − 0.001 39
26Si 0.025 3385 − 0.136 9946 0.103 06 0.078 27 0.128 56 − 0.001 46
30S 0.024 2904 − 0.127 1838 0.149 05 0.095 29 0.154 13 − 0.001 61
34Ar 0.023 3252 − 0.118 2701 0.153 36 0.118 96 0.184 78 − 0.001 84
38Ca 0.022 3867 − 0.101 8182 0.173 01 0.135 58 0.206 74 − 0.001 86
42Ti 0.021 6593 − 0.110 5386 0.156 25 0.152 93 0.233 80 − 0.001 96

26mAl 0.025 7927 − 0.135 5697 0.098 13 0.072 08 0.120 37 − 0.001 49
34Cl 0.023 8533 − 0.128 1700 0.167 59 0.105 98 0.169 11 − 0.001 73
38mK 0.022 8360 − 0.109 0747 0.176 30 0.124 80 0.193 25 − 0.001 80
42Sc 0.022 0302 − 0.108 2192 0.173 35 0.142 65 0.221 47 − 0.001 93
46V 0.021 1437 − 0.089 4977 0.202 00 0.165 56 0.252 13 − 0.002 08
50Mn 0.020 2722 − 0.059 7791 0.252 81 0.183 30 0.278 34 − 0.002 14
54Co 0.019 5698 − 0.052 4836 0.328 12 0.197 57 0.303 37 − 0.002 17
62Ga 0.018 1322 − 0.014 1676 0.493 42 0.244 18 0.369 15 − 0.002 43
66As 0.017 3202 0.047 3840 0.572 18 0.272 60 0.407 70 − 0.002 61
70Br 0.016 7829 0.041 7070 0.566 71 0.296 70 0.436 02 − 0.002 65
74Rb 0.016 2385 0.044 6304 0.446 43 0.321 80 0.464 90 − 0.002 69

In order to parametrize f , it is convenient to factor it into
two contributions:

f = f0(1 + δS), (3)

f0 =
∫ W0

1
pW (W0 − W )2F (Z,W )Q(Z,W )r(Z,W )dW, (4)

δS = (f − f0)/f0. (5)

The purpose of this factorization is to place the role of the
shape-correction function f1(W ) entirely within the correction
term δS , which is typically of the order of a few percent. The
shape-correction function depends on nuclear matrix elements
and differs for Fermi and Gamow-Teller transitions. This piece
of the calculation is somewhat less certain since it is nuclear-
structure dependent; however, being small, its accuracy is also
less critical.

In the limit that F (Z,W )Q(Z,W )r(Z,W ) → 1, which
occurs when Z = 0, the integral f0 has an analytic value:

f0(Z = 0) = 1
30W 4

0 p0 − 3
20W 2

0 p0 − 2
15p0

+ 1
4W0 ln(W0 + p0), (6)

with p0 = (W 2
0 − 1)1/2. This suggests a fitting function of the

form

f0 = a0W
4
0 p0 + a1W

2
0 p0 + a2p0 + a3W0 ln(W0 + p0). (7)

In fitting 100 values of f0, we found that the four parameters a0,
a1, a2, and a3 could not be uniquely determined with precision.
Thus it was decided to fix a2 and a3 to their Z = 0 values,
namely a2 = −2/15 and a3 = 1/4, and use the fitting process

to determine a0 and a1. This procedure yielded the required
precision for f0. The resultant values of a0 and a1 are given
in Table I for the 0+ → 0+ transitions, and in Table II for the
T = 1/2 mirror transitions.

We note that in Eq. (7) each successive term gives a
smaller and smaller contribution to the total. Thus in deciding
to fix a2 and a3 to their Z = 0 values, we have fixed the
coefficients for the two smallest terms in the expression for
f0. This parametrization is not unique however. We could
equally well have chosen to hold two different coefficients to
their Z = 0 values and consequently have obtained another
parametrization that would also produce f0 values accurate to
within 0.01%.

For the correction δS we start with the approximate
expression

f0δS �
∫ W0

1
pW (W0 − W )2F (Z,W )

×
[
ξf1(W ) − 1 − 3W0

2MA

]
dW (8)

and write

ξf1(W ) − 1 = B0 + B1W + B2/W + B3W
2. (9)

The coefficients B0, B1, B2, and B3 are different for Fermi
and Gamow-Teller transitions. This choice of parametriza-
tion is guided by the early work of Schopper [7]
who used such a parametrization for the shape-correction
function.
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TABLE II. Values of the coefficients a0 and a1 that yield the statistical rate function f0 from Eq. (7), and coefficients b0, b1, b2, and b3 that
yield the correction δS from Eq. (12). For each case, the b coefficients in the first row correspond to the Fermi component, bF

0 etc., and those in
the second row correspond to the Gamow-Teller component, bGT

0 etc. Coefficients a2 and a3 are held fixed at values a2 = −2/15 and a3 = 1/4.
The cases shown are the mixed Fermi and Gamow-Teller transitions between mirror T = 1/2 states in odd-mass nuclei surveyed in Ref. [3].

Parent a0 a1 b0(%) b1(%) b2(%) b3(%)
nucleus

11C 0.029 7280 − 0.143 1964 0.012 27 0.020 03 0.050 30 − 0.000 93
0.715 78 0.076 95 0.564 95 − 0.000 55

13N 0.029 1054 − 0.142 0911 0.021 66 0.025 66 0.056 40 − 0.000 95
0.319 15 0.040 52 0.364 91 − 0.000 26

15N 0.028 5370 − 0.141 6159 0.045 52 0.033 30 0.068 46 − 0.001 17
0.250 27 0.029 49 0.312 61 − 0.000 24

17F 0.027 9301 − 0.140 0527 0.025 28 0.041 32 0.074 82 − 0.001 13
1.479 63 0.065 56 0.676 35 − 0.000 74

19Ne 0.027 3984 − 0.139 8186 0.055 21 0.049 98 0.089 14 − 0.001 35
1.342 70 0.058 76 0.550 39 − 0.000 99

21Na 0.026 8709 − 0.139 4429 0.059 22 0.058 59 0.099 92 − 0.001 42
1.733 65 0.063 13 0.640 05 − 0.001 01

23Mg 0.026 3324 − 0.137 8844 0.063 75 0.064 36 0.107 31 − 0.001 38
1.913 34 0.063 48 0.646 97 − 0.000 93

25Al 0.025 8123 − 0.136 4357 0.081 54 0.071 60 0.118 49 − 0.001 44
2.347 66 0.072 37 0.737 37 − 0.000 90

27Si 0.025 2815 − 0.133 0446 0.093 98 0.079 80 0.129 45 − 0.001 49
2.751 64 0.071 92 0.790 82 − 0.000 86

29P 0.024 7788 − 0.130 1483 0.111 10 0.087 17 0.139 82 − 0.001 51
2.410 55 0.068 57 0.661 34 − 0.000 86

31S 0.024 3506 − 0.132 8386 0.145 54 0.096 12 0.154 60 − 0.001 63
2.174 79 0.077 99 0.608 83 − 0.000 92

33Cl 0.023 9077 − 0.133 3333 0.152 09 0.106 27 0.167 72 − 0.001 70
− 0.780 12 0.063 97 0.146 81 − 0.000 50

35Ar 0.023 3631 − 0.122 6819 0.196 58 0.116 36 0.184 53 − 0.001 83
− 0.536 03 0.070 47 0.195 15 − 0.000 55

37K 0.022 9710 − 0.125 1564 0.183 69 0.124 91 0.193 42 − 0.001 80
0.892 86 0.090 10 0.411 92 − 0.000 84

39Ca 0.022 4606 − 0.112 3165 0.217 79 0.132 59 0.206 53 − 0.001 85
0.582 46 0.097 57 0.373 16 − 0.000 87

41Sc 0.022 0044 − 0.104 6436 0.209 89 0.140 01 0.221 65 − 0.001 93
3.945 90 0.126 35 0.915 61 − 0.001 24

43Ti 0.021 6749 − 0.113 4605 0.158 01 0.156 50 0.236 44 − 0.002 00
3.546 35 0.132 77 0.826 30 − 0.001 35

45V 0.021 1420 − 0.091 0683 0.314 18 0.162 34 0.257 79 − 0.002 18
4.544 43 0.144 48 0.992 22 − 0.001 34

A. Superallowed 0+ → 0+ Fermi transitions

For Fermi (vector) transitions,

BF
0 = − 1

5 (W0R)2 + 1
15R2 − 6

35 (αZ)(W0R) + 61
630 (αZ)2,

BF
1 = 4

15 (W0R)R − 48
35 (αZ)R,

(10)
BF

2 = 2
15 (W0R)R − 18

35 (αZ)R,

BF
3 = − 4

15R2,

where R is the radius of the nuclear charge distribution
expressed in electron Compton wavelength units. We derived
these equations from the work of Behrens and Bühring [8] who
give algebraic expressions for the shape-correction function as

expansions in the small quantities R and (αZ). Our Eqs. (10)
and (14) below are correct to second order in these quantities,
namely to order R2, (αZ)2, and (αZ)R. Inserting Eqs. (9)
and (10) into Eq. (8) we obtain

δS � B0 + B1〈W 〉 + B2〈1/W 〉 + B3〈W 2〉 − 3W0

2MA

, (11)

where 〈Wn〉 is the value of Wn averaged over the electron
spectrum. Estimates of these quantities are:〈W 〉 = W0/2,
〈W−1〉 = 5W−1

0 /2 and 〈W 2〉 = 2W 2
0 /7.

This leads to our final choice of parametrization for the
correction δS :

δS = b0 + b1W0 + b2/W0 + b3W
2
0 , (12)
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where approximate values of the coefficients are

bF
0 � 2

5R2 + 61
630 (αZ)2, bF

1 � − 6
7 (αZ)R − 3

2MA
,

(13)
bF

2 � − 9
7 (αZ)R, bF

3 � − 1
7R2.

We fitted the expression in Eq. (12) to the exactly computed
value of δS from Eq. (5) to obtain the parameters b0, b1, b2,
and b3. Again, it was found that all four parameters could not
be uniquely determined with precision, so the coefficients b2

and b3 were fixed at the values given in Eq. (13) for bF
2 and

bF
3 , and the fitting process was used to determine b0 and b1.

Table I gives the values of the parameters b0, b1, b2, and b3 for
the superallowed 0+ → 0+ Fermi transitions.

B. Mirror T = 1/2 transitions

For pure Gamow-Teller (axial-vector) transitions, coeffi-
cients in the expression for the shape-correction function in
Eq. (9) are

BGT
0 � − 1

5 (W0R)2 + 11
45R2(1 − 2

11x
)

+ 2
35 (αZ)(W0R)(1 − x) + 1

3 (W0R)[∓2b + d]

+ 1
3β(αZ)[±2b + d] + 61

630 (αZ)2,

BGT
1 � 4

9 (W0R)R
(
1 − 1

10x
) − 8

5 (αZ)R
(
1 − 1

28x
) ± 4

3Rb,

BGT
2 � − 2

45 (W0R)R(1 − x) − 18
35 (αZ)R − 1

3R[±2b + d],

BGT
3 � − 4

9R2(1 − 1
10x

)
, (14)

where

x = −
√

10M1y/Mσr2 , (15)

b = 1

MR

[
gM

gA

+ ML

MGT

]
, (16)

d = 1

MR

MσL

MGT

, (17)

and also β � 6/5, gM = 4.706, and M is the nucleon mass
in electron rest-mass units. Where there is a ± symbol, the
upper sign is used for electron emission beta decays, the lower
sign for positron emitters. All the transitions discussed in this
work are positron emitters, so the lower sign is consistently
used. The nuclear matrix elements are defined in Eq. (68)
of Ref. [5]. Schematically, they are written MGT = 〈σ 〉,
Mσr2 = 〈r2σ 〉, M1y = (16π/5)1/2〈r2[Y2 × σ ]〉, ML = 〈L〉,
and MσL = 〈σ × L〉. Note that the matrix element MσL,
and hence d, vanishes in diagonal matrix elements, as
would occur in a mirror transition between isobaric analog
states.

The correction δS is again parametrized as in Eq. (12)
with approximate expressions for the coefficients derived
from Eq. (14). For pure Gamow-Teller transitions they
yield

bGT
0 � 2

15R2 + 1
15R2x + 1

3β(αZ)[±2b + d] + 61
630 (αZ)2,

bGT
1 � − 26

35 (αZ)R − 1
35 (αZ)Rx + 1

3Rd − 3
2MA

,

bGT
2 � − 9

7 (αZ)R − 5
6R[±2b + d],

bGT
3 � − 11

105R2
(
1 + 1

11x
)
. (18)

Again in fitting the exact values of δS from Eq. (5) with the
expression in Eq. (12) we held the parameters b2 and b3 fixed at
the values given for bGT

2 and bGT
3 in Eq. (18) and then obtained

the parameters b0 and b1 from the fit.
The T = 1/2 mirror transitions are mixed transitions, with

both Fermi and Gamow-Teller components. The fitted b
coefficients for both the Fermi and Gamow-Teller components
are given in Table II along with the a0 and a1 coefficients. In
such mixed transitions the inverse of the partial lifetime is
proportional to

t−1 ∝ fV

[
|MF |2 + fA

fV

|gAMGT |2
]
, (19)

where

fV = f0
(
1 + δF

S

)
, fA = f0

(
1 + δGT

S

)
. (20)

The statistical rate functions fV and fA are easily obtained
from the parameters listed in Table II.

III. CONCLUSIONS

We have provided simple parametrizations of the statistical
rate functions, f , for nuclear β transitions of current interest
in determining Vud and testing CKM unitarity. In most but
not all cases, the transition QEC values have already been
measured with ∼1-keV precision or better. In a few cases
they are much less well known. In all cases, the QEC

values will undoubtedly be remeasured, leading possibly to
different values and certainly to reduced uncertainties. When
this happens, experimenters will need f values of equivalent
precision, and the parametrizations presented here will satisfy
that need without complicated computing.

It is important to note that our parametrization is only
valid for the transitions identified and only for a limited range
of energies (±60 keV for all cases except for the decay of
70Br which covers ±600 keV) around the currently accepted
QEC values for those transitions [2,3]. The coefficients of our
parametrization should not be applied outside the range of
energies specified or to any other transitions.
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APPENDIX: KINEMATIC RECOIL CORRECTIONS

Let MA be the average mass of the initial and final nuclei.
Then the kinematic recoil corrections are of order W0/MA

and, in all but the most precise work, they can generally be
ignored. The recoil correction enters the calculation in two
places: firstly, the end-point energy is slightly modified, a
correction we denote �f a; and secondly, additional terms are
added to the shape-correction function f1(W ), providing a
correction we call �f b.

For the first correction, if W0 is the end-point energy without
consideration of recoil and W corr

0 is the corrected value, then
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from Eq. (3) of Holstein [5] we get

W corr
0 = W0

(
1 + 1

2W0MA

)(
1 + W0

2MA

)−1

� W0

(
1 − W0

2MA

+ 1

2W0MA

)
. (A1)

So, since the statistical rate function is approximately propor-
tional to W 5

0 , the correction to f must be of order

�f a

f
� 1 − 5

2

W0

MA

+ 5

2

1

W0MA

. (A2)

Unlike �f a , the recoil correction to the shape-correction
function, �f b, is different for Fermi and Gamow-Teller
transitions. The modifications are

f
F,corr
1 (W ) = f F

1 (W )

(
1 + 2

W

MA

)
,

f
GT,corr
1 (W ) = f GT

1 (W )

(
1 − 2

3

W0

MA

+ 10

3

W

MA

− 2

3

1

MAW

)
.

(A3)

If these corrections are integrated over the electron spec-
trum, they yield corrections to the statistical rate function

of

�f b,F

f
� 1 + W0

MA

,

(A4)
�f b,GT

f
� 1 − 2

3

W0

MA

+ 5

3

W0

MA

− 5

3

1

MAW0
.

Finally, combining corrections �f a and �f b, we obtain the
final recoil correction to the statistical rate function

�f F

f
= 1 − 3

2

W0

MA

+ 5

2

1

W0MA

� 1 − 3

2

W0

MA

,

(A5)
�f GT

f
= 1 − 3

2

W0

MA

+ 5

6

1

W0MA

� 1 − 3

2

W0

MA

.

Thus, Fermi and Gamow-Teller transitions are subject to
essentially the same correction and it is this correction that we
have recorded in Eq. (2) and used in our fitting algorithms.
Of course, the exactly computed f values, to which our
parametrizations are fitted, include the complete kinematic
recoil treatment.
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