Parametrization of the statistical rate function for select superallowed transitions

I. S. Towner^{*} and J. C. Hardy[†]

Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received 1 December 2014; published 26 January 2015)

We present a parametrization of the statistical rate function, f, for 20 superallowed $0^+ \rightarrow 0^+$ nuclear β transitions between T = 1 analog states, and for 18 superallowed "mirror" transitions between analog T = 1/2 states. All these transitions are of interest in the determination of V_{ud} . Although most of the transition Q_{EC} values have been measured, their precision will undoubtedly be improved in the future. Our parametrization allows a user to easily calculate the corresponding new f value to high precision (±0.01%) without complicated computing.

DOI: 10.1103/PhysRevC.91.015501

PACS number(s): 23.40.-s

I. INTRODUCTION

Precise measurements of nuclear β decay provide a valuable window into the electroweak standard model. In particular, superallowed $0^+ \rightarrow 0^+$ transitions between T = 1 analog states are used to set a limit on the presence of scalar interactions and to determine V_{ud} , the upper left element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and a key contributor to the most demanding available test of the unitarity of that matrix. While these transitions currently lead to the most precise determination of V_{ud} , mirror transitions between T = 1/2 analog states are becoming of interest as a means of confirming V_{ud} via a different experimental approach. To be useful, not only must the Q_{EC} value for each of these transitions be measured very precisely but the statistical rate function, f, which uses the Q_{EC} as input, must be calculated with equivalent precision.

Because there is no widely available means for calculating f to the required level of precision, we have devised a simple parametrization that reproduces the results of our full code for energies spanning a small range around the currently known Q_{EC} values for both types of superallowed transition. Together, these should provide a convenient resource for experimentalists to use in future to obtain high-precision f values from improved Q_{EC} -value measurements for these transitions.

Our goal in what follows is to parametrize f and present tables of the parameters for the two sets of transitions: (1) the 20 superallowed $0^+ \rightarrow 0^+$ nuclear β transitions between T = 1 analog states, whose properties have been surveyed in Refs. [1,2]; and (2) the 18 superallowed "mirror" β transitions between the analog T = 1/2 states surveyed in Ref. [3]. For each transition, we have computed f for 100 values of Q_{EC} taken over a range of ± 60 keV around the transition Q_{EC} value¹ and fitted these results to determine the coefficients in our parametrization. Our aim in fitting these 100 values is to achieve an accuracy of 0.01%, nearly a factor of 10 more precise than is currently required.

II. PARAMETRIZATION OF THE STATISTICAL RATE FUNCTION

To achieve 0.01% accuracy, the electron wave function must be determined with great precision. In our detailed evaluation of f [4], we accomplished this by solving the Dirac equation for the emerging electron moving in the Coulomb field of the nuclear charge distribution. The full expression for the computation of f is

$$f = \xi R(W_0) \int_1^{W_0} p W(W_0 - W)^2 F(Z, W) f_1(W) \times Q(Z, W) r(Z, W) dW,$$
(1)

where W is the electron total energy in electron rest-mass units, W_0 is the maximum value of W, $p = (W^2 - 1)^{1/2}$ is the electron momentum, Z is the charge number of the daughter nucleus (positive for electron emission, negative for positron emission), F(Z, W) is the Fermi function, and $f_1(W)$ is the shape-correction function as defined by Holstein [5] (but with kinematic recoil corrections omitted).

Further, Q(Z, W) is a screening correction for which we use the analytic prescription of Rose [6] (see Eq. (A44) in Ref. [4]), and r(Z, W) is an atomic overlap correction described in Ref. [1]. The kinematic recoil corrections that Holstein includes in $f_1(W)$ are here written as $R(W_0)$. The expression for $R(W_0)$ is derived in the Appendix, with the result that

$$R(W_0) \simeq 1 - \frac{3W_0}{2M_A},$$
 (2)

where M_A is the average of the initial and final nuclear masses expressed in electron-mass units. Last, for allowed transitions it is customary to remove the leading nuclear matrix element from the definition of f. Thus we have introduced ξ in Eq. (1), where $\xi = 1/|\mathcal{M}_F|^2$ for superallowed Fermi transitions, \mathcal{M}_F being the Fermi matrix element. For mixed Fermi and Gamow-Teller transitions, $\xi = 1/[\mathcal{M}_F^2 + g_A^2 \mathcal{M}_{GT}^2]$ with \mathcal{M}_{GT} being the Gamow-Teller matrix element and g_A the axial-vector coupling constant.

^{*}towner@comp.tamu.edu

[†]hardy@comp.tamu.edu

¹For ⁷⁰Br the Q_{EC} value is less precisely known, so the Q_{EC} value range for fitting was extended to ± 600 keV.

TABLE I. Values of the coefficients a_0 and a_1 that yield the statistical rate function f_0 from Eq. (7), and coefficients b_0 , b_1 , b_2 , and b_3 that yield the correction δ_s from Eq. (12). Coefficients a_2 and a_3 are held fixed at the values $a_2 = -2/15$ and $a_3 = 1/4$. The cases shown are the superallowed Fermi transitions between T = 1, $J^{\pi} = 0^+$ analog states surveyed in Refs. [1,2].

Parent nucleus	a_0	a_1	$b_0(\%)$	$b_1(\%)$	<i>b</i> ₂ (%)	<i>b</i> ₃ (%)
¹⁰ C	0.029 7225	- 0.143 1540	0.01178	0.02006	0.052 03	- 0.000 96
¹⁴ O	0.028 5463	-0.1417222	0.03176	0.03123	0.065 06	-0.00101
¹⁸ Ne	0.027 4005	-0.1398743	0.047 50	0.04995	0.08945	- 0.001 34
²² Mg	0.026 3237	-0.1374785	0.07036	0.06393	0.107 96	- 0.001 39
²⁶ Si	0.025 3385	- 0.136 9946	0.103 06	0.07827	0.128 56	-0.00146
³⁰ S	0.024 2904	-0.1271838	0.14905	0.09529	0.15413	- 0.001 61
³⁴ Ar	0.023 3252	-0.1182701	0.153 36	0.11896	0.18478	-0.00184
³⁸ Ca	0.022 3867	-0.1018182	0.173 01	0.135 58	0.20674	- 0.001 86
⁴² Ti	0.021 6593	-0.1105386	0.15625	0.15293	0.233 80	- 0.001 96
^{26m} Al	0.025 7927	- 0.135 5697	0.09813	0.07208	0.12037	- 0.001 49
³⁴ Cl	0.023 8533	-0.1281700	0.167 59	0.10598	0.16911	-0.00173
^{38m} K	0.022 8360	-0.1090747	0.17630	0.12480	0.193 25	-0.00180
⁴² Sc	0.022 0302	-0.1082192	0.173 35	0.14265	0.221 47	- 0.001 93
⁴⁶ V	0.021 1437	-0.0894977	0.202 00	0.165 56	0.25213	-0.00208
⁵⁰ Mn	0.020 2722	-0.0597791	0.25281	0.18330	0.278 34	-0.00214
⁵⁴ Co	0.019 5698	-0.0524836	0.32812	0.197 57	0.303 37	-0.00217
⁶² Ga	0.018 1322	-0.0141676	0.493 42	0.24418	0.36915	-0.00243
⁶⁶ As	0.017 3202	0.047 3840	0.57218	0.27260	0.407 70	-0.00261
⁷⁰ Br	0.0167829	0.041 7070	0.56671	0.29670	0.436 02	-0.00265
⁷⁴ Rb	0.016 2385	0.044 6304	0.446 43	0.321 80	0.464 90	- 0.002 69

In order to parametrize f, it is convenient to factor it into two contributions:

$$f = f_0(1+\delta_S),\tag{3}$$

$$f_0 = \int_1^{w_0} pW(W_0 - W)^2 F(Z, W) Q(Z, W) r(Z, W) dW,$$
(4)

$$\delta_S = (f - f_0)/f_0.$$
 (5)

The purpose of this factorization is to place the role of the shape-correction function $f_1(W)$ entirely within the correction term δ_S , which is typically of the order of a few percent. The shape-correction function depends on nuclear matrix elements and differs for Fermi and Gamow-Teller transitions. This piece of the calculation is somewhat less certain since it is nuclear-structure dependent; however, being small, its accuracy is also less critical.

In the limit that $F(Z,W)Q(Z,W)r(Z,W) \rightarrow 1$, which occurs when Z = 0, the integral f_0 has an analytic value:

$$f_0(Z=0) = \frac{1}{30} W_0^4 p_0 - \frac{3}{20} W_0^2 p_0 - \frac{2}{15} p_0 + \frac{1}{4} W_0 \ln(W_0 + p_0),$$
(6)

with $p_0 = (W_0^2 - 1)^{1/2}$. This suggests a fitting function of the form

$$f_0 = a_0 W_0^4 p_0 + a_1 W_0^2 p_0 + a_2 p_0 + a_3 W_0 \ln(W_0 + p_0).$$
(7)

In fitting 100 values of f_0 , we found that the four parameters a_0 , a_1, a_2 , and a_3 could not be uniquely determined with precision. Thus it was decided to fix a_2 and a_3 to their Z = 0 values, namely $a_2 = -2/15$ and $a_3 = 1/4$, and use the fitting process to determine a_0 and a_1 . This procedure yielded the required precision for f_0 . The resultant values of a_0 and a_1 are given in Table I for the $0^+ \rightarrow 0^+$ transitions, and in Table II for the T = 1/2 mirror transitions.

We note that in Eq. (7) each successive term gives a smaller and smaller contribution to the total. Thus in deciding to fix a_2 and a_3 to their Z = 0 values, we have fixed the coefficients for the two smallest terms in the expression for f_0 . This parametrization is not unique however. We could equally well have chosen to hold two different coefficients to their Z = 0 values and consequently have obtained another parametrization that would also produce f_0 values accurate to within 0.01%.

For the correction δ_S we start with the approximate expression

$$f_0 \delta_S \simeq \int_1^{W_0} p W (W_0 - W)^2 F(Z, W) \\ \times \left[\xi f_1(W) - 1 - \frac{3W_0}{2M_A} \right] dW$$
(8)

and write

$$\xi f_1(W) - 1 = B_0 + B_1 W + B_2 / W + B_3 W^2.$$
(9)

The coefficients B_0 , B_1 , B_2 , and B_3 are different for Fermi and Gamow-Teller transitions. This choice of parametrization is guided by the early work of Schopper [7] who used such a parametrization for the shape-correction function.

TABLE II. Values of the coefficients a_0 and a_1 that yield the statistical rate function f_0 from Eq. (7), and coefficients b_0 , b_1 , b_2 , and b_3 that yield the correction δ_s from Eq. (12). For each case, the *b* coefficients in the first row correspond to the Fermi component, b_0^F etc., and those in the second row correspond to the Gamow-Teller component, b_0^{GT} etc. Coefficients a_2 and a_3 are held fixed at values $a_2 = -2/15$ and $a_3 = 1/4$. The cases shown are the mixed Fermi and Gamow-Teller transitions between mirror T = 1/2 states in odd-mass nuclei surveyed in Ref. [3].

Parent nucleus	a_0	a_1	$b_0(\%)$	$b_1(\%)$	<i>b</i> ₂ (%)	<i>b</i> ₃ (%)
¹¹ C	0.0297280	- 0.143 1964	0.012 27	0.020 03	0.050 30	- 0.000 93
			0.71578	0.07695	0.56495	-0.00055
¹³ N	0.029 1054	-0.1420911	0.02166	0.025 66	0.05640	-0.00095
			0.31915	0.040 52	0.36491	-0.00026
¹⁵ N	0.028 5370	-0.1416159	0.045 52	0.033 30	0.06846	-0.00117
			0.25027	0.029 49	0.31261	-0.00024
¹⁷ F	0.027 9301	-0.1400527	0.025 28	0.041 32	0.07482	- 0.001 13
			1.47963	0.065 56	0.67635	-0.00074
¹⁹ Ne	0.027 3984	-0.1398186	0.055 21	0.049 98	0.089 14	-0.00135
			1.34270	0.05876	0.55039	-0.00099
²¹ Na	0.026 8709	-0.1394429	0.059 22	0.058 59	0.099 92	-0.00142
			1.733 65	0.063 13	0.640 05	-0.00101
²³ Mg	0.0263324	-0.1378844	0.063 75	0.064 36	0.107 31	- 0.001 38
			1.913 34	0.063 48	0.64697	-0.00093
²⁵ Al	0.025 8123	-0.1364357	0.081 54	0.07160	0.11849	-0.00144
			2.347 66	0.072 37	0.737 37	-0.00090
²⁷ Si	0.025 2815	-0.1330446	0.093 98	0.079 80	0.12945	-0.00149
			2.751 64	0.07192	0.79082	-0.00086
²⁹ P	0.0247788	-0.1301483	0.111 10	0.087 17	0.13982	-0.00151
			2.410 55	0.068 57	0.661 34	-0.00086
³¹ S	0.024 3506	-0.1328386	0.145 54	0.09612	0.15460	- 0.001 63
			2.17479	0.077 99	0.608 83	-0.00092
³³ Cl	0.023 9077	-0.1333333	0.152 09	0.106 27	0.16772	-0.00170
			-0.78012	0.063 97	0.146 81	-0.00050
³⁵ Ar	0.023 3631	-0.1226819	0.196 58	0.11636	0.184 53	- 0.001 83
			-0.53603	0.07047	0.195 15	-0.00055
³⁷ K	0.0229710	-0.1251564	0.183 69	0.12491	0.193 42	-0.00180
			0.89286	0.090 10	0.41192	-0.00084
³⁹ Ca	0.0224606	-0.1123165	0.21779	0.132 59	0.206 53	-0.00185
			0.58246	0.097 57	0.373 16	-0.00087
⁴¹ Sc	0.022 0044	-0.1046436	0.209 89	0.140 01	0.221 65	- 0.001 93
			3.945 90	0.12635	0.91561	-0.00124
⁴³ Ti	0.021 6749	-0.1134605	0.158 01	0.156 50	0.23644	-0.00200
			3.54635	0.13277	0.82630	- 0.001 35
⁴⁵ V	0.021 1420	-0.0910683	0.314 18	0.16234	0.257 79	-0.00218
			4.544 43	0.144 48	0.99222	- 0.001 34

A. Superallowed $0^+ \rightarrow 0^+$ Fermi transitions

For Fermi (vector) transitions,

$$B_0^F = -\frac{1}{5}(W_0R)^2 + \frac{1}{15}R^2 - \frac{6}{35}(\alpha Z)(W_0R) + \frac{61}{630}(\alpha Z)^2,$$

$$B_1^F = \frac{4}{15}(W_0R)R - \frac{48}{35}(\alpha Z)R,$$

$$B_2^F = \frac{2}{15}(W_0R)R - \frac{18}{35}(\alpha Z)R,$$

$$B_3^F = -\frac{4}{15}R^2,$$

(10)

where R is the radius of the nuclear charge distribution expressed in electron Compton wavelength units. We derived these equations from the work of Behrens and Bühring [8] who give algebraic expressions for the shape-correction function as expansions in the small quantities R and (αZ) . Our Eqs. (10) and (14) below are correct to second order in these quantities, namely to order R^2 , $(\alpha Z)^2$, and $(\alpha Z)R$. Inserting Eqs. (9) and (10) into Eq. (8) we obtain

$$\delta_S \simeq B_0 + B_1 \langle W \rangle + B_2 \langle 1/W \rangle + B_3 \langle W^2 \rangle - \frac{3W_0}{2M_A}, \quad (11)$$

where $\langle W^n \rangle$ is the value of W^n averaged over the electron spectrum. Estimates of these quantities are: $\langle W \rangle = W_0/2$, $\langle W^{-1} \rangle = 5W_0^{-1}/2$ and $\langle W^2 \rangle = 2W_0^2/7$.

This leads to our final choice of parametrization for the correction δ_s :

$$\delta_S = b_0 + b_1 W_0 + b_2 / W_0 + b_3 W_0^2, \tag{12}$$

where approximate values of the coefficients are

$$b_0^F \simeq \frac{2}{5}R^2 + \frac{61}{630}(\alpha Z)^2, \quad b_1^F \simeq -\frac{6}{7}(\alpha Z)R - \frac{3}{2M_A},$$

$$b_2^F \simeq -\frac{9}{7}(\alpha Z)R, \quad b_3^F \simeq -\frac{1}{7}R^2.$$
(13)

We fitted the expression in Eq. (12) to the exactly computed value of δ_s from Eq. (5) to obtain the parameters b_0 , b_1 , b_2 , and b_3 . Again, it was found that all four parameters could not be uniquely determined with precision, so the coefficients b_2 and b_3 were fixed at the values given in Eq. (13) for b_2^F and b_3^F , and the fitting process was used to determine b_0 and b_1 . Table I gives the values of the parameters b_0 , b_1 , b_2 , and b_3 for the superallowed $0^+ \rightarrow 0^+$ Fermi transitions.

B. Mirror T = 1/2 transitions

For pure Gamow-Teller (axial-vector) transitions, coefficients in the expression for the shape-correction function in Eq. (9) are

$$B_0^{GT} \simeq -\frac{1}{5} (W_0 R)^2 + \frac{11}{45} R^2 \left(1 - \frac{2}{11} x\right) + \frac{2}{35} (\alpha Z) (W_0 R) (1 - x) + \frac{1}{3} (W_0 R) [\mp 2\overline{b} + \overline{d}] + \frac{1}{3} \beta (\alpha Z) [\pm 2\overline{b} + \overline{d}] + \frac{61}{630} (\alpha Z)^2, B_1^{GT} \simeq \frac{4}{9} (W_0 R) R \left(1 - \frac{1}{10} x\right) - \frac{8}{5} (\alpha Z) R \left(1 - \frac{1}{28} x\right) \pm \frac{4}{3} R\overline{b}, B_2^{GT} \simeq -\frac{2}{45} (W_0 R) R (1 - x) - \frac{18}{35} (\alpha Z) R - \frac{1}{3} R [\pm 2\overline{b} + \overline{d}], B_3^{GT} \simeq -\frac{4}{9} R^2 \left(1 - \frac{1}{10} x\right),$$
(14)

where

$$x = -\sqrt{10}\mathcal{M}_{1y}/\mathcal{M}_{\sigma r^2},\tag{15}$$

$$\overline{b} = \frac{1}{MR} \left[\frac{g_M}{g_A} + \frac{\mathcal{M}_L}{\mathcal{M}_{GT}} \right],\tag{16}$$

$$\overline{d} = \frac{1}{MR} \frac{\mathcal{M}_{\sigma L}}{\mathcal{M}_{GT}},\tag{17}$$

and also $\beta \simeq 6/5$, $g_M = 4.706$, and M is the nucleon mass in electron rest-mass units. Where there is a \pm symbol, the upper sign is used for electron emission beta decays, the lower sign for positron emitters. All the transitions discussed in this work are positron emitters, so the lower sign is consistently used. The nuclear matrix elements are defined in Eq. (68) of Ref. [5]. Schematically, they are written $\mathcal{M}_{GT} = \langle \sigma \rangle$, $\mathcal{M}_{\sigma r^2} = \langle r^2 \sigma \rangle$, $\mathcal{M}_{1y} = (16\pi/5)^{1/2} \langle r^2 [Y_2 \times \sigma] \rangle$, $\mathcal{M}_L = \langle L \rangle$, and $\mathcal{M}_{\sigma L} = \langle \sigma \times L \rangle$. Note that the matrix element $\mathcal{M}_{\sigma L}$, and hence \overline{d} , vanishes in diagonal matrix elements, as would occur in a mirror transition between isobaric analog states.

The correction δ_S is again parametrized as in Eq. (12) with approximate expressions for the coefficients derived from Eq. (14). For pure Gamow-Teller transitions they yield

$$b_0^{GT} \simeq \frac{2}{15}R^2 + \frac{1}{15}R^2x + \frac{1}{3}\beta(\alpha Z)[\pm 2\overline{b} + \overline{d}] + \frac{61}{630}(\alpha Z)^2,$$

$$b_1^{GT} \simeq -\frac{26}{35}(\alpha Z)R - \frac{1}{35}(\alpha Z)Rx + \frac{1}{3}R\overline{d} - \frac{3}{2M_A},$$

$$b_2^{GT} \simeq -\frac{9}{7}(\alpha Z)R - \frac{5}{6}R[\pm 2\overline{b} + \overline{d}],$$

$$b_3^{GT} \simeq -\frac{11}{105}R^2(1 + \frac{1}{11}x).$$
(18)

Again in fitting the exact values of δ_s from Eq. (5) with the expression in Eq. (12) we held the parameters b_2 and b_3 fixed at the values given for b_2^{GT} and b_3^{GT} in Eq. (18) and then obtained the parameters b_0 and b_1 from the fit.

The T = 1/2 mirror transitions are mixed transitions, with both Fermi and Gamow-Teller components. The fitted *b* coefficients for both the Fermi and Gamow-Teller components are given in Table II along with the a_0 and a_1 coefficients. In such mixed transitions the inverse of the partial lifetime is proportional to

$$t^{-1} \propto f_V \left[|\mathcal{M}_F|^2 + \frac{f_A}{f_V} |g_A \mathcal{M}_{GT}|^2 \right], \tag{19}$$

where

$$f_V = f_0 (1 + \delta_S^F), \quad f_A = f_0 (1 + \delta_S^{GT}).$$
 (20)

The statistical rate functions f_V and f_A are easily obtained from the parameters listed in Table II.

III. CONCLUSIONS

We have provided simple parametrizations of the statistical rate functions, f, for nuclear β transitions of current interest in determining V_{ud} and testing CKM unitarity. In most but not all cases, the transition Q_{EC} values have already been measured with ~1-keV precision or better. In a few cases they are much less well known. In all cases, the Q_{EC} values will undoubtedly be remeasured, leading possibly to different values and certainly to reduced uncertainties. When this happens, experimenters will need f values of equivalent precision, and the parametrizations presented here will satisfy that need without complicated computing.

It is important to note that our parametrization is only valid for the transitions identified and only for a limited range of energies ($\pm 60 \text{ keV}$ for all cases except for the decay of ⁷⁰Br which covers $\pm 600 \text{ keV}$) around the currently accepted Q_{EC} values for those transitions [2,3]. The coefficients of our parametrization should not be applied outside the range of energies specified or to any other transitions.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Grant No. DE-FG03-93ER40773, and by the Welch Foundation under Grant No. A-1397.

APPENDIX: KINEMATIC RECOIL CORRECTIONS

Let M_A be the average mass of the initial and final nuclei. Then the kinematic recoil corrections are of order W_0/M_A and, in all but the most precise work, they can generally be ignored. The recoil correction enters the calculation in two places: firstly, the end-point energy is slightly modified, a correction we denote Δf^a ; and secondly, additional terms are added to the shape-correction function $f_1(W)$, providing a correction we call Δf^b .

For the first correction, if W_0 is the end-point energy without consideration of recoil and W_0^{corr} is the corrected value, then

PARAMETRIZATION OF THE STATISTICAL RATE ...

from Eq. (3) of Holstein [5] we get

$$W_0^{\text{corr}} = W_0 \left(1 + \frac{1}{2W_0 M_A} \right) \left(1 + \frac{W_0}{2M_A} \right)^{-1}$$
$$\simeq W_0 \left(1 - \frac{W_0}{2M_A} + \frac{1}{2W_0 M_A} \right). \tag{A1}$$

So, since the statistical rate function is approximately proportional to W_0^5 , the correction to f must be of order

$$\frac{\Delta f^a}{f} \simeq 1 - \frac{5}{2} \frac{W_0}{M_A} + \frac{5}{2} \frac{1}{W_0 M_A}.$$
 (A2)

Unlike Δf^a , the recoil correction to the shape-correction function, Δf^b , is different for Fermi and Gamow-Teller transitions. The modifications are

$$f_1^{F,\text{corr}}(W) = f_1^F(W) \left(1 + 2\frac{W}{M_A} \right),$$

$$f_1^{GT,\text{corr}}(W) = f_1^{GT}(W) \left(1 - \frac{2}{3}\frac{W_0}{M_A} + \frac{10}{3}\frac{W}{M_A} - \frac{2}{3}\frac{1}{M_AW} \right).$$

(A3)

If these corrections are integrated over the electron spectrum, they yield corrections to the statistical rate function of

$$\frac{\Delta f^{b,F}}{f} \simeq 1 + \frac{W_0}{M_A},$$

$$\frac{\Delta f^{b,GT}}{f} \simeq 1 - \frac{2}{3} \frac{W_0}{M_A} + \frac{5}{3} \frac{W_0}{M_A} - \frac{5}{3} \frac{1}{M_A W_0}.$$
(A4)

Finally, combining corrections Δf^a and Δf^b , we obtain the final recoil correction to the statistical rate function

$$\frac{\Delta f^F}{f} = 1 - \frac{3}{2} \frac{W_0}{M_A} + \frac{5}{2} \frac{1}{W_0 M_A} \simeq 1 - \frac{3}{2} \frac{W_0}{M_A},$$

$$\frac{\Delta f^{GT}}{f} = 1 - \frac{3}{2} \frac{W_0}{M_A} + \frac{5}{6} \frac{1}{W_0 M_A} \simeq 1 - \frac{3}{2} \frac{W_0}{M_A}.$$
(A5)

Thus, Fermi and Gamow-Teller transitions are subject to essentially the same correction and it is this correction that we have recorded in Eq. (2) and used in our fitting algorithms. Of course, the exactly computed f values, to which our parametrizations are fitted, include the complete kinematic recoil treatment.

- [1] J. C. Hardy and I. S. Towner, Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model Phys. Rev. C **79**, 055502 (2009).
- [2] J. C. Hardy and I. S. Towner, Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: 2014 critical survey, with precise results for V_{ud} and CKM unitarity, arXiv:1411.5987 [Phys. Rev. C (to be published)].
- [3] N. Severijns, M. Tandecki, T. Phalet, and I. S. Towner, \mathcal{F}_t values of the T = 1/2 mirror β transitions, Phys. Rev. C **78**, 055501 (2008).
- [4] J. C. Hardy and I. S. Towner, Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: A critical survey with tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 71, 055501 (2005); New limits on fundamental weak-interaction pa-

rameters from superallowed β decay, Phys. Rev. Lett. **94**, 092502 (2005).

- [5] B. R. Holstein, Recoil effects in allowed beta decay: The elementary particle approach, Rev. Mod. Phys. 46, 789 (1974); 48, 673(E) (1976).
- [6] M. E. Rose, A note on the possible effect of screening in the theory of beta disintegration, Phys. Rev. 49, 727 (1936).
- [7] H. Schopper, Weak Interactions and Nuclear Beta Decay (North-Holland, Amsterdam, 1966).
- [8] H. Behrens and W. Bühring, *Electron Radial Wave Functions and Nuclear Beta-decay* (Clarendon Press, Oxford, 1982);
 H. Behrens, H. Genz, M. Conze, H. Feldmeir, W. Stock, and A. Richter, Allowed β-transitions, weak magnetism and nuclear structure in light nuclei, Ann. Phys. (NY) 115, 276 (1978).