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The stability of magnetized strange quark matter (MSQM) is studied in the MIT bag model with the density
dependent bag pressure. In the consistent thermodynamic description of MSQM, the quark chemical potentials,
the total thermodynamic potential, and the anisotropic pressure acquire the corresponding additional term
proportional to the density derivative of the bag pressure. The model parameter space is determined for which
MSQM is absolutely stable, i.e., its energy per baryon is less than that of the most stable 56Fe nucleus under
zero external pressure and vanishing temperature. It is shown that there exists a magnetic field strength Hu max at
which the upper bound Bu

∞ on the asymptotic bag pressure B∞ ≡ B(�B � �0) (�0 being the nuclear saturation
density) from the absolute stability window vanishes. The value of this field, Hu max ∼ (1–3) × 1018 G, represents
the upper bound on the magnetic field strength, which can be reached in a strongly magnetized strange quark
star. It is clarified how the absolute stability window and upper bound on the magnetic field strength are affected
by varying the parameters in the Gaussian parametrization for the density dependence of the bag pressure.
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I. INTRODUCTION AND BASIC EQUATIONS

After the conjecture that strange quark matter (SQM),
composed of deconfined u, d, and s quarks, can be the
ground state of matter [1–3], it became the subject of intense
research. In the astrophysical context, this would mean that the
formation of strange quark stars, made up entirely of SQM and
self-bound by strong interactions, is possible [4–6]. The birth
of a strange quark star can proceed via conversion of a neutron
star as a strong deflagration process during a few milliseconds
[7], accompanied by a powerful neutrino signal [8]. If SQM
is metastable at zero external pressure, it can be encountered
in the cores of heavy neutron stars where the density of about
several times nuclear saturation density can be sufficient for
the deconfinement phase transition to occur [9]. Such stars,
composed of the quark core and hadronic crust, are called
hybrid stars. Modern astrophysical observations, including
data on the masses and radii, spin-down rates, cooling history,
glitches, and superbursts, do not disprove the existence of
quark matter in compact stars.

The other important feature is that compact stars can be
endowed with a strong magnetic field [10]. Near the surface
of magnetars—strongly magnetized neutron stars—the field
strength can reach values of about 1014–1015 G [11,12]. Even
stronger magnetic fields up to 1019–1020 G can potentially
occur in the cores of neutron stars [13]. The large pulsar kick
velocities due to the asymmetric neutrino emission in direct
Urca processes in the dense core of a magnetized neutron
star could be the possible imprint of such ultrastrong magnetic
fields [14–17]. The origin of magnetar’s strong magnetic fields
is yet under discussion, and, among other possibilities, it is
not excluded that this can be due to spontaneous ordering of
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nucleon [18,19] or quark [20] spins in the dense interior of a
neutron star.

Strong magnetic fields can have significant impact on
thermodynamic properties of cold dense matter [21–29]. In
particular, the pressure anisotropy, exhibited in the difference
between the pressures along and perpendicular to the magnetic
field, becomes relevant for strongly magnetized matter [30–
35]. In this study, I consider strongly magnetized SQM
(MSQM) taking into account the effects of the pressure
anisotropy. I aim at finding the model parameter space for
which MSQM is absolutely stable, i.e., its energy per baryon
is less than that of the most stable nucleus 56Fe under
zero external pressure and vanishing temperature. For the
parameters from this absolute stability window, the formation
of a strongly magnetized strange quark star is possible.

Note that in order to describe the confinement property of
quantum chromodynamics, in the conventional MIT bag model
[36] this is achieved by introducing the density independent
bag pressure by which quarks are confined in a finite region of
space called a “bag.” The standard thermodynamic equations
can be used to study quarks confined to a bag. Another
phenomenological way to describe the quark confinement is
to consider the density dependent quark masses [37–40]. In
this case, an important issue of thermodynamic consistency
arises. Because of the density dependence of the quark masses,
the quark chemical potentials acquire an additional density
dependent term and become effective [41]. In fact, such
a thermodynamically consistent approach was developed in
recent work [42]. Note also that the quark confinement was
modeled recently by the density and isospin dependent quark
masses [43,44].

These phenomenological QCD models were applied to
study MSQM in Refs. [21,22,24,27,29,35,45,46]. In partic-
ular, the effects of the pressure anisotropy were disregarded
in Refs. [21,22,24,27], in Refs. [45,46] only the matter
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contribution to the pressure anisotropy was considered, and
both the matter and field contributions were accounted for in
Refs. [35,44]. In this study, I consider the absolute stability of
MSQM in the MIT bag model with the density dependent bag
pressure B(�B). The advisability to extend the conventional
MIT bag model came from the necessity to reconcile the
different constraints on the bag pressure at low and high
baryon densities obtained from heavy-ion experiments at the
CERN Super Proton Synchrotron (SPS) and astrophysical
observations of neutron stars with masses well above the
mass of a canonical neutron star M ∼ 1.4M� (M� being
the solar mass) [47]. In other model frameworks, the density
dependent bag pressure was used in Refs. [48,49]. Note that
in the extended MIT bag model, the quark chemical potentials
acquire a term proportional to the density derivative ∂B

∂�B
,

and the issue of the consistent thermodynamic description of
MSQM becomes relevant. To that aim, I explore the formalism
of the work [42], developed initially to describe the quark
confinement by the density (and/or temperature) dependent
quark masses, and, after proper modification, apply it to the
case of the extended MIT bag model.

Here MSQM will be considered as an uniform matter
permeated by an external uniform magnetic field. In the bag
model, the matter part of the total energy density (excluding
the magnetic field energy contribution) reads

Em = �0
m +

∑
i

μ̄i�i, (1)

where

�0
m =

∑
i

�0
i + B(�B), (2)

and �0
i is the thermodynamic potential for free relativistic

fermions of ith species (i = u,d,s,e) in the external mag-
netic field, which is given by the same expression as in
Refs. [21,27,35] with the only difference that, according to the
approach of Ref. [42], the real (nonrenormalized) chemical
potentials μi should be substituted there by the effective
(renormalized) chemical potentials μ̄i .

At the given H , the differential form of Eq. (1) is

(dEm)H = (
d�0

m

)
H

+
∑

i

μ̄i d�i +
∑

i

�i dμ̄i, (3)

where

(
d�0

m

)
H

=
∑

i

∂�0
i

∂μ̄i

dμ̄i +
∑

i

∂B

∂�i

d�i.

With account of equation

�i = −
(

∂�0
i

∂μ̄i

)
H

, (4)

Eq. (3) acquires the form

(dEm)H =
∑

i

(
μ̄i + ∂B

∂�i

)
d�i. (5)

On the other hand, the fundamental thermodynamic relation
at zero temperature reads [50]

(dEm)H =
∑

i

μid�i. (6)

By comparing Eqs. (5) and (6), and taking into account
expression for the baryon number density �B = 1

3 (�u + �d +
�s), one gets the relationship between the real and effective
chemical potentials

μe = μ̄e, μf = μ̄f + 1

3

∂B

∂�B

, f = u,d,s. (7)

Further, I study charge neutral states of MSQM and assume
that the chemical equilibrium with respect to weak processes is
established among the fermion species with the corresponding
conditions on the real chemical potentials [5,42]. Note that, in
view of Eq. (7), the effective chemical potentials μ̄i satisfy the
same equations as the real ones μi :

μ̄d = μ̄u + μe− , μ̄d = μ̄s . (8)

The Hugenholtz–van Hove theorem establishes the thermo-
dynamic relation between the pressure and energy density at
zero temperature for nonmagnetized fermion matter [51]. For
magnetized fermion matter, the total pressure is the anisotropic
function of the magnetic field strength [30–35]. In particular,
the longitudinal p l and transverse p t pressures are different.
By comparing expressions for the longitudinal pressure p l and
energy density [31,34,35], one can get the Hugenholtz–van
Hove theorem for magnetized matter in the form

p l
m = −Em +

∑
i

μi�i, (9)

where p l
m is the matter part of the longitudinal pressure. I will

preserve this equation also for MSQM in the extended MIT
bag model. With account of Eq. (1), Eq. (9) takes the form

p l
m = −�0

m +
∑

i

(μi − μ̄i)�i = −�0
m + �B

∂B

∂�B

. (10)

At zero temperature, the matter part of the thermodynamic
potential �m, determined according to the standard thermody-
namic equation

�m = Em −
∑

i

μi�i, (11)

with account of Eq. (1) becomes

�m = �0
m −

∑
i

(μi − μ̄i)�i = �0
m − �B

∂B

∂�B

. (12)

By comparing Eqs. (10) and (12), one arrives at the ther-
modynamic relationship p l

m = −�m. The matter parts of
the longitudinal and transverse pressures are related by the
equation [34,44,52]

p l
m − p t

m = HM, (13)

where M = − ∂�m

∂H
is the system magnetization. After summa-

rizing Eqs. (1), (2), (10), and (13) and accounting for the pure
magnetic field contribution, the total energy density E, and the
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longitudinal p l and transverse p t pressures for MSQM with
the density dependent bag pressure can be written in the form

E =
∑

i

(
�0

i + μ̄i�i

) + H 2

8π
+ B, (14)

p l = −
∑

i

�0
i − H 2

8π
− B + �B

∂B

∂�B

, (15)

p t = −
∑

i

�0
i − HM + H 2

8π
− B + �B

∂B

∂�B

. (16)

In the case of the density independent bag pressure,
Eqs. (14)–(16) go over to the corresponding equations of
Ref. [35]. Because of the breaking of the rotational symmetry
by the magnetic field, the longitudinal p l and transverse p t

pressures are not the same. There are two different contri-
butions to the pressure anisotropy: the matter contribution
proportional to the magnetization M , and the magnetic field
contribution given by the Maxwell term H 2

8π
. Note that it was

argued recently [53] (and discussed before in Refs. [54,55])
that the magnetization contribution to the energy-momentum
tensor is canceled by the Lorentz force associated with the
magnetization current, and, taking that into account,
the pressure anisotropy does not occur. In the given case, the
direct answer to this question is that I consider a spatially
uniform distribution of the magnetic field and matter density,
and, hence, the magnetization current density jb = ∇ × M (in
units with c = 1) is exactly zero. Therefore, the associated
Lorentz force density jb × H = 0, and cannot compensate the
term with the magnetization in the transverse pressure. The
other point is that the main, most principal source of the
pressure anisotropy is provided by the pure magnetic field
contribution H 2/8π , and there is no compensating effect for
it. Just this term, as will be shown later, plays the main role in
establishing the upper bound for the magnetic field strength in
a magnetized medium.

For a spatially nonuniform case, the argument, raised in
[53], is based on the consideration of the balance of the
volume forces in the stationary state: ∂lT

kl = 0, T kl being
the spatial components of the quantum-statistical average
of the energy-momentum tensor of the system. Under writing
the condition ∂lT

kl = 0 with account of the Maxwell equation
for the electromagnetic field tensor, the Lorentz force density
associated with the magnetization current density cancels
the term with the magnetization, and the corresponding first
integral does not contain the magnetization as well. While this
step is correct, it is then wrongly concluded in Ref. [53] that
the system’s equilibrium (stationary state) is determined by
the thermodynamic pressure and any anisotropy in the matter
pressure does not appear. Note that the pressures in the system
are determined as the spatial diagonal elements T kk of the
energy-momentum tensor in the system’s rest frame. In the sta-
ble stationary state, they should be positive, T kk > 0. The con-
ditions T kk > 0 and ∂lT

kl = 0 are, obviously, different and
both should be satisfied in the stable stationary state.

In fact, the consistent derivation shows that the above
mentioned cancelation occurs, with account of the Maxwell
equation, only in the derivative ∂lT

kl , but not in the energy-

momentum tensor itself. An example of the spatially uniform
case, discussed above, clearly confirms that. The introduction
by hand of the Lorentz force contribution associated with the
magnetization current to the energy-momentum tensor is the
artificial step, not confirmed by the consistent derivation. Just
the opposite, the consistent microscopic derivations [31,52]
show that a such contribution is missing in the energy-
momentum tensor, and, hence, the anisotropy in the matter
part of the total pressure is present as well as the anisotropy
caused by the contribution of the magnetic field.

II. NUMERICAL RESULTS AND DISCUSSION

Now I will determine the absolute stability window of
MSQM, subject to charge neutrality and chemical equilibrium
conditions, at zero temperature. The equilibrium conditions for
MSQM require vanishing the longitudinal p l and transverse
p t pressures

p l = −� = 0, p t = −� + H
∂�

∂H
= 0, (17)

where � = �m + H 2

8π
is the total thermodynamic potential of

the system.
In order to be absolutely stable, the energy per baryon of

MSQM should be less than that of the most stable 56Fe nucleus
under the equilibrium conditions (17). On the other hand, at
H = 0, the experimental observation proves that two-flavor
quark matter, consisting of u and d quarks, is less stable
compared to the 56Fe nucleus at zero external pressure and
vanishing temperature [3]. I will also retain this constraint
for strong magnetic fields H � 1017 G, although, strictly
speaking, it is unknown from the experimental point of view
whether two-flavor quark matter is less stable than the 56Fe
nucleus under the equilibrium conditions (17) in such strong
fields. Thus, for determining the absolute stability window of
MSQM, I will use the following constraints:

Em

�B

∣∣∣∣
uds

≤ εH (56Fe) ≤ Em

�B

∣∣∣∣
ud

. (18)

Regarding, for the rough estimate, the 56Fe nucleus as a system
of noninteracting nucleons, magnetic fields H > 1020 G are
necessary in order to significantly alter its energy per nucleon
εH (56Fe) [23]. Since I will consider magnetic fields H < 5 ×
1018 G, further I use the approximation εH (56Fe) ≈ ε0(56Fe) =
930 MeV.

For determining the absolute stability window from con-
straints (17) and (18), I utilize the Gaussian parametrization
for the bag pressure as a function of the baryon density [47]:

B(�B) = B∞ + (B0 − B∞) e
−β( �B

�0
)2

, (19)

where B0 = B(�B = 0), B∞ = B(�B � �0) (�0 

0.17 fm−3), and the parameter β controls the rate of
decrease of the bag pressure from B0 to B∞. In numerical
analysis, I use β = 0.01 and β = 0.17. Note that the
equilibrium conditions (17) contain the derivatives ∂B

∂H
, ∂2B

∂�B∂H
.

Further, I will assume that the magnetic field affects the
bag pressures B0 and B∞ in the same way, and, hence, the
difference �B0 ≡ B0 − B∞ is independent of H and will

015208-3



A. A. ISAYEV PHYSICAL REVIEW C 91, 015208 (2015)

FIG. 1. (Color online) The absolute stability window in the plane (H,B∞) for MSQM at zero temperature with B(�B ) given by Eq. (19) at
(a) β = 0.01 and (b) β = 0.17, and with a variable parameter �B0. The upper Bu

∞ and lower Bl
∞ bounds are shown as the upper and lower

curves, respectively, in the pairs of the similar curves (see also comments in the text).

be considered as a parameter. Then the actual dependence
of the bag pressure B on H is contained in the asymptotic
bag pressure B∞: ∂B

∂H
= ∂B∞

∂H
while ∂2B

∂�B∂H
= 0. The absolute

stability window will be built in the plane (H,B∞) under
various fixed values of �B0 and β. The upper (lower) bound
Bu

∞ (Bl
∞) on the asymptotic bag pressure B∞ can be found

from the first of the equilibrium conditions (17):

Bu (l)
∞ (H ) = −

∑
i = u,d,s,e
(i = u,d,e)

�0
i − H 2

8π

−�B0 e
−β( �B

�0
)2
(

1 + 2β�2
B

�2
0

)
(20)

after finding the effective chemical potentials μ̄i from the first
constraint to the left (right) in (18), taken with the equality sign,
and charge neutrality and chemical equilibrium conditions (8).
In Eq. (20), the baryon density �B should be determined from
Eq. (4) after finding the chemical potentials μ̄i at the given H .

Figure 1 shows the dependences Bu
∞(H ) and Bl

∞(H ) for the
current quark masses mu = md = 5 MeV and ms = 150 MeV.
The upper bound Bu

∞ stays, at first, practically constant and
then, beginning from the magnetic field strength H somewhat
smaller than 1018 G, decreases. For example, the maximum
value of Bu

∞, corresponding to H = 0 (which is practically
indistinguishable from the value of Bu

∞ at H = 1016 G) is
Bu

∞, max ≈ 74.9 MeV/fm3 for �B0 = 0, independently of the
value of β; for �B0 = 75 MeV/fm3,Bu

∞, max ≈ 3.2 MeV/fm3

at β = 0.01, and Bu
∞, max ≈ 49.1 MeV/fm3 at β = 0.17.

The upper bound Bu
∞ vanishes at Hu max ≈ 3.1 × 1018 G for

�B0 = 0 at any β; for �B0 = 75 MeV/fm3,Bu
∞ vanishes

at Hu max ≈ 1.1 × 1018 G for β = 0.01, and at Hu max ≈
3 × 1018 G for β = 0.17. In stronger magnetic fields H >
Hu max, in order to satisfy the equilibrium conditions, the
upper bound Bu

∞ on the asymptotic bag pressure B∞ had
to become negative, contrary to the constraint B∞ > 0. This
means that, under the equilibrium conditions and in magnetic
fields H > Hu max, MSQM cannot be absolutely stable.

The behavior of the lower bound Bl
∞(H ) is similar to that of

Bu
∞(H ). At H = 0, the maximum value of Bl

∞ (which almost
coincides with the value of Bl

∞ at H = 1016 G) is Bl
∞, max ≈

56.5 MeV/fm3 for �B0 = 0, independently of the value
of β; for �B0 = 25 MeV/fm3,Bl

∞, max ≈ 32.0 MeV/fm3 at
β = 0.01, and Bl

∞, max ≈ 40.0 MeV/fm3 at β = 0.17. The
lower bound Bl

∞ stays practically constant till magnetic fields
somewhat smaller than 1018 G, beyond which Bl

∞ decreases.
The lower bound Bl

∞ vanishes at Hl 0 ≈ 2.7 × 1018 G for
�B0 = 0 at any β; for �B0 = 25 MeV/fm3,Bl

∞ vanishes at
Hl 0 ≈ 2.2 × 1018 G for β = 0.01, and at Hl 0 ≈ 2.5 × 1018 G
for β = 0.17. Under the equilibrium conditions and in the
fields H > Hl 0, the lower bound Bl

∞ would be negative.
Because B∞ > 0, the inequality B∞ > Bl

∞ would be fulfilled
always in the fields H > Hl 0. Thus, in order for MSQM to
be absolutely stable, the magnetic field strength should satisfy
the constraint H < Hu max. In fact, the value Hu max represents
the upper bound on the magnetic field strength which can be
reached in a magnetized strange quark star. Note that the upper
bound Bu

∞ decreases with increasing the parameter �B0 at the
given β. Hence, Bu

∞ vanishes at a smaller magnetic field for a
larger value of �B0, i.e., the upper bound on the magnetic field
strength Hu max decreases with increasing �B0 at the given
β. On the other hand, the upper bound Bu

∞ increases with
increasing the parameter β at the given �B0. Hence, the larger
β is, the larger the upper bound Hu max is at the given �B0.

Note also that the lower bound Bl
∞ decreases with in-

creasing the parameter �B0. Above certain value of �B0,
which depends on β, the lower bound Bl

∞ would become
negative, and, hence, for B∞ > 0 the inequality B∞ > Bl

∞
would be always fulfilled at any H . For such �B0 and β, the
absolute stability window corresponds to 0 < B∞ < Bu

∞. This
is just the case for �B0 = 75 MeV/fm3 at β = 0.01, and for
�B0 = 125 MeV/fm3 at β = 0.17, shown in Figs. 1(a) and
1(b), respectively.

Figure 2 shows the dependences �b(H ) for MSQM and
magnetized two-flavor quark matter, determined under the
respective equilibrium conditions at Em/�b = 930 MeV, for
magnetic fields H < Hu max. In fact, the corresponding lines
�u

B(H ) and � l
B(H ) represent the upper and lower bounds on the
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FIG. 2. (Color online) The dependences �B (H ) for MSQM and magnetized two-flavor quark matter (the upper and lower curves,
respectively, in the pairs of the similar curves), determined under the equilibrium conditions at Em/�b = 930 MeV for the same values
of the parameters �B0 and β as in Fig. 1. The bounding vertical lines on the right correspond to H = Hu max.

baryon density to ensure the absolute stability of MSQM. It is
seen that the upper �u

B and lower � l
B bounds stay practically

constant till the magnetic field strength being somewhat
smaller than 1018 G, and then increase till it reaches the
corresponding maximum value. The increase of the parameter
�B0 at the given β, and the increase of the parameter β at
the given �B0, lead to the increase of both the upper �u

B

and lower �l
B bounds. For example, at H = 0 the minimum

value of �u
B (being almost the same as the value of �u

B at
H = 1016 G) is �u

B min ≈ 2.1�0 for �B0 = 0, independently of
β; for �B0 = 75 MeV/fm3, �u

B min ≈ 2.2�0 at β = 0.01, and
�u

B min ≈ 2.9�0 at β = 0.17. Similarly, at H = 0 the minimum
value of � l

B is � l
B min ≈ 1.4�0 for �B0 = 0, independently

of β; for �B0 = 75 MeV/fm3, � l
B min ≈ 1.5�0 at β = 0.01,

and � l
B min ≈ 2.2�0 at β = 0.17. Note that magnetic fields

H � 1018 G strongly affect the upper �u
B and lower � l

B bounds
from the absolute stability window.

In conclusion, I have considered MSQM under charge
neutrality and chemical equilibrium conditions in the MIT
bag model with the density dependent bag pressure B(�B). I
aimed to determine the range for the magnetic field strength
H , asymptotic bag pressure B∞ ≡ B(�B � �0), and baryon
density �B , for which MSQM is absolutely stable, i.e., its
energy per baryon is less than that of the most stable 56Fe
nucleus under zero-pressure conditions (17) and vanishing
temperature. In fact, this requirement sets the upper bound
on the parameters from the absolute stability window. The
lower bound is determined from the constraint that magnetized
two-flavor quark matter under equilibrium conditions (17)
and zero temperature should be less stable than the most
stable 56Fe nucleus. This constraint is extended from the weak
terrestrial magnetic fields, where it has direct experimental
confirmation, to possible strong magnetar interior magnetic
fields H � 1017 G, where such confirmation is wanting. It has

been shown that there exists a magnetic field strength Hu max at
which the upper bound Bu

∞ on the asymptotic bag pressure B∞
from the absolute stability window vanishes. In fact, the value
of this field, Hu max ∼ (1–3) × 1018 G, represents the upper
bound on the magnetic field strength, which can be reached
in a strongly magnetized strange quark star. I have studied the
effect of the parameters in the Gaussian parametrization for
the bag pressure on the absolute stability window and upper
bound Hu max.

It is interesting to note that the obtained estimate for Hu max

in strange quark stars is similar to the estimate H ∼ (1–3) ×
1018 G for the maximum average magnetic fields in stable
neutron stars, composed of strange baryonic matter [56]. The
found estimate of the upper bound Hu max in strange quark
stars may be further improved by including within the MIT
bag model the effects of the perturbative quark interactions
[57]. It would be of interest also to extend this research to the
case of the spatially nonuniform magnetic field, whose realistic
profile should be determined from the solution of the coupled
Einstein and Maxwell equations [58]. The other interesting
problem is to take into account the vacuum corrections due to
the magnetic field, which are, however, beyond the scope of the
MIT bag model. To that aim, one can utilize the quark chiral
models [59–61]. Nevertheless, as was shown in Ref. [62],
these corrections become noticeable only in strong magnetic
fields H � 3 × 1019 G, and, therefore, one can expect that
their effect on the maximum magnetic field in strange quark
stars will be of less importance.
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