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I. INTRODUCTION

The poles of partial-wave scattering amplitudes establish
a direct link between experiment and QCD theories and
models in hadron spectroscopy, and in the Review of Particle
Physics (RPP) [1], pole-related quantities are beginning to
replace the older Breit-Wigner parameters listed for many
reactions. In principle, there are two ways to extract pole
parameters from experimental data: (i) construct theoretical
single or multichannel models, solve them, fit the obtained
analytic solutions to the data, and extract the pole parameters
of obtained solutions through an analytic continuation of the
model functions into the complex energy plane; or (ii) make
a local expansion of the partial-wave T matrix in the vicinity
of a pole. At present, poles are usually extracted using the
first method [2–6], but considerable effort has been put into
the development of alternate approaches, such as the speed
plot [7], time delay [8], N/D method [9], regularization
procedure [10], or Padè approximation [11].

In this work, we approach the problem in two ways. We
first give the poles of the most recent George Washington
University (GWU-SAID) πN elastic energy-dependent (ED)
amplitudes (WI08) of Refs. [12,13] using analytic continuation
of the GWU-SAID model function into the complex energy
plane (described in detail in Refs. [14,15]). We then compare
the outcome with the results of a new Laurent+Pietarinen
(L + P) expansion method [16–18]. In addition, using the
ability of the L + P method to extract pole positions from
a set of numbers, without explicit knowledge of the analytic
structure of the function which describes them, for the first
time we give pole positions for single-energy (SE) solutions,
which are associated with the WI08 ED amplitudes. No reliable
pole-extraction procedure, starting directly from single-energy
solutions, has been applied to these amplitudes, prior to the
formulation of this method.

*alfred.svarc@irb.hr

Complete sets of pole parameters have not been published
for the most recent GWU-SAID partial-wave analyses solution
WI08 [12,13]. The GWU-SAID results, listed in the RPP, were
obtained in 2006 and based on the SP06 ED solution [13–15].
One goal of this study is thus to update these pole parameters,
from both the ED and SE amplitudes, associated with the
current fit, WI08 [12,13]. As the results from the earlier SP06
fit were quoted without an error estimate, we obtain error
estimates here in order to facilitate a comparison with other
determinations listed in the RPP.

We emphasize that the use of both the analytic continu-
ation and L + P methods for the ED amplitudes provides a
consistency check and an estimate of errors [17], where the
two methods can be compared. The SE amplitudes are given at
discrete energies and are not smooth functions of energy; the
contour integral is not a possibility and we take only the L + P
results. As we describe below, the SE amplitudes differ from
ED values both in having an uncertainly tied more directly to
the data and having an additional structure, which has been
used in the past to check for systematic problems in the ED
fit. This additional structure can lead to further poles being
required for a best L + P fit. In the following, we compare
these added structures to previous findings in the literature.

II. FORMALISM

A. The GWU-SAID ED and SE amplitudes

In the GWU-SAID approach, πN elastic scattering and
ηN production data covering a limited energy range are fitted
using a formalism based on a Chew-Mandelstam K-matrix
approach, having the ED cuts at the πN threshold plus the
π� and ρN branch points. In this way, the amplitudes have
unitarity constraints, though no inelastic channels beyond ηN
have been fitted.

This choice determines how energy dependence is intro-
duced. The scattering into different channels is represented
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by a matrix T̄ , parametrized in terms of K̄ , a (4 × 4) real
symmetric K matrix for each partial wave:

T̄ = K̄(1 − CK̄)−1, (1)

C being a diagonal Chew-Mandelstam function, with Im Ci =
ρi giving the phase-space function for the ith channel (πN ,
ηN , π�, and ρN ).

In order to control the behavior of each T -matrix element
near threshold, the K-matrix elements are expanded as
polynomials in the energy variable Z = (W − Wth), where
W and Wth are the center-of-mass (

√
s) and threshold en-

ergies, respectively. Expanding in factors of Z allows the
fixing of scattering lengths through the value of the leading
term.

In general, a fit of the K-matrix elements, expanded in terms
of an energy variable, may not result in a form satisfying all
of the requirements imposed by analyticity. To remedy this
problem, the analyticity requirement is imposed at fixed four-
momentum transfer t by introducing a complete set of fixed-t
dispersion relations (DRs), which are handled iteratively with
the data fitting, as has been described in Ref. [15]. The DRs
contain subtraction constants which should be independent
of energy (but which can be functions of four-momentum
transfer). After each data-fitting iteration, these constants are

calculated as a function of energy. χ2 deviations from the
average, at a series of energies, are then calculated and included
as pseudodata. The partial-wave amplitudes and the real parts
of the DR invariant amplitudes are then adjusted to minimize
the χ2 from the sum of data and pseudodata. Compatibility
with the DR constraints can be controlled through the errors
assigned to pseudodata in the fit.

As the model is constrained by dispersion relations, the
result also obeys the conditions of analyticity. All extracted
poles are on the first unphysical Riemann sheet (second
Riemann sheet) with the exception of the Roper resonance,
which has two nearby poles: one pole near the π� branch
point on the second Riemann sheet, but the second pole can be
revealed by rotating the π� branch cut, and it appears on the
third Riemann sheet.

Since the form of the K-matrix elements used in the energy-
dependent fits is simple, it can be analytically continued into
the complex energy plane, and it is straightforward to locate
the complex energy positions for the poles and zeros which
influence the on-shell behavior of the amplitudes. Complex-
plane contour plots of ln(|T |2) are generated, a starting
energy near the pole/zero is picked, and the Newton-Raphson
algorithm is used to converge on the structure. Results for the
pole positions (and residues) are given in Tables I–III.

TABLE I. Pole positions in MeV and residues of I = 1/2 partial waves; moduli are given in MeV and phases in degrees. Results for the
WI08 ED solution obtained by using formalism [14,15] are given in boldface, and results obtained from the L + P approach for WI08 ED and
SE solutions are given in normal font. Resonances marked with an asterisk can be alternately explained with a ρN complex branch point. RPP
denotes the range of pole parameters given by the authors of Ref. [1].

PW Resonance Source Re Wp −2Im Wp |residue| θ

N (1535) 1/2−
RPP 1490–1510 90–170 50 ± 20 (−15 ± 15)◦

WI08 1499 98 17 −24◦

WI08 ED L + P 1497 ± 8 ± 1 85 ± 14 ± 7 13 ± 3 ± 1 −(41 ± 12 ± 4)◦

WI08 SE L + P 1507 ± 1 ± 0 88 ± 3 ± 1 17 ± 0.6 ± 0.2 −(22 ± 2 ± 2)◦

S11 N (1650) 1/2−
RPP 1640–1655 100–135 40–46 (−75 ± 25)◦

WI08 1647 83 15 −74◦

WI08 ED L + P 1645 ± 1 ± 4 94 ± 9 ± 1 20 ± 3 ± 1 −(77 ± 7 ± 2)◦

WI08 SE L + P 1654 ± 2 ± 1 112 ± 4 ± 4 27 ± 1 ± 2 −(57 ± 2 ± 2)◦

N (1895)∗ 1/2−
RPP 1900–2150 90–479 1–60 (0–164)◦

WI08
WI08 ED L + P
WI08 SE L + P 1950 ± 16 ± 6 170 ± 37 ± 23 6 ± 1 ± 1 (97 ± 10 ± 5)◦

N (1440) 1/2+
RPP 1350–1365 160–190 40–52 (−100 ± 35)◦

WI08 1358 160 37 −98◦

WI08 ED L + P 1358 ± 2 ± 1 180 ± 6 ± 1 45 ± 1 ± 1 −(91 ± 1 ± 1)◦

WI08 SE L + P 1364 ± 0.7 ± 0.3 182 ± 1 ± 0.5 45 ± 0.4 ± 0.3 −(86 ± 0.5 ± 0.3)◦

P11 N (1710)∗ 1/2+
RPP 1670–1720 80–230 6–15 (90–200)◦

WI08
WI08 ED L + P
WI08 SE L + P 1711 ± 10 ± 0.6 84 ± 20 ± 2 2 ± 0.7 ± 0.1 (171 ± 14 ± 0.4)◦

N (2100)∗ 1/2+
RPP 2120 ± 40 180–420 14 ± 7 (35 ± 25)◦

WI08
WI08 ED L + P
WI08 SE L + P 2004 ± 10 ± 1.3 140 ± 20 ± 1.2 7 ± 0 ± 9 −(126 ± 22 ± 1)◦

RPP 1660–1690 150–400 15 ± 8 (−130 ± 30)◦

P13 N (1720) 3/2+
WI08 1661 304 21 −89◦

WI08 ED L + P 1659 ± 10 ± 1 303 ± 18 ± 1 20 ± 2 ± 1 −(91 ± 6 ± 1)◦

WI08 SE L + P 1668 ± 15 ± 9 303 ± 18 ± 40 16 ± 1 ± 6 −(82 ± 4 ± 8)◦

015207-2



POLE STRUCTURE FROM ENERGY-DEPENDENT AND . . . PHYSICAL REVIEW C 91, 015207 (2015)

TABLE II. Pole positions in MeV and residues of I = 1/2 partial waves; moduli are given in MeV and phases in degrees. The results for
the WI08 ED solution obtained by using formalism [14,15] are given in boldface, and results obtained from the L + P approach for WI08 ED
and SE solutions are given in normal font. Resonances marked with an asterisk can be explained by ρN complex branch point. RPP denotes
the range of pole parameters given by the authors of Ref. [1].

PW Resonance Source Re Wp −2Im Wp |residue| θ

RPP 1505–1515 105–120 35 ± 3 (−10 ± 5)◦

N (1520) 3/2− WI08 1515 110 37 −4◦

WI08 ED L + P 1515 ± 1 ± 1 109 ± 3 ± 1 37 ± 1 ± 1 −(7 ± 1 ± 1)◦

D13 WI08 SE L + P 1512 ± 1 ± 1 113 ± 2 ± 4 37 ± 1 ± 2 −(8 ± 1 ± 1)◦

N (1700)∗ 3/2− RPP 1650–1750 100–350 5–50 (−120 to 20)◦

WI08
WI08 ED L + P
WI08 SE L + P 1752 ± 8 ± 9 572 ± 16 ± 19 49 ± 1 ± 4 −(121 ± 2 ± 7)◦

RPP 1655–1665 125–150 25 ± 5 (−25 ± 6)◦

D15 N (1675) 5/2− WI08 1656 140 27 −22◦

WI08 ED L + P 1657 ± 2 ± 1 139 ± 4 ± 1 27 ± 1 ± 1 −(20 ± 1 ± 1)◦

WI08 SE L + P 1661 ± 1 ± 0 147 ± 2 ± 0.4 28 ± 0.4 ± 0.2 −(18 ± 1 ± 0)◦

RPP 1665–1680 110–135 40 ± 5 (−10 ± 10)◦

N (1680) 5/2+ WI08 1674 113 40 −3◦

WI08 ED L + P 1674 ± 2 ± 1 114 ± 5 ± 2 42 ± 3 ± 2 −(9 ± 3 ± 2)◦

WI08 SE L + P 1678 ± 1 ± 3 113 ± 1 ± 2 43 ± 1 ± 3 (−3 ± 1 ± 4)◦

F15 N (1860)∗ 5/2+ RPP
2030 ± 110

or 1779
480 ± 100

or 248
50 ± 20

(−80 ± 40)◦

WI08 1779 275 53 −63◦

WI08 ED L + P 1774 ± 20 ± 10 242 ± 38 ± 10 28 ± 4 ± 4 −(70 ± 9 ± 18)◦

WI08 SE L + P 1794 ± 1 ± 28 212 ± 1 ± 26 18 ± 1 ± 3 −(63 ± 4 ± 27)◦

RPP
2030 ± 69
1900 ± 30

240 ± 60
260 ± 60

2 ± 1
9 ± 3

(125 ± 65)◦

(−60 ± 30)◦

F17 N (1990) 7/2+ WI08
WI08 ED L + P
WI08 SE L + P 2157 ± 32 ± 30 261 ± 64 ± 40 4 ± 2 ± 1 −(33 ± 21 ± 15)◦

G17 N (2190) 7/2− RPP 2050–2100 400–520 30–72 (−30 to 30)◦

WI08 2066 534 74 −32◦

WI08 ED L + P 2060 ± 4 ± 7 521 ± 10 ± 6 69 ± 2 ± 2 −(36 ± 2 ± 4)◦

WI08 SE L + P 2132 ± 5 ± 19 550 ± 11 ± 14 82 ± 2 ± 5 −(11 ± 2 ± 2)◦

RPP 2150–2250 350–550 20–30 (−50 ± 30)◦

G19 N (2250) 9/2− WI08 2221 416 19 −28◦

WI08 ED L + P 2224 ± 4 ± 1 417 ± 9 ± 1 19 ± 1 ± 1 −(26 ± 1 ± 1)◦

WI08 SE L + P 2283 ± 10 ± 0 304 ± 20 ± 11 12 ± 1 ± 2 (14 ± 5 ± 2)◦

H19 N (2220) 9/2+ RPP 2130–2200 400–560 33–60 (−45 ± 25)◦

WI08 2169 488 63 −56◦

WI08 ED L + P 2177 ± 3 ± 1 464 ± 8 ± 1 56 ± 1 ± 1 −(50 ± 1 ± 2)◦

WI08 SE L + P 2173 ± 5 ± 2 445 ± 11 ± 10 49 ± 2 ± 3 −(53 ± 2 ± 2)◦

The SE solutions are generated, primarily to search for
systematic deviations from the ED result, by fitting data
within narrow energy bins, starting from the ED solution. Soft
constraints are added to keep these fits close to their initial ED
values, though these added constraints generally have little
effect on the fit result. Energy dependence over the bin is
taken to be linear, based on the starting ED value. Here, also,
no dispersion-relation constraints are applied and the energy-
to-energy variation of individual partial-wave amplitudes need
not be smooth. However, the fit to data is improved and one
can check for any energy-dependent structures not contained
in the underlying ED parametrization. In earlier investigations
of the P11 partial wave, it has been noticed that the energy
dependence of GW-SAID SE amplitudes is strikingly similar

to that found in the KH80 solution, an analysis finding
resonances beyond the single Roper resonance reported in
an analysis of the WI08 ED amplitudes. Below, we expand
this study and indicate further resonance signals beyond those
reported for the ED SP06 and WI08 fits.

B. Laurent + Pietarinen method

In Ref. [16] we have presented a new approach to quan-
tifying pole parameters of single-channel processes, based
on replacing the global principle of analytic continuation
applied to model functions with a local Laurent expansion
of partial-wave T matrices, in the vicinity of the real axis.
Here we specifically apply the method to ED and SE solutions
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TABLE III. Pole positions in MeV and residues of I = 3/2 partial waves; moduli are given in MeV and phases in degrees. The results for
the WI08 ED solution obtained by using formalism [14,15] are given in boldface, and results obtained from the L + P approach are for WI08
ED and SE solutions given in normal font. Resonances marked with an asterisk can be explained by ρN complex branch point. RPP denotes
the range of pole parameters given by the authors of Ref. [1].

PW Resonance Source Re Wp −2Im Wp |residue| θ

RPP 1590–1610 120–140 13–20 (−110 ± 20)◦

�(1620) 1/2− WI08 1594 136 18 −108◦

WI08 ED L + P 1595 ± 9 ± 4 138 ± 9 ± 6 18 ± 3 ± 1 −(107 ± 10 ± 9)◦

S31 WI08 SE L + P 1599 ± 2 ± 4 114 ± 4 ± 3 15 ± 1 ± 1 −(102 ± 2 ± 9)◦

�(1900)∗ 1/2− RPP
1820–1910

or 1780
130 − 345 10 ± 3

(−125 ± 20)◦

or (20 ± 40)◦

WI08
WI08 ED L + P
WI08 SE L + P 1878 ± 20 ± 22 160 ± 40 ± 40 6 ± 1 ± 4 −(45 ± 17 ± 22)◦

RPP 1830–1880 200–500 16–45
P31 �(1910) 1/2+ WI08 1764 478 46 171◦

WI08 ED L + P 1744 ± 22 ± 1 361 ± 43 ± 1 24 ± 3 ± 1 (153 ± 8 ± 1)◦

WI08 SE L + P 1773 ± 16 ± 2 326 ± 24 ± 2 18 ± 2 ± 1 (176 ± 7 ± 1)◦

RPP 1209–1211 98–102 50 ± 3 (−46 ± 2)◦
P33 �(1232) 3/2+ WI08 1211 100 53 −47◦

WI08 ED L + P 1211 ± 1 ± 1 98 ± 2 ± 1 49 ± 2 ± 2 −(46 ± 2 ± 2)◦

WI08 SE L + P 1211 ± 0 ± 0 100 ± 1 ± 1 52 ± 1 ± 0 −(46 ± 0 ± 0)◦

�(1600) 3/2+ RPP 1460–1560 200–350 5–44
WI08 1457 421 52 153◦

WI08 ED L + P 1505 ± 19 ± 20 449 ± 31 ± 54 54 ± 4 ± 4 (164 ± 3 ± 8)◦

WI08 SE L + P 1493 ± 7 ± 9 245 ± 8 ± 46 45 ± 10 ± 27 −(135 ± 10 ± 18)◦

RPP 1620–1680 160–300 10–50 (−45 to 12)◦

D33 �(1700) 3/2− WI08 1649 258 18 −22◦

WI08 ED L + P 1652 ± 7 ± 3 248 ± 14 ± 14 17 ± 1 ± 3 −(16 ± 4 ± 2)◦

WI08 SE L + P 1646 ± 4 ± 7 203 ± 8 ± 9 12 ± 1 ± 2 −(13 ± 5 ± 8)◦

RPP 1840 − 1960 175 − 360 7 − 30 (−20 ± 40)◦

D35 �(1930) 5/2− WI08 1970 292 5 −19◦

WI08 ED L + P 1969 ± 15 ± 8 248 ± 32 ± 4 4 ± 1 ± 1 −(13 ± 8 ± 5)◦

WI08 SE L + P 1845 ± 7 ± 24 174 ± 15 ± 25 4 ± 1 ± 2 −(163 ± 5 ± 26)◦

RPP 1805–1835 265–300 25 ± 10 (−50 ± 20)◦

F35 �(1905) 5/2+ WI08 1817 252 15 −31◦

WI08 ED L + P 1814 ± 4 ± 1 273 ± 7 ± 2 18 ± 1 ± 1 −(34 ± 2 ± 1)◦

WI08 SE L + P 1831 ± 4 ± 3 329 ± 6 ± 11 29 ± 1 ± 3 −(8 ± 2 ± 4)◦

RPP 1870–1890 220–260 47–61 (−33 ± 12)◦

F37 �(1950) 7/2+ WI08 1883 231 55 −25◦

WI08 ED L + P 1878 ± 2 ± 2 227 ± 5 ± 1 53 ± 1 ± 1 −(22 ± 1 ± 1)◦

WI08 SE L + P 1888 ± 1 ± 2 234 ± 3 ± 3 57 ± 1 ± 1 −(31 ± 1 ± 2)◦

G39 �(2400) 9/2− RPP 1983 878 24 −139◦

WI08 1966 855 22 −135◦

WI08 ED L + P 1955 ± 7 ± 17 911 ± 13 ± 11 27 ± 1 ± 2 −(149 ± 1 ± 8)◦

WI08 SE L + P
RPP 2260–2400 350–750 12–39 −(30 ± 40)◦

H311 �(2420) 11/2+ WI08 2316 448 7 −73◦

WI08 ED L + P 2320 ± 9 ± 4 442 ± 16 ± 7 7 ± 0.3 ± 0.2 −(71 ± 3 ± 3)◦

WI08 SE L + P

of the GW-SAID group. The main idea of the approach
is not to construct and solve an elaborate physics model
globally, over the full complex-energy plane on all Riemann
sheets, but instead to make use of well-known partial-wave
analytic structure and obtain analytic, quickly converging
expansions representing partial-wave T matrices only locally,
in the vicinity of the real axis and poles on the first unphysical
sheet. We separate the divergent and regular parts of a partial-

wave scattering amplitude using a Laurent (Mittag-Lefler)
decomposition and expand the regular part using a rapidly
convergent Pietarinen series in order to obtain the most general
function with well-defined branch points and branch cuts
(which we choose) to fit the input amplitudes. The number
of expansion terms is defined by the nature of the problem
and obtained by fitting the chosen ED or SE partial wave. In
this way, we represent the partial-wave scattering amplitude
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with the simplest analytic function which contains a minimal
number of poles and has reasonable analytic properties, but is
defined only over a limited region of the complex energy plane.
By fitting, we obtain a certain number of poles and branch
points which effectively represent all inelastic channels, as
determined by the input. The number and position of branch
points is, of course, the approximation, and their choice
represents the model dependence of L + P method. We use
three Pietarinen functions, one with a branch point in the
unphysical region to represent all left-hand cuts and two with
branch points in the physical region to represent all inelastic
channels. The second branch point is usually placed at the
πN elastic threshold, and the third one is either placed at the
dominant inelastic channel opening or allowed to be free. In
this way we were able to introduce an error analysis into the
method. Each choice of branch points generates a different
set of pole parameters (for details, see Refs. [16–18]). The
discrepancy criteria are defined using a discrepancy parameter
Ddp for ED solutions and a χ2

dp quantity for SE solutions.
Unitarity is imposed in the elastic region via a penalty function.
With this method, we are able to extract only poles that are on
the first unphysical Riemann sheet.

1. Laurent and Mittag-Leffler expansion

We expand the full partial-wave T matrix around singu-
larities in the second Riemann sheet using a power series
expansion. Instead of using the Laurent expansion of a function
near a pole, we generalize to the multipole case using the
Mittag-Leffler theorem [16,19], which expresses a function in
terms of its first k poles and an entire function:

T (W ) =
k∑

i=1

a
(i)
−1

W − Wi

+ BL(W ); a
(i)
−1,Wi,W ∈ C. (2)

Here, W is c.m. energy, a
(i)
−1 and Wi are residue and pole

position for the ith pole, and BL(W ) is a function regular
in all W �= Wi . It is important to note that this expansion
is not a representation of the unknown function T (W ) in
the full complex energy plane but is restricted to the part
of the complex energy plane where the expansion converges.
The Laurent series converges on the open annulus around the
expansion point, and if we chose to expand around the pole the
outer radius of the annulus extends to the position of the next
singularity (such as a nearby pole), and inner radius collapses
to a point. Hence, our Laurent expansion converges on a sum
of circles located at the poles, and this part of the complex
energy plane in principle includes the real axes. By fitting the
expansion (2) to the experimental data on the real axis, we in
principle obtain the exact values of S-matrix poles.

2. Pietarinen series

A specific type of conformal mapping technique was
proposed and introduced by Ciulli [20,21] and Pietarinen [22],
and used in the Karlsruhe-Helsinki partial wave analysis [23]
as an efficient expansion of full invariant amplitudes. It was
later used by a number of authors to solve problems in
scattering and field theory [24], but not applied to the pole
search prior to our first study [16]. A more detailed discussion

of the use of conformal mapping and this method can be found
in Refs. [16–18].

At this point let us explain what this conformal mapping
(named Pietarinen expansion in Ref. [23]) actually means in
our case.

If F (W ) is a general unknown analytic function with a cut
starting at W = xP , it can be represented as a power series
of simple “Pietarinen functions,” all having a branch point at
W = xP :

F (W ) =
N∑

n=0

cn X(W )n, W ∈ C

(3)

X(W ) = α − √
xP − W

α + √
xP − W

, cn,xP ,α ∈ R,

with α and cn acting as a tuning parameter and coefficients of
the Pietarinen function X(W ) respectively.

The essence of the approach is that (X(W )n, n = 1, . . . ,N)
forms a complete set of functions defined on the unit circle in
the complex energy plane with a branch cut starting at W = xP ,
so the initially unknown form of any analytic function F (W )
having a branch point at W = xP can be obtained by expanding
it in a rapidly converging power series of simpler X(W ) with
real coefficients, up to the order N , which are determined by
fitting the input data. The unknown form of F (W ) should not
be guessed, but its closest approximation in the form of a
well-defined power series is obtained only by fitting. In the
calculation of Ref. [22], as many as 50 terms were used; in
the present analysis, covering a narrower energy range, fewer
terms are required.

3. Application of Pietarinen series to scattering theory

The analytic structure of each partial wave is well known.
Every partial wave contains poles which parametrize resonant
contributions, cuts in the physical region starting at thresholds
of elastic and all possible inelastic channels, plus t-channel,
u-channel, and nucleon exchange contributions quantified with
corresponding negative energy cuts. However, the explicit
analytic form of each cut contribution is not known. Instead
of guessing the exact analytic form of all of these, we use
one Pietarinen series to represent each cut, and the number of
terms in the Pietarinen series is determined by the quality of
fit to the input data. In principle we have one Pietarinen series
per cut; branch points xP ,xQ, . . . are known from physics, and
coefficients are determined by fitting the input data. In practice,
we have too many cuts (especially in the negative energy
range), and thus we reduce their number by dividing them
into two categories: All negative energy cuts are approximated
with only one, effective negative energy cut represented by
one (Pietarinen) series (we denote its branch point as xP ),
while each physical cut is represented by a separate series
with branch points determined by the physics of the process
(xQ,xR, . . . ).

In summary, the set of equations which define the Laurent
expansion + Pietarinen series method (L + P method) is

T (W ) =
k∑

i=1

a
(i)
−1

W − Wi

+ BL(W ),
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BL(W ) =
M∑

n=0

cn X(W )n +
N∑

n=0

dn Y (W )n

+
P∑

n=0

en Z(W )n + · · · ,

X(W ) = α − √
xP − W

α + √
xP − W

; Y (W ) = β − √
xQ − W

β + √
xQ − W

;

Z(W ) = γ − √
xR − W

γ + √
xR − W

+ · · · a(i)
−1,Wi,W ∈ C

cn,dn,enα,β,γ... ∈ R and xP ,xQ,xR ∈ R or C

and k,M,N,P... ∈ N. (4)

As our input data are on the real axes, the fit is performed
only on this dense subset of the complex energy plane. All
Pietarinen parameters in Eqs. (4) are determined by the fit.

We observe that the class of input functions which may
be analyzed with this method is quite wide. One may either
fit partial wave amplitudes obtained from theoretical models,
or possibly experimental data directly. In either case, the T
matrix is represented by this set of Eqs. (4), and minimization
is usually carried out in terms of χ2.

In practice we use only three Pietarinen functions (one with
a branch point in the unphysical region to represent all left-
hand cuts, and two with branch points in the physical region
to represent the dominant inelastic channels), combined with
the minimal number of poles. This is the main approximation
of the model used in performing the error analysis.

4. Real and complex branch points

While the fit strategy based on Eqs. (4) implies the use of
purely real branch points, we know that complex branch points
in the complex energy plane also exist. This feature can be
simply seen by starting from three-body unitarity conditions;
see Ref. [25]. However, this possibility is also covered by our
model because branch points xP , xQ, xR, . . . in the Pietarinen
expansion (4) can be either real or complex, but each of the
possibilities describe different physical situations.

If the branch points xP , xQ, xR, . . . are real numbers,
this means that our initial- and final-state contributions are
defined by stable initial- and final-state particles. Then, all our
background contributions are described by stable particles as
well.

However, from experience we know that this as a general
principle is not true: A three-body final state is always created
provided that the energy balance allows for it. In addition,
when three-body final states are formed, they typically
consist of one stable particle (nucleon or pion) and several
combinations of two-body resonant substates like σ , ρ, �, . . .
and it is well known that such a situation is described by
complex branch points [25,26]. So, when we choose one of
our branch points to be complex, we describe, for example, a
three-body final state consisting of one stable particle and one
two-body resonant substate.

If we suspect that three-body final state might contribute
significantly to the analyzed process, we choose a model where

the first two branch points xP and xQ are always real, but
the third branch point xR can be either real (two-body final
states) or complex (three-body final state with a resonance in
a two-body subsystem).

However, at this point we should stress that the single-
channel character of the method forbids us to distinguish
between the two. Specifically, purely real or a combination of
real and complex branch points might equally well reproduce
the single-channel data input we fit, and only the knowledge
of other channels may resolve this dilemma.

If only single-channel information is available, we hence
have two alternatives: Either we obtain a good fit with an
extra resonance and stable initial- and final-state particles (real
branch points), or we obtain a good fit with one resonance
less, and a complex branch point. Data from only a single
channel do not distinguish between the two. This effect has
been already examined, elaborated, and discussed in the case
of Jülich model. There, a more detailed treatment shows how
the ρN complex branch point interferes and intermixes with
the P11(1710) 1/2+, as shown in Refs. [26,27].

Issues connected with the importance of inelastic channels,
and two-body resonant substates in three-body final states have
already been recognized in Ref. [7] (paragraphs 4.2 and 4.3);
however, at that time, a formalism to follow and quantify these
effects did not exist, so no estimates were given.

Use of the L + P formalism, with complex branch points,
enables us to study these effects in detail. We cannot dis-
tinguish whether the new resonant state manifests itself as a
new isobar resonance with stable initial and final states (real
branch points), or as a resonance in a two-body subchannel
of three-body final state (complex branch point). For that, we
need the data from extra channels, and experiments giving
information on ratios of two-body/three-body cross sections
at the same energies are badly needed. The advantage of the
Pietarinen expansion method is that it can be extended directly
to complex branch points, and we use it to search partial waves
where ambiguities may exist.

5. The fitting procedure

We use three Pietarinen functions (one with a branch
point in the unphysical region to represent all left-hand
cuts, and two with branch points in the physical region to
represent the dominant inelastic channels), combined with
the minimal number of poles. We also allow the possibility
that one of the branch points becomes a complex number
allowing all three-body final states to be effectively taken
into account. We generally start with five Pietarinen terms
per decomposition and the anticipated number of poles. We
minimize the discrepancy parameter Ddp defined as

Ddp = 1

2 Ndata

Ndata∑
i=1

[(
Re T fit

i − Re Ti

ErrRe
i

)2

+
(

Im T fit
i − Im Ti

Err Im
i

)2]

+
3∑

j=1

λj χ
j
Pen + ϒ

N el
pts∑

j=1

(1 − S(Wj )S(Wj )†)2, (5)
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where Ndata is the number of energies. Amplitude errors are
introduced differently for ED and SE solutions.

For WI08 ED solution errors are introduced as

ErrRe
i = 0.05

∑Ndata
k=1

∣∣ReT WI08
k

∣∣
Ndata

+ 0.05
∣∣ReT WI08

i

∣∣,
(6)

Err Im
i = 0.05

∑Ndata
k=1

∣∣ImT WI08
k

∣∣
Ndata

+ 0.05
∣∣ImT WI08

i

∣∣.
When errors of the input numbers are not given, and one wants
to make a minimization, errors have to be estimated. There are
two simple ways to do this: Either assign a constant error
to each data point or introduce an energy-dependent error
as a percentage of the given value. Both definitions have
drawbacks. For the first recipe only high-valued points are
favored, while in the latter case low-valued points tend to
be almost exactly reproduced. We find neither satisfactory, so
we follow prescriptions used by GWU and Mainz groups and
use a combined error, which consists of a sum of constant and
energy-dependent errors.

The errors for corresponding SE solutions are taken directly
from analyses.

The second term χ
j
Pen = ∑N

k=1(cj
k )2 k3 in the discrepancy

function Ddp is the Pietarinen penalty function (see Ref. [22]),
which guarantees the soft cutoff of higher order terms in the
Pietarinen expansion. The third term is the unitarity constraint.
Parameters λj and ϒ are penalty function adjusting parameters
which serve to bring into correct proportion contributions
from penalty functions and contributions originating from
the data itself. They are determined empirically, prior the fit,
independently for each penalty function.

This quantity is minimized using MINUIT and the quality of
the fit is visually inspected by comparing the fitting function
to the data. If the fit is unsatisfactory (discrepancy parameters
are too high or the fit visually does not reproduce the fitted
data), the number of Pietarinen terms is increased, and if this
is insufficient, the number of poles is increased by one. The fit
is then repeated, and the quality of the fit is re-estimated. This
procedure is continued until we reach a satisfactory fit.

Pole positions, residues, and Pietarinen coefficients α, β, γ ,
ci , di , and ei are our fitting parameters. However, in the strict
spirit of the method, Pietarinen branch points xP , xQ, and
xR should not be fitting parameters; each known cut should
be represented by its own Pietarinen series, fixed to known
physical branch points. While this would be ideal, in practice
the application is somewhat different. We can never include
all physical cuts from the multichannel process. Instead,
we represent them by a smaller subset. So, in our method,
Pietarinen branch points xP , xQ, and xR are not generally
constants; we have explored the effect of allowing them to
vary as fitting parameters. In the following, we demonstrate
that when searched, the branch points in the physical region
still naturally converge towards branch points which belong to
channels which dominate a particular partial wave, but may not
actually correspond to them exactly. The proximity of the fit
results to exact physical branch points describes the goodness
of fit; it tells us how well certain combinations of thresholds
indeed approximate a partial wave. Together with the choice of
degree for the Pietarinen polynomial, this represents the model

dependence of our method. We do not claim that our method
is entirely model independent. However, the method chooses
the simplest function with the given analytic properties which
fit the data and increases the complexity of the function only
when the data require it.

6. Two-body unitarity

As the partial-wave T matrices T (W ) given by Eqs. (4)
do not fulfill the unitarity condition manifestly, we are forced
to impose elastic unitarity below the first inelastic threshold

numerically by introducing a penalty function ϒ
∑N el

pts

j=1(1 −
S(Wj )S(Wj )†)2 into the discrepancy parameter Ddp of the fit
defined in Eq. (5). Above the first inelastic threshold this term
is set to zero.

7. Radius of convergence and reflection principle

As we have noted, the Mittag-Leffler expansion is not
a representation of the unknown function T (W ) in the full
complex energy plane; it is restricted to the part of the complex
energy plane where the expansion converges. The Laurent
(Mittag-Leffler) series converge on the open annulus around
each point, and if we choose poles as expansion points, the
open annulus collapses to a circle around each pole. Thus,
our Laurent expansion converges on a sum of circles located
at the poles, and this part of the complex energy plane in
principle includes the real axes. By fitting the expansion (2) to
the experimental data on the real axis, this in principle gives
exact values of S-matrix poles.

This has, however, a direct consequence on the reflection
principle considerations.

We know that reflection principle states that when we have
a holomorphic function in part of the complex energy plane,
and it is continuous and real valued on the real axis (unitarity),
one can write an analytic continuation for the whole C plane
such that f (z∗) = f ∗(z). One may consider whether our L + P
expansion obeys this principle. However, our expansion is
presently defined and valid only over a part of the complex
energy plane (sum of circles on the second Riemann sheet
located at poles, and extending to the nearest singularity), so
information on the function T L+P at the reflection point z∗
is unavailable to us. One could make an analytic continuation
of the function to the whole second Riemann sheet from z to
the reflection point z∗ through the subthreshold region where
the imaginary part of the T matrix vanishes, but we have not
attempted this as our aim is only to obtain pole parameters,
and not to give the T matrices everywhere in C.

8. Error analysis

In our principal paper [16], we have tested the validity
of the model on a number of well-known πN amplitudes, and
concluded that the method is very robust. That paper, however,
did not present an error analysis. This has been carried out in
Refs. [17,18], and here for completeness we repeat the essential
details.

In the L + P method we have statistical and systematic
uncertainties: (1) statistical and (2) systematic.
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Statistical uncertainty. Statistical uncertainties are simply
taken from MINUIT, which is used for minimization. This is
shown separately in all tables as the first term.

Systematic uncertainty. Systematic uncertainty is the error
of the method itself and requires a more detailed explanation.

Our Laurent decomposition contains only two branch
points in the physical region, and this is not expected to be
sufficient in a realistic case. Any realistic analytic function in
principle contains more than two branch points, but we have
approximated it in our model by using only two.

Thus, we use the following procedure to define systematic
uncertainties:

(i) We always allow the first (unphysical) branch point xP

to be free in the unphysical region because we have no
control over background contributions.

(ii) We always keep the first physical branch point xQ fixed
at xQ = 1077 MeV (the πN threshold).

(iii) The error analysis is done by varying the remaining
physical branch point xR in two ways:
(1) We fix the third branch point xR to the threshold

of the dominant inelastic channel for the chosen
partial wave (e.g., the η threshold for the S wave) if
only one inelastic channel is important, or in case
of several equally important inelastic processes
we perform several runs with the xR branch point
fixed to each threshold in succession.

(2) We release the third branch point xR allowing
MINUIT to find an effective branch point repre-
senting all inelastic channels. If only one channel
is dominant, the result of the fit will be close to
the dominant inelastic channel.

(iv) We average results of the fit and obtain the standard
deviation.

The choice of all values for the branch point xR is given in
the appendix, Table V for ED solutions and Table VI for SE
results. The quality of our fits is measured by the discrepancy
parameter Ddp defined in Eqs. (6) and is given in the tables as
well.

III. RESULTS AND DISCUSSION

A. Real branch points

We give our main results in Tables I and II for I = 1/2 and
in Table III for I = 3/2 partial waves. The agreement of the fit
with the input amplitudes for I = 1/2 is given in Fig. 1 and for
I = 3/2 in Fig. 2. Pietarinen expansion parameters for all fitted
ED and SE solutions (all branch points xP , xQ, xR , number
of resonances, and discrepancy parameters for both isospins
are given in Tables V and VI of the appendix). In Tables I–III
we list all resonant states we have found but denote with an
asterisk those which can be explained by the third branch point
becoming complex. Alternative solutions with one resonance
less are given in Table IV.

First lines (boldface) give the RPP pole values as taken
from Ref. [1]. Second lines, also in boldface, give the pole
values obtained by analytic continuation of T matrices of
WI08 GWU-SAID model into the complex energy plane;

see Refs. [14,15]. If compared to the published values for
SP06 [1,14] one finds only minor deviations. The next two
lines in these tables show results which were obtained when
the L + P method was used to fit the WI08 ED and SE solutions.

From Table V of the appendix (extremely low Ddp), it is
clear that the L + P formalism is fitting the WI08 ED solution
almost perfectly for all partial waves and both isospins; thus the
input data for WI08 are overlapping with the fitting lines, and
are not given in Figs. 1 and 2. The L + P formalism is therefore
giving an analytic solution which is consistent with the input
WI08 amplitude set. We generally find that the differences
between contour-integral and L + P pole parameters are fairly
small; on the level of one standard deviation for pole positions
and somewhat worse for the residua.

The SE solutions are less dependent on the underlying
fit function than are the ED results as discussed above.
This additional freedom comes at the price of sacrificing
analyticity constraints used to generate the ED fit. The
data in single-energy bins are not sufficient to generate
a unique set of partial-wave amplitudes. (For this reason,
dispersion-relation constraints were imposed in the Karlsruhe-
Helsinki [23], Carnegie-Mellon-Berkeley [4], and the present
WI08 analyses.) Introducing L + P formalism enables us to fit
the SE partial-wave results with analytic functions (analyticity
is restored) without introducing any explicit model [16]. From
Table VI of the appendix (reasonably low χ2

dp) and from good
agreement with the input amplitudes, depicted in Figs. 1 and 2,
we conclude that L + P formalism fits the SE solution for all
partial waves and both isospins reasonably well.

When we apply our L + P formalism with real branch points
to SE solutions for both isospins, we see that the number
of resonances needed to explain the input is increased with
respect to the ED WI08 result. We have found new resonances
in S11, P11 (already reported in Ref. [16]), D13, F17, and S31

partial waves. The only problem occurs in high I = 3/2 partial
waves G39 and H311 where the quality of SE solutions is low
and no stable solution with resonances is found. It is interesting
to note that the additional poles found in the SE amplitude fit
N (1895) 1/2−, N (1710) 1/2+, N (2100)1/2+, N (1700)3/2−,
N (1990) 7/2+, and �(1900)1/2− are similar to the ones found
in Refs. [4,23].

B. Complex branch points

As mentioned in Refs. [16], the use of a complex branch
points, applied to ED and SE fits, can produce a result with
one less pole. This test was also applied here, assuming a
ρN branch point, and was capable of compensating for the
additional pole appearing in the S11, P11, D13, F15, and S31

partial waves. This issue cannot be resolved from elastic pion-
nucleon scattering data alone, as it involves the coupling to
final states beyond πN , such as π�, ρN , and σN .

In Table IV we give the parameters for some typical
situations when fits with complex branch point achieve a
similar quality as fits with real branch points (measured by
the size of a discrepancy variable Ddp, see Eq. 5). Here
we repeat that the complex branch point is a mathematical
implementation of the situation when the three-body final
state contains a two-body resonant subchannel accompanied
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FIG. 1. (Color online) Partial-wave amplitudes of the isospin I = 1/2. Dashed (green [light gray] and blue [dark gray]) curves give L + P
fit to the real (imaginary) parts of the WI08 energy-dependent solution. Input data from Ref. [13], which are fitted, are not shown as the fitted
curve goes strictly through them (see extremely low Ddp in Table V of the Appendix). Solid (black and red [gray]) curves give L + P fit to the
real (imaginary) parts of amplitudes corresponding to the WI08 SE solution. (a) S11, (b) P11, (c) P13, (d) D13, (e) D15, (f) F15, (g) F17, (h) G17,
(i) G19, and (j) H19. All amplitudes are dimensionless.
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FIG. 2. (Color online) Partial-wave amplitudes of the isospin I = 3/2. Dashed (green [light gray] and blue [dark gray]) curves give L + P
fit to the real (imaginary) parts of the WI08 energy-dependent solution. Input data from Ref. [13], which are fitted, are not shown as the fitted
curve goes strictly through them (see extremely low Ddp in Table V of the Appendix). Solid (black and red [gray]) curves give L + P fit to the
real (imaginary) parts of amplitudes corresponding to the WI08 SE solution. (a) S31, (b) P31, (c) P33, (d) D33, (e) D35, (f) F35, (g) F37, (h) G39,
and (i) H3 11. All amplitudes are dimensionless.
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TABLE IV. Pole positions in MeV and residues of I = 1/2 and I = 1/2 partial waves; moduli are given in MeV and phases in degrees. Nr

is number of resonance poles. The results from L + P expansion are given for WI08 ED and SE solutions using a ρN complex branch point.

PW Source Nr Resonance Re Wp −2Im Wp |residue| θ xP xQ xR χ 2

S11 WI08 SE 2 N (1535) 1/2− 1511 83 16 −12◦ 743 1077πN (1700 − 70i)ρN 2.77
N (1650) 1/2− 1665 109 27 −34◦

P11 WI08 SE 1 N (1440) 1/2+ 1364 181 44 −85◦ −276 1077πN (1700 − 70i)ρN 1.42
D13 WI08 SE 1 N (1520) 3/2− 1512 108 34 −7◦ 900 1077πN (1700 − 70i)ρN 1.90
F15 WI08 ED 1 N (1680) 5/2+ 1672 121 46 −15◦ 178 1077πN (1700 − 70i)ρN 0.0014

WI08 SE 1 1679 128 52 −33◦ 900 1077πN (1700 − 70i)ρN 2.79
S31 WI08 SE 1 �(1620) 1/2− 1601 113 16 −100◦ −526 1077πN (1700 − 70i)ρN 1.72

by the third “observer” particle. So, we effectively only
replace a resonance contribution from an isobar intermediate
state by a resonant contribution in a three-body subchannel
(final-state interaction). It is important to accept the fact
that both mechanisms (real and complex branch points) are,
unfortunately, indistinguishable in a single-channel model. As
was the case in the Jülich model for P11(1710), other channels
(K� channel in the Jülich model) are essential to distinguish
between the two alternatives. We have further attempted to use
complex branch points and additional resonances in fit the data.
However, without knowing the branching fraction of two-body
to three-body channel, the complex branch point takes over the
whole flux and eliminates the additional resonances altogether.

IV. CONCLUSIONS

We have investigated the pole structure of the most recent
GWU-SAID partial-wave analysis of pion-nucleon elastic
scattering and η-nucleon production data (WI08). For the

ED fit results, both the use of contour integrals and the
L + P expansion method produce pole positions and residues
which are generally consistent within the estimated L + P
uncertainties. Given this success, the L + P expansion has
been applied to the discrete SE fits associated with the WI08
solution. This provides an analytic form which again produces
poles and residues in a case where the contour method is not
applicable. Having pole parameters with error estimates, for
both the ED and SE fits, facilitates a comparison of our results
with those now becoming available from other groups.

Systematic deviations from the ED fits, seen in the discrete
SE amplitudes, require additional poles to achieve a good
description. One can generally associate these added poles
with structures seen in the earlier CMB fit [4] and a more recent
fit [6] by the Bonn-Gatchina group. As noted in Ref. [16], some
of these structures can also be accounted for, in the L + P
method, through the introduction of complex branch points.
This ambiguity remains if only the elastic scattering data are
analyzed.

APPENDIX

TABLE V. Parameters from L + P expansion are given for WI08 ED solutions. Nr is number of resonance poles, and xP ,xQ,xR are branch
points in MeV.

Source
WI08 ED L + P

PW Nr xP xQ xR 102Ddp PW Nr xP xQ xR 102Ddp

S11 2 900 1077πN 1215ππN 0.91 S31 1 884 1077πN 1215ππN 0.01
2 900 1077πN 1486ηN 0.42 1 841 1077πN 1370Real(π�) 0.02
2 900 1077πN 1480free 0.40 1 899 1077πN 1708Real(ρN) 0.05

1 834 1077πN 1633free 0.01
P11 1 292 1077πN 1215ππN 0.59 P31 1 684 1077πN 1215ππN 0.88

1 206 1077πN 1370Real(π�) 0.47 1 623 1077πN 1250free 0.87
1 401 1077πN 1381free 0.40

P13 1 183 1077πN 1215ππN 0.05 P33 2 −273 1077πN 1215ππN 0.11
1 172 1077πN 1370Real(π�) 0.05 2 747 1077πN 1370Real(π�) 0.07
1 −298 1077πN 1318free 0.04 2 8 1077πN 1280free 0.04

D13 1 −809 1077πN 1215ππN 0.43 D33 1 779 1077πN 1215ππN 0.07
1 −1831 1077πN 1370Real(π�) 0.22 1 −149 1077πN 1370Real(π�) 0.06
1 44 1077πN 1708Real(ρN) 0.67 1 −371 1077πN 1284free 0.05
1 76 1077πN 1277free 0.15
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TABLE V. (Continued.)

Source
WI08 ED L + P

PW Nr xP xQ xR 102Ddp PW Nr xP xQ xR 102Ddp

D15 1 314 1077πN 1215ππN 0.29 D35 1 472 1077πN 1688K� 0.95
1 −1948 1077πN 1370Real(π�) 0.41 1 234 1077πN 1345free 0.45
1 699 1077πN 1340free 0.24

F15 2 232 1077πN 1215ππN 0.04 F35 1 181 1077πN 1215ππN 0.55
2 333 1077πN 1370Real(π�) 0.05 1 −867 1077πN 1708Real(ρN) 0.58
2 601 1077πN 1708Real(ρN) 0.04 1 −656 1077πN 1225free 0.54
2 −483 1077πN 1691free 0.04

F17 F37 1 −202 1077πN 1370Real(π�) 0.14
No results 1 −918 1077πN 1708Real(ρN) 0.16

1 −38 1077πN 1407free 0.13
G17 1 −5426 1077πN 1215ππN 0.56 G39 1 869 1077πN 1688K� 0.57

1 −1016 1077πN 1486ηN 0.46 1 −1701 1077πN 1517free 0.33
1 −527 1077πN 1462free 0.34

G19 1 −426 1077πN 1486ηN 0.27 H311 1 −636 1077πN 1215ππN 0.64
1 −404 1077πN 1611K� 0.26 1 204 1077πN 1688K� 0.61
1 −166 1077πN 1646free 0.25 1 −6762 1077πN 1828free 0.33

H19 1 222 1077πN 1486ηN 0.73
1 69 1077πN 1611K� 0.71
1 56 1077πN 1611free 0.71

TABLE VI. Parameters from L + P expansion are given for WI08 SE solutions. Nr is number of resonance poles, and xP ,xQ,xR are branch
points in MeV.

Source
WI08 SE L + P

PW Nr xP xQ xR χ 2
dp PW Nr xP xQ xR χ 2

dp

S11 3 −532 1077πN 1215ππN 3.24 S31 2 405 1077πN 1215ππN 2.76
3 −1.562 1077πN 1486ηN 3.21 2 −1498 1077πN 1370Real(π�) 2.73
3 −961 1077πN 1498free 3.05 2 −524 1077πN 1708Real(ρN) 2.96

2 589 1077πN 1167free 2.38
P11 3 −1369 1077πN 1215ππN 2.61 P31 1 −67941 1077πN 1215ππN 2.68

3 809 1077πN 1370Real(π�) 2.62 1 −27980 1077πN 1214free 2.67
3 −2498 1077πN 1202free 2.57

P13 1 −1798 1077πN 1215ππN 1.59 P33 2 −11292 1077πN 1215ππN 2.83
1 −68 1077πN 1370Real(π�) 1.68 2 −14313 1077πN 1370Real(π�) 2.85
1 −1806 1077πN 1229free 1.58 2 −9413 1077πN 1217free 2.78

D13 2 −7313 1077πN 1215ππN 2.86 D33 1 48 1077πN 1215ππN 2.97
2 −510 1077πN 1370Real(π�) 3.17 1 −1335 1077πN 1370Real(π�) 3.17
2 −937 1077πN 1708Real(ρN) 3.14 1 −86102 1077πN 1227free 2.59
2 −17258 1077πN 1215free 2.81

D15 1 −326 1077πN 1215ππN 2.46 D35 1 −59021 1077πN 1688K� 4.48
1 −2159 1077πN 1370Real(π�) 2.53 1 −505 1077πN 1679free 3.78
1 −295 1077πN 1207free 2.44

F15 2 −2614 1077πN 1215ππN 2.77 F35 1 −6186 1077πN 1215ππN 3.01
2 −2557 1077πN 1370Real(π�) 2.63 1 −10682 1077πN 1708Real(ρN) 3.04
2 −4442 1077πN 1708Real(ρN) 2.77 1 −3142 1077πN 1360free 2.98
2 −1401 1077πN 1231free 2.34

F17 1 −3903 1077πN 1486ηN 2.84 F37 1 −4569 1077πN 1370Real(π�) 2.92
1 −2253 1077πN 1611K� 2.95 1 −1999 1077πN 1708Real(ρN) 2.89
1 700 1077πN 1669free 2.81 1 −2036 1077πN 1384free 2.81
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TABLE VI. (Continued.)

Source
WI08 SE L + P

PW Nr xP xQ xR χ 2
dp PW Nr xP xQ xR χ 2

dp

G17 1 −179 1077πN 1215ππN 2.24 G39

1 −169 1077πN 1486ηN 1.75 No results
1 18 1077πN 1473free 1.52

G19 1 −169 1077πN 1486ηN 2.26 H311

1 −3367 1077πN 1611K� 2.23 No results
1 −4488 1077πN 1620free 2.21

H19 1 −1543 1077πN 1486ηN 2.15
1 −445 1077πN 1611K� 2.16
1 −133 1077πN 1513free 2.11
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[26] S. Ceci, M. Döring, C. Hanhart, S. Krewald, U.-G. Meißner, and
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[27] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.
Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meissner, and
K. Nakayama, Eur. Phys. J. A 49, 44 (2013).

015207-13

http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/j.nuclphysa.2009.08.010
http://dx.doi.org/10.1016/j.nuclphysa.2009.08.010
http://dx.doi.org/10.1016/j.nuclphysa.2009.08.010
http://dx.doi.org/10.1016/j.nuclphysa.2009.08.010
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevC.80.065203
http://dx.doi.org/10.1103/PhysRevC.80.065203
http://dx.doi.org/10.1103/PhysRevC.80.065203
http://dx.doi.org/10.1103/PhysRevC.80.065203
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevD.20.2782
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1088/0031-8949/58/1/002
http://dx.doi.org/10.1088/0031-8949/58/1/002
http://dx.doi.org/10.1088/0031-8949/58/1/002
http://dx.doi.org/10.1088/0031-8949/58/1/002
http://dx.doi.org/10.1140/epja/i2012-12015-8
http://dx.doi.org/10.1140/epja/i2012-12015-8
http://dx.doi.org/10.1140/epja/i2012-12015-8
http://dx.doi.org/10.1140/epja/i2012-12015-8
http://dx.doi.org/10.1103/PhysRevA.78.012709
http://dx.doi.org/10.1103/PhysRevA.78.012709
http://dx.doi.org/10.1103/PhysRevA.78.012709
http://dx.doi.org/10.1103/PhysRevA.78.012709
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRevD.77.116007
http://dx.doi.org/10.1103/PhysRevD.77.116007
http://dx.doi.org/10.1103/PhysRevD.77.116007
http://dx.doi.org/10.1103/PhysRevD.77.116007
http://dx.doi.org/10.1140/epjc/s10052-013-2594-4
http://dx.doi.org/10.1140/epjc/s10052-013-2594-4
http://dx.doi.org/10.1140/epjc/s10052-013-2594-4
http://dx.doi.org/10.1140/epjc/s10052-013-2594-4
http://dx.doi.org/10.1103/PhysRevC.86.035202
http://dx.doi.org/10.1103/PhysRevC.86.035202
http://dx.doi.org/10.1103/PhysRevC.86.035202
http://dx.doi.org/10.1103/PhysRevC.86.035202
http://gwdac.phys.gwu.edu/
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1103/PhysRevC.69.035213
http://dx.doi.org/10.1103/PhysRevC.69.035213
http://dx.doi.org/10.1103/PhysRevC.69.035213
http://dx.doi.org/10.1103/PhysRevC.69.035213
http://dx.doi.org/10.1103/PhysRevC.88.035206
http://dx.doi.org/10.1103/PhysRevC.88.035206
http://dx.doi.org/10.1103/PhysRevC.88.035206
http://dx.doi.org/10.1103/PhysRevC.88.035206
http://dx.doi.org/10.1103/PhysRevC.89.045205
http://dx.doi.org/10.1103/PhysRevC.89.045205
http://dx.doi.org/10.1103/PhysRevC.89.045205
http://dx.doi.org/10.1103/PhysRevC.89.045205
http://dx.doi.org/10.1103/PhysRevC.89.065208
http://dx.doi.org/10.1103/PhysRevC.89.065208
http://dx.doi.org/10.1103/PhysRevC.89.065208
http://dx.doi.org/10.1103/PhysRevC.89.065208
http://dx.doi.org/10.1016/0029-5582(61)90413-8
http://dx.doi.org/10.1016/0029-5582(61)90413-8
http://dx.doi.org/10.1016/0029-5582(61)90413-8
http://dx.doi.org/10.1016/0029-5582(61)90413-8
http://dx.doi.org/10.1007/BF02731270
http://dx.doi.org/10.1007/BF02731270
http://dx.doi.org/10.1007/BF02731270
http://dx.doi.org/10.1007/BF02731270
http://dx.doi.org/10.1007/BF02729562
http://dx.doi.org/10.1007/BF02729562
http://dx.doi.org/10.1007/BF02729562
http://dx.doi.org/10.1007/BF02729562
http://dx.doi.org/10.1103/PhysRevLett.74.4603
http://dx.doi.org/10.1103/PhysRevLett.74.4603
http://dx.doi.org/10.1103/PhysRevLett.74.4603
http://dx.doi.org/10.1103/PhysRevLett.74.4603
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevD.82.113005
http://dx.doi.org/10.1103/PhysRevC.84.015205
http://dx.doi.org/10.1103/PhysRevC.84.015205
http://dx.doi.org/10.1103/PhysRevC.84.015205
http://dx.doi.org/10.1103/PhysRevC.84.015205
http://dx.doi.org/10.1140/epja/i2013-13044-5
http://dx.doi.org/10.1140/epja/i2013-13044-5
http://dx.doi.org/10.1140/epja/i2013-13044-5
http://dx.doi.org/10.1140/epja/i2013-13044-5



