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Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under
extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3)
Polyakov linear-σ model and assume that the external magnetic field (eB) adds some restrictions to the quarks’
energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of
quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized.
This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the
dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is
characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density
and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations,
we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical
temperature Tc and critical chemical potential increase with increasing magnetic field, eB. Last but not least,
the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied.
We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect
becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized
to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the
thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field.
This gives a characteristic phase diagram of T vs external magnetic field eB. At high T , we find that the masses
of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson
states likely have different critical temperatures.
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I. INTRODUCTION

It is believed that at high temperatures and densities
there should be phase transition(s) between confined nuclear
matter and the quark-gluon plasma (QGP), where quarks and
gluons are no longer confined inside hadron bags [1]. Various
theoretical studies have been devoted to tackle the possible
change in properties of the strongly interacting matter, when
the phase transition(s) between hadronic and partonic phases
take place under the effect of an external magnetic field [2–7].
It is conjectured that the strongly interacting system (hadronic
or partonic) can respond to the external magnetic field with
magnetization M and magnetic susceptibility χM [8]. Both
quantities characterize the magnetic properties of the system
of interest. Thus, the effects of the external magnetic field on
the chiral condensates should be reflected in the chiral phase
transition [9]. Also, the effects on the deconfinement order
parameter (Polyakov loop) which includes the confinement-
deconfinement phase transition can be studied [9].

In an external magnetic field, the hadronic and partonic
states are investigated in different models, such as the hadron
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resonance gas (HRG) model [10], and other effective mod-
els [11–19]. The Nambu–Jona-Lasinio (NJL) model [20–22],
the chiral perturbation theory [23–25], the quark model [26],
and certain limits of QCD [27] are also implemented. Further-
more, there are some studies devoted to the magnetic effects
on the dynamical quark masses [28]. The chiral magnetic
effect was studied in context of the Polyakov NJL (PNJL)
model [29]. Lattice QCD calculations in an external magnetic
field were reported recently [9,30–33]. The Polyakov linear-σ
model (PLSM) was implemented to estimate the effects of the
magnetic field on the system [7,34,35].

In the present work, we add some restrictions to the quarks
energy due to the existence of free charges in the plasma
phase. To this end, we apply the Landau theory (Landau
quantization) [36], which quantizes of the cyclotron orbits
of charged particles in magnetic fields. We notice that this
proposed configuration requires an additional temperature
to drive the system through the chiral phase transition.
Accordingly, we find that the values of the chiral condensates
increase with increasing the external magnetic field [5]. A
few remarks are now in order. In many different calculations
for the thermal behavior of the chiral condensates and the
deconfinement order parameter (Polyakov loop) using PNJL
or NJL [2–4], the external magnetic field was not constant.
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Also, the dependence of the critical temperatures of chiral
and confinement phase transitions on the magnetic field was
analyzed [37]. Almost the same study was conducted in
PLSM [5–7]. All these studies lead to almost the same pattern:
the critical temperature of the chiral phase transition increases
with increasing external magnetic field. But, the critical
temperature of the confinement phase transition behaves
oppositely. The latter behavior agrees—to some extent—with
the lattice QCD calculations [9]. In the present work, we study
the effects of an external magnetic field on the phase transition
and deduce the phase-diagram curve using SU(3) PLSM [38].

In light of this, we recall that the PLSM is widely
implemented in different frameworks and for different pur-
poses. The LSM was introduced by Gell-Mann and Levy in
1960 [39], a long time before QCD was known to be the theory
of strong interaction. Many studies have been performed
with LSM, such as O(4) LSM [39], O(4) LSM at finite
temperature [40,41], and U(Nf )r × U(Nf )l LSM for Nf = 2,
3, or even 4 quark flavors [42–45]. In order to obtain reliable
results, Polyakov-loop corrections have been added to LSM,
in which information about the confining glue sector of the
theory was included in the form of a Polyakov-loop potential.
This potential is to be extracted from the pure Yang-Mills
lattice simulations [46–49]. So far, many studies were devoted
to investigating the phase diagram and the thermodynamics of
PLSM at different Polyakov-loop forms with two [50,51] and
three quark flavors [38,52,53]. Also, the magnetic field effect
on the QCD phase transition and other system properties are
investigated using PLSM [7,34,35].

The present paper is organized as follows. In Sec. II, we
introduce details about SU(3) PLSM under the effects of an
external magnetic field. Section III gives some features of
the PLSM in an external magnetic field, such as the quark
condensates, Polyakov loop, some thermal quantities, the
phase transition(s), and scalar and pseudoscalar meson masses
under the magnetic field effect. In Sec. IV, the final conclusions
and outlook are presented.

II. APPROACH

The Lagrangian of LSM with Nf = 2 + 1 quark flavors
and Nc = 3 color degrees of freedom, where the quarks
couple to the Polyakov-loop dynamics, was introduced in
Refs. [38,52,53],

L = Lchiral − U(φ,φ∗,T ), (1)

where the chiral part of the Lagrangian Lchiral = Lq + Lm has
SU(3)L × SU(3)R symmetry [54,55]. The Lagrangian with
Nf = 2 + 1 consists of two parts. The first part represents
fermions, Eq. (2), with a flavor-blind Yukawa coupling g of
the quarks. The coupling between the effective gluon field and
quarks, and between the magnetic field B and the quarks, is
implemented through the covariant derivative [7]

Lq =
∑
f

ψf (iγ μDμ − gTa(σa + iγ5πa))ψf , (2)

where the summation
∑

f runs over the three flavors, f =
1,2,3 for u, d, and s quarks, respectively, and Ta are the Gell-
Man matrices. The flavor-blind Yukawa coupling, g, should

couple the quarks to the mesons [56]. The coupling of the
quarks to the Euclidean gauge field, Aμ, was discussed in
Refs. [46,47]. For the Abelian gauge field, the influence of
the external magnetic field, AM

μ , [34] is given by the covariant
derivative [7],

Dμ = ∂μ − i Aμ − i QAEM
μ , (3)

where Aμ = g Aa
μλa/2 and AEM

μ = (0,Bx,0,0), and Q
is a matrix defined by the quark electric charges Q =
diag(qu,qd,qs) for up, down, and strange quarks, respectively.
The interaction of charged pions π± = (π1 ± iπ2)/

√
2 with

the magnetic field is included by Dμ = ∂μ − i e AM
μ , where e

is the electric charge [7].
The second part of chiral Lagrangian stands for the the

mesonic contribution, Eq. (4),

Lm = Tr(∂μ
†∂μ
 − m2
†
) − λ1[Tr(
†
)]2

− λ2Tr(
†
)2 + c[Det(
) + Det(
†)]

+ Tr[H (
 + 
†)]. (4)

In Eq. (4), 
 is a complex 3 × 3 matrix, which depends on
the σa and πa [55], where γ μ are the chiral spinors, σa are the
scalar mesons and πa are the pseudoscalar mesons.

The second term in Eq. (1), U(φ,φ∗,T ), represents the
Polyakov-loop effective potential [46], which is expressed
by using the dynamics of the thermal expectation value
of a color traced Wilson loop in the temporal direction

(�x) = 〈P(�x)〉/Nc. Then, the Polyakov-loop potential and
its conjugate read φ = (Trc P)/Nc and φ∗ = (Trc P†)/Nc,
respectively. P , which stands for the Polyakov loop, can be
represented by a matrix in the color space [46]

P(�x) = P exp

[
i

∫ β

0
dτA4(�x,τ )

]
, (5)

where β = 1/T is the inverse temperature and A4 = iA0 is
the Polyakov gauge [46,47]. The Polyakov-loop matrix can be
given as a diagonal representation [57].

In the PLSM Lagrangian, Eq. (1), the coupling between
the Polyakov loop and the quarks is given by the covariant
derivative of Dμ = ∂μ − iAμ [53]. It is apparent that the
PLSM Lagrangian is invariant under the chiral flavor group.
This is similar to the original QCD Lagrangian [58–60].
In order to reproduce the thermodynamic behavior of the
Polyakov loop for pure gauge, we use a temperature-dependent
potential U (φ,φ∗,T ). This should agree with the lattice QCD
simulations and have Z(3) center symmetry like the pure
gauge QCD Lagrangian [59,61]. In the case of vanishing
chemical potential, then φ = φ∗ and the Polyakov loop is
considered an order parameter for the deconfinement phase
transition [59,61]. In the present work, we use U (φ,φ∗,T ), a
Landau-Ginzburg type potential, as a polynomial expansion in
φ and φ∗ [58–61]:

U(φ,φ∗,T )

T 4
= −b2(T )

2
φ φ∗ − b3

6
(φ3 + φ∗3) + b4

4
(φ φ∗)2,

(6)
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where φ and φ∗ were introduced previously and b2(T ) =
a0 + a1(T0/T ) + a2(T0/T )2 + a3(T0/T )3, where constants
are a0 = 6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44, b3 =
0.75, and b4 = 7.5.

In Eq. (6), the Vandermonde Jacobian contribution,
κ ln[J (φ,φ∗)], was ignored due the small value of κ . In
principle, the Vandermonde term comes from the change of
variables from vector potential to φ in the path integral and
should guarantee a reasonable behavior of the mean field
approximation [62]; i.e., it was suggested to solve the problem
that the normalized Polyakov loop becomes greater than 1 at
very high temperatures:

J [φ,φ∗] = 27

24π2
[1 − 6φ φ∗ + 4(φ3 + φ∗3) − 3(φ φ∗)2],

where J (φ,φ∗) is the Vandermonde determinant, which is not
explicitly space-time dependent. The dimensionless parameter
κ would be dependent on the temperature and the chemical po-
tential. Therefore, κ should be estimated phenomenologically.

In order to reproduce the pure gauge QCD thermodynamics
and the behavior of the Polyakov loop as a function of
temperature, we use the parameters listed above in this
section [59]. In calculating the grand potential, we use the
mean field approximation [38],

�(T ,μ) = U (σx,σy) + U(φ,φ∗,T ) + �ψ̄ψ (T ; φ,φ∗,B). (7)

The purely mesonic potential is given as

U (σx,σy) = m2

2

(
σ 2

x + σ 2
y

) − hxσx − hyσy − c

2
√

2
σ 2

x σy

+ λ1

2
σ 2

x σ 2
y + 1

8
(2λ1 + λ2)σ 4

x + 1

4
(λ1 + λ2)σ 4

y ,

(8)

where m2, hx , hy , λ1, λ2, and c are the model fixed parame-
ters [55]. The quarks and antiquark contribution to the medium
potential was introduced in Ref. [63], and based on Landau
quantization and magnetic catalysis concepts, Appendix A,
we get

�ψ̄ψ (T ,μf ,eB) = −2
∑
f

|qf |BT

2π

∞∑
ν=0

∫
dp

2π
(2 − 1δ0ν)

×{
ln

[
1 + 3

(
φ + φ∗e− (Ef −μf )

T

)
×e− (Ef −μf )

T + e−3
(Ef −μf )

T

]
+ ln

[
1 + 3

(
φ∗ + φe− (Ef +μf )

T

)
×e− (Ef +μf )

T + e−3
(Ef +μf )

T

]}
. (9)

It is worthwhile to highlight that the chemical potential
used everywhere in the manuscript is the quark one, μf ,
with f being the quark flavor. The different variables are
elaborated in Appendix A. The potential at vanishing eB

reads

�q̄q(T ,μf ) = −2 T
∑
f =l,s

∫ ∞

0

d3 �p
(2π )3

× {ln[1 + 3(φ + φ∗e−(Ef −μf )/T )

×e−(Ef −μf )/T + e−3(Ef −μ)/T ]

+ ln[1 + 3(φ∗ + φe−(Ef +μf )/T )

×e−(Ef +μf )/T + e−3(Ef +μ)/T ]}. (10)

This is the system free of Landau quantization.
The Landau theory quantizes the cyclotron orbits of charged

particles in a magnetic field. For small magnetic fields, the
number of occupied Landau levels (LLs) is large and the
quantization effects are washed out, while for large magnetic
fields the Landau levels are less occupied and the chiral
symmetry restoration occurs for smaller values of the chemical
potential.

According to Eqs. (9) and (10), Eq. (7) get an additional
term,

�(T ,μf ,eB) = U (σx,σy) + U(φ,φ∗,T )

+�ψ̄ψ (T ,μf ; φ,φ∗,eB)

+ δ0,eB�ψ̄ψ (T ,μf ; φ,φ∗), (11)

where �ψ̄ψ (T ,μf ; φ,φ∗) represents the potential term at
vanishing magnetic field, and δ0,eB switches between the two
systems: one at vanishing and one at finite magnetic field.

We notice that the sum in Eqs. (6), (9), and (8) give
the thermodynamic potential density as in Eq. (7). By using
the minimization condition, Appendix B, we can evaluate the
parameters. Having the thermodynamic potential, Eq. (7), we
can determine all thermal quantities including the higher-order
moments of particle multiplicity, and then map out the chiral
phase diagram [38]. The meson masses are defined by the
second derivative with respect to the corresponding fields of
the grand potential, Eq. (7), evaluated at its minimum.

III. RESULTS

The results of the chiral condensates σx and σy , Sec. III A,
the thermodynamic quantities, Sec. III B, the non-normalized
and normalized higher-order moment of particle multiplicity,
Secs. III C and III C 2, respectively, the chiral phase-transition,
Sec. III D and finally the meson masses, Sec. III E, are
introduced as follows.

A. Phase transition: Quark condensates and order parameters

The thermal evolution of the chiral condensates, σx and σy ,
and the Polyakov order parameters, φ and φ∗, is calculated
from Eq. (7) at finite chemical potential and finite magnetic
field using the minimization conditions given in Eq. (B1).
The dependence of the minimization condition on the four
parameters—temperature T , chemical potential μ, magnetic
field B and minimization parameter with respect to it—is
analyzed.

In left-hand panel (a) of Fig. 1, the normalized chiral
condensates, σx and σy , are given as functions of temperature at
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FIG. 1. (Color online) Left-hand panel (a): the normalized chiral-condensates, σx (lower curves) and σy (upper curves), are given as function
of temperature at vanishing chemical potential and different magnetic field values, eB = 10 MeV2 (double-dotted curve), 200 MeV2 (solid
curve), and 400 MeV2 (dotted curve). Right-hand panel (b): the same as in left-hand panel but at a constant magnetic field eB = 200 MeV2

and different quark chemical potentials μ = 100 MeV (solid curve), 200 MeV (dotted curve), and 300 MeV (double-dotted curve).

vanishing chemical potential and different magnetic field val-
ues, eB = 10 MeV2 (double-dotted curve), 200 MeV2 (solid
curve), and 400 MeV2 (dotted curve). We notice that both
condensates increase with increasing magnetic field, eB. This
dependence seems to explain the increase in the chiral critical
temperature Tc with the magnetic field. This in turn agrees with
various studies using PLSM and PNJL [2–7]. The conden-
sates become moderated (smoother) with increasing magnetic
field.

The right-hand panel (b) of Fig. 1 shows the chiral
condensates, σx and σy , as function of temperature at constant
magnetic field eB = 200 MeV2, and finite chemical potentials
μ = 100 MeV (solid curve), 200 MeV (dotted curve), and
300 MeV (double-dotted curve). Both condensates decrease
with increasing the chemical potentials. This dependence gives
a signature for the decreasing behavior of the chiral critical

temperature Tc with increasing the chemical potential, which
obviously agrees with our previous calculations [38]. The
condensates become rowdy (sharper) with increasing chemical
potential.

The left-hand panel (a) of Fig. 2 shows the Polyakov-
loop field and it is conjugation, φ (upper curves) and φ∗
(lower curves), as function of temperature at a vanishing
chemical potential and different magnetic field values, eB =
0.01 GeV2 (double-dotted curve), 0.2 GeV2 (solid curve), and
0.4 GeV2 (dotted curve). Both fields decrease with increasing
magnetic field. This behavior explains the dependence of the
confinement critical temperature on the magnetic field. At
vanishing chemical potential, φ = φ∗. Both Polyakov-loop
fields become smoother with increasing magnetic field.

The right-hand panel (b) shows the same as in the left-hand
panel but at a constant magnetic field eB = 0.2 GeV2 and
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FIG. 2. (Color online) Left-hand panel (a): the Polyakov-loop field and its conjugation, φ and φ∗, are given as function of temperature at a
vanishing constant chemical potential and different magnetic field values, eB = 10 MeV2 (double-dotted curve), 0.2 GeV2 (solid curve), and
400 MeV2 (dotted curve). Right-hand panel (b): the same as in the left-hand panel but at a constant magnetic field eB = 0.2 GeV2 and different
quark chemical potential values, μ = 0.1 GeV (solid curve), 0.2 GeV (dashed curve) and 0.3 GeV (double-dotted curve).
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FIG. 3. (Color online) Left-hand panel (a): the normalized energy density ε/T 4 is given as function of temperature at a vanishing chemical
potential and different magnetic fields: without magnetic field (solid curve) [38], eB = 0.01 GeV2 (long-dashed curve), eB = 0.2 GeV2

(dashed curve), and eB = 0.4 GeV2 (double-dotted curve). The right-hand panel (b) shows the same as in the left-hand panel but at a constant
magnetic field eB = 0.2 GeV2 and different chemical potential values, μ = 0.1 GeV (long-dashed curve), 0.2 GeV (dash-dotted curve), and
0.3 GeV (double-dotted curve). The upper curves represent results from Eq. (9) plus Eq. (10), while lower curves are based on thermodynamic
derivatives from the thermal potential, Eq. (9).

different quark chemical potential values, μ = 0.1 GeV (solid
curve), 0.2 GeV (dashed curve), and 0.3 GeV (double-dotted
curve). We find that φ increases with increasing chemical
potential values but φ∗ decreases. This behavior seems to
agree with our previous calculations [38]. At finite chemical
potential, φ > φ∗.

We conclude that the Polyakov-loop fields φ and φ∗
increase with T ; see Fig. 2. At vanishing μ, both φ and
φ∗ decrease with increasing eB. At finite μ, we find that φ
increases, while φ∗ decreases with eB.

B. Thermodynamic quantities

In this section, we introduce some thermal quantities such
as energy density and trace anomaly. As we discussed in
Ref. [38], the purely mesonic potential, Eq. (8), goes to
infinity at very low temperature and entirely vanishes at high
temperature. From this numerical estimation, we concluded
that this part of potential is only effective at very low
temperatures. Its dependence on the external magnetic field
has been checked, and it was found that finite eB yields a
very tiny contribution to this potential part. As the present
study is performed at temperatures around the critical one,
this potential part can be removed from the effective potentials
given in Eq. (7). In Eq. (8), the chiral condensates, σ ’s, are

small at finite temperature; see Fig. 1. Therefore, much smaller
values are expected for their higher orders and multiples. The
opposite situation is likely at very small temperatures.

1. Energy density

The energy density ε/T 4 at finite quark chemical potential
μf can be obtained as

ε(T ,μf ,eB) = − ∂

∂(1/T )
ln Z(T ,μf ,eB). (12)

In Sec. III A we estimated the parameters: the two chiral
condensates σx and σy and the two order parameters of the
Polyakov loop and its conjugation, φ and φ∗, respectively.
Thus, we can substitute all these into Eq. (12).

The left-hand panel (a) of Fig. 3 presents the normalized
energy density ε/T 4 as a function of temperature at vanishing
chemical potential. In calculating the results, Eqs. (9) and (10)
are implemented as given in Eq. (11). The general temperature
dependence is not absent. Also, we notice that ε/T 4 is sensitive
to the change in eB [63]. Increasing eB seems to increase
the critical temperature at which the system undergoes phase
transition. As the chiral condensates become smoother with
increasing eB, the thermodynamic quantities, such as energy
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FIG. 4. (Color online) The same as in Fig. 3 but for the the trace anomaly (ε − 3p)/T 4.
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FIG. 5. (Color online) Left-hand panel (a): the non-normalized quark number density, m1, is given as function of temperature at a constant
chemical potential μ = 0.1 GeV and different values of the magnetic field, eB = 0.1 GeV2 (double-dotted curve), 0.4 GeV2 (dashed curve),
and 0.7 GeV2 (dotted curve). The right-hand panel (b) shows the same as the left-hand panel but at a constant magnetic field eB = 0.1 GeV2

and different chemical potentials, μ = 0.01 GeV (double-dotted curve), 0.1 GeV (dashed curve), and 0.2 GeV (dotted curve).

density, behave accordingly, i.e., the phase transition becomes
smoother as well.

The right-hand panel (b) shows ε/T 4 as function of
temperature at a constant magnetic field eB = 0.2 GeV2 and
varying quark chemical potentials μ = 0.1 GeV (long-dashed
curve), 0.2 GeV (dash-dotted curve), and 0.3 GeV (double-
dotted curve). The solid curve represents the results in the
absence of an external magnetic field but at μ = 0.1 GeV.
We note that ε/T 4 is not as sensitive to the change in μ [38]
as to the external magnetic field. Despite the lack of chemical
potential dependency, which can be understood due to the large
magnetic field applied, it is believed to have an effect contrary
to that of the chemical potential. To this indirect dependency
of μ and eB, we shall devote a separate work. Again, it seems
that increasing μf decreases Tc.

2. Trace anomaly

At finite quark chemical potential, the trace anomaly known
as interaction measure reads

ε(T ,μf ,eB) − 3p(T ,μf ,eB)

T 4
= T

∂

∂T

p(T ,μf ,eB)

T 4
. (13)

In Fig. 4, we notice that the normalized trace anomaly under
the effect of an external magnetic field becomes smaller than
the corresponding quantity in absence of a magnetic field [38]
at high temperature. This can be explained due the restrictions
added to the quark energy by the Landau quantization through
the magnetic field. We find that increasing eB increases the
critical temperature. This behavior can be understood because
of the dependence of the chiral condensates, Fig. 1, and the
Polyakov-loop potential, Fig. 2, on eB.

In the left-hand panel (a), the trace anomaly (ε − 3p)/T 4,
is given as function of temperature T at vanishing chemical
potential but different values of the magnetic fields: vanish-
ing [38] (solid curve), eB = 0.01 GeV2 (long-dashed curve),
eB = 0.2 GeV2 (dash-dotted curve), and eB = 0.4 GeV2

(double-dotted curve). We notice that the trace anomaly
increases with T until the chiral symmetry is restored. Then,
increasing T reduces the normalized trace anomaly. The
peak represents the critical temperature Tc corresponding to a
certain magnetic field. We find that Tc increases with increasing
eB.

The right-hand panel (b) of Fig. 4 shows the same as in the
left-hand panel but at a constant magnetic field eB = 0.2 GeV2
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FIG. 6. (Color online) The same as in Fig. 5 but for quark number susceptibility m2.
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FIG. 7. (Color online) The same as in Fig. 5 but for the third-order moment of quark number density m3.

and different chemical potentials μ = 0.0 GeV (solid curve),
0.1 GeV (long-dashed curve), 200 MeV (dash-dotted curve),
and 300 GeV (double-dotted curve). The trace anomaly
increases with T until the chiral symmetry is fully restored.
The peaks are positioned at Tc of the certain value for chemical
potential. Here, we find that Tc decreases with increasing μ.
The sensitivity to μ is not as strong as to eB. This might
be interpreted that the high magnetic field applied seems to
contradict the effects of the chemical potential. In other words,
if the magnetic field adds energy to the system, the chemical
potential requires energy in order to produce new particles. We
notice that the dependence on the quark chemical potential is
more obvious than that shown in Fig. 3.

3. Magnetic catalysis effect

In Appendix A, we discuss the magnetic catalysis, Eq. (A6),
and the so-called dimension reduction concepts, Eq. (A6). Due
to the effects of the magnetic field, the latter would mean
modifying the sum over the three-dimensional momentum
space to a one-dimensional one. According to Ref. [38], the
effect of this reduction reduces also the value of the quantity
by almost two-thirds from the expected value. This would
explain the difference between results at vanishing and at finite
eB, left-hand panels (a) of Figs. 3 and 4, for instance. In the
present work, we distinguish between two types of systems. In

the first one, the Landau quantization should be implemented,
i.e., taking into account the magnetic effects, while in the
other system the external magnetic field is not taken into
consideration, i.e., there is no magnetic contribution to the
thermal system.

C. Higher-order moment of particle multiplicity

The higher-order moment of the particle multiplicity is
defined [38,65] as

mi = ∂i

∂ μi

p(T ,μ,B)

T 4
, (14)

where the pressure p(T ,μ,B) = − T ∂ lnZ(T ,μ,B)/∂V is
related to the partition function, which in turn is related to the
potential, lnZ(T ,μ,B) = −V �(T ,μ,B)/T .

In this section, we introduce the first four non-normalized
moments of the particle multiplicity calculated in PLSM
under the effects of an external magnetic field. The thermal
evolution is studied at a constant chemical potential but
different magnetic fields and also at a constant magnetic field
but different chemical potentials. Doing this, it is possible to
map out the chiral phase diagram, for which we determine the
irregular behavior in the higher-order moments as a function
of T and μ.

 0

 0.15

 0.3

 0.45

 0.6

 0.75

 0.15  0.225  0.3  0.375  0.45

m
4

T[GeV]

(a)
μ = 0.1 GeV

eB=0.1 GeV2

eB=0.4 GeV2

eB=0.7 GeV2

 0

 0.15

 0.3

 0.45

 0.6

 0.75

 0.075  0.15  0.225  0.3  0.375

m
4

T[GeV]

(b)
 eB = 0.1 GeV2

μ=0.01 GeV
μ=0.1  GeV
μ=0.2  GeV

FIG. 8. (Color online) The same as in Fig. 5 but for the fourth-order moment of quark number density m4.
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FIG. 9. (Color online) Left-hand panel (a): the dimensionless quark number density m1/T 3 is given as a function of temperature at constant
chemical potential μ = 0.1 GeV and different magnetic fields, eB = 0.1 GeV2 (double-dotted curve), eB = 0.4 GeV2 (dashed curve), and
eB = 0.7 GeV2 (dotted curve). The right-hand panel (b) shows the same as in the left-hand panel but at a constant magnetic field eB = 0.1 GeV2

and different chemical potential values, μ = 0.01 GeV (double-dotted curve), μ = 0.1 GeV (dashed curve), and μ = 0.2 GeV (dotted curve).

1. Non-normalized higher-order moments

Here, we introduce the non-normalized higher-order mo-
ments of the particle multiplicity [38]. The left-hand panels
(a) of Figs. 5, 6, 7, and 8 show the first four non-normalized
moments of the quark distributions. These quantities are
given as functions of temperature at a constant chemical
potential μ = 0.1 GeV and different magnetic fields eB =
0.1 GeV2 (double-dotted curve), 0.4 GeV2 (dashed curve), and
0.7 GeV2 (dotted curve). We find that increasing temperature
rapidly increases the four moments. Furthermore, the thermal
dependence is obviously enhanced when moving from lower
to higher orders. The values of the moment are increasing as
we increase the magnetic field. The fluctuation in the third-
and fourth-order moments reflect the increase of the critical
temperature Tc with increasing magnetic field. The critical
temperature can, for instance, be defined where the peaks are
positioned.

The right-hand panels (b) of Figs. 5, 6, 7, and 8 present
the same as in the left-hand panels but at a constant mag-
netic field eB = 0.1 GeV2 and different chemical potentials,
μ = 0.01 GeV (double-dotted curve), 0.1 GeV (dashed curve),
and 0.2 GeV (dotted curve). It is apparent that increasing

temperature rapidly increases the four moments of quark
number density. Furthermore, the thermal dependence is
obviously enhanced when moving from lower to higher orders.
The values of the moments are increasing as we increase the
chemical potential. But the critical temperature Tc decreases
with μ. The peaks are positioned at the critical temperature.

2. Normalized higher-order moments

The statistical normalization of the higher-order mo-
ments requires a scaling of the non-normalized quantities,
Sec. III C 1, with respect to the standard deviation σ , which
is related to the susceptibility χ or the fluctuations [64,65] in
the particle multiplicity. It is conjectured that the dynamical
phenomena could be indicated by large fluctuations in these
dimensionless moments and, therefore, the chiral phase-
transition can be mapped out [64]. Due to the sophisticated
derivations, we restrict the discussion here to dimensionless
higher-order moments [38]. This can be done when the
normalization is done with respect to the temperature or
chemical potential.

The higher-order moments of the particle multiplicity nor-
malized with respect to temperature are studied in dependence
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FIG. 10. (Color online) The same as in Fig. 9 but for the dimensionless quark number susceptibility m2/T 2.
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FIG. 11. (Color online) The same as in Fig. 9 but for the dimensionless third-order moment of the quark number density m3/T .

on the temperature at a constant chemical potential and differ-
ent magnetic fields. Also they are studied at different chemical
potentials and a constant magnetic field. The corresponding
expressions were deduced in Ref. [38].

In the left-hand panels (a) of Figs. 9, 10, and 11 the first three
normalized moments are given as functions of temperature at
a constant chemical potential μ = 0.1 GeV and different mag-
netic fields, eB = 0.1 GeV2 (double-dotted curve), 0.4 GeV2

(dashed curve), and 0.7 GeV2 (dotted curve). We find that the
values of the moments are increasing as the magnetic field
increases. The fluctuations in the normalized moments would
define the dependence of the critical temperature Tc on the
magnetic field.

The right-hand panels (b) of Figs. 9, 10, and 11 present
the first three normalized moments as function of temperature
but at a constant magnetic field eB = 0.1 GeV2 and different
chemical potentials, μ = 0.01 GeV (double-dotted curve),
0.1 GeV (dashed curve), and 0.2 GeV (dotted curve). We
notice that the moments of quark multiplicity increase with
the chemical potentialsthat the peaks at corresponding critical
temperatures can be used to map out the chiral phase-diagrams,
T vs eB and T vs μ.

D. Chiral phase transition

Now we can study the effects of the magnetic field on
the chiral phase transition. In a previous work [38], we
introduced and summarized different methods to calculate
the critical temperature and chemical potential μc by using
the fluctuations in the normalized higher-order moments of the
quark multiplicity or by using the order parameters. The latter
is implemented in the present work. The PLSM has two order
parameters. The first one presents the chiral phase transition.
This is related to strange and nonstrange chiral condensates,
σx and σy . The second one gives hints for the confinement-
deconfinement phase transition and the Polyakov-loop fields
φ and φ∗. Therefore, for the models having Polyakov-loop
potential, we can follow a procedure as follows. We start
with a constant value of the magnetic field. By using strange
and nonstrange chiral condensates, a dimensionless quantity
reflecting the difference between the nonstrange and strange
condensates �q,s(T ) as a function of temperature at fixed

chemical potentials will be implemented. This procedure
gives one point in the T -μ chart, at which the chiral phase
transition takes place. At the same chemical potential as in the
previous step, we deduce the other order parameter related to
the Polyakov-loop fields as a function of temperature. These
calculations give another point (in T and μ chart), at which
the deconfinement phase transition takes place. By varying
the chemical potential, we repeat these steps. Then, we find a
region (or point), in (at) which the two order parameters, chiral
and deconfinement, cross each other, i.e., equal each other. It
is assumed that such a point represents phase transition(s)
at the given chemical potential. In doing this, we get a
set of points in a two-dimensional chart: the QCD phase
diagram.

In Fig. 12, we compare five chiral phase diagrams, T/Tc0

vs μ/μc0, with each other at eB = 0.1, 0.2, 0.3, 0.4, and
0.5 GeV2 from top to bottom. T/Tc0 are plotted against μ/μc0,
where the two normalization quantities Tc0 = 0.15 GeV and
μc0 = 0.3 GeV were deduced from Ref. [38]. This should give
an indication about the behavior of the critical temperature
and the critical chemical potential of the system under the
effect of the magnetic field. We conclude that both critical
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FIG. 12. (Color online) The chiral phase diagram, T/Tc0 vs
μ/μc0, at different values of the magnetic fields, eB = 0.1, 0.2, 0.3,
0.4, and 0.5 GeV2 from top to bottom. The normalization quantities
Tc0 = 0.15 MeV and μc0 = 0.3 GeV were deduced in Ref. [38].
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FIG. 13. (Color online) Left-hand panel (a): the scalar meson masses, mσ from Eq. (16), mf0 from Eq. (17), are given as functions of
temperature at a constant magnetic field eB = 0.1 GeV2 and different chemical potentials, μ = 0.0 GeV (dotted curve), 0.1 GeV (dashed
curve). and 0.2 GeV (double-dotted curve). Right-hand panel (b): the same as in the left-hand panel (a) but for mσNS

from Eq. (18) and mσS

from Eq. (19).

temperature and critical chemical potential apparently increase
with increasing magnetic field.

E. Meson masses

The masses can be deduced from the second derivative of
the grand potential, Eq. (7) with respect to the corresponding
fields, evaluated at its minimum, which is estimated at
vanishing expectation values of all scalar and pseudoscalar
fields

m2
i,ab = ∂2�(T ,μf )

∂ξi,a∂ξi,b

∣∣∣∣
min

, (15)

where a and b range over 0, . . . ,8 and ξi,a and ξi,b are scalar
and pseudoscalar mesonic fields, respectively. Obviously, i
stands for scalar and pseudoscalar mesons.

The scalar meson masses are [66]

m2
σ = m2

s,00 cos2 θs + m2
s,88 sin2 θs + 2m2

s,08 sin θs cos θs,

(16)

m2
f0

= m2
s,00 sin2 θs + m2

s,88 cos2 θs − 2m2
s,08 sin θs cos θs,

(17)

m2
σNS

= 1
3

(
2m2

s,00 + m2
s,88 + 2

√
2m2

s,08

)
, (18)

m2
σS

= 1
3

(
m2

s,00 + 2m2
s,88 − 2

√
2m2

s,08

)
, (19)

where θs is the scalar mixing angle [66]

θs = 1

2
arctan

[
2
(
m2

s

)
08(

m2
s

)
00 − (

m2
s

)
88

]
,

with (m2
s )ab = m2 δa b − 6Gabcσ̄c + 4Fabcd σ̄c σ̄d . The expres-

sions for Gabc and Fabcd can be found in Ref. [66]. On the tree
level, σ̄c can be determined according to ∂U (σ̄ )/∂σ̄a = 0 =
m2 σ̄a − 3Gabcσ̄b σ̄c + (4/3)Fabcd σ̄b σ̄c σ̄d − ha .

In Fig. 13, the scalar meson masses, mσ from Eq. (16), and
mf0 from Eq. (17), are given as functions of temperature at a
constant magnetic field eB = 0.1 GeV2 and different chemical
potentials μ = 0.0 GeV (dotted curve), 0.1 GeV (dashed
curve), and 0.2 GeV (double-dotted curve). We conclude that
the scalar meson masses decrease as the temperature increases.
This remains until T reaches the critical value. Then, the

vacuum effect becomes dominant and rapidly increases with
the temperature. The effect of the chemical potential is very
obvious. The masses decrease with the increase in chemical
potential. This explains the phase diagram of temperatures and
chemical potentials at a certain magnetic field. The decrease of
the critical temperature with increasing chemical potential is
represented by the low points (minima) in the thermal behavior
of meson masses before switching on the vacuum effect.

In Fig. 14, the four scalar meson masses, mσ from Eq. (16),
mf0 from Eq. (17), mσNS

from Eq. (18), and mσS
from

Eq. (19), are given as function of temperature at two values
of chemical potential, μ = 0.1 GeV in the left-hand panel (a)
and μ = 0.2 GeV in the right-hand panel (b), and different
magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 GeV2

from top to bottom. We notice that the scalar meson masses
decrease as the temperature increases, until it reaches the
critical temperature. Then, the vacuum effect gets dominant
and apparently increases with the temperature. The effect of
the magnetic field is very obvious. The masses increase as the
magnetic field increases. This explains the phase diagram of
temperatures and magnetic field at a certain chemical potential.

In Fig. 15, the normalized scalar meson masses, mσ from
Eq. (16), mf0 from Eq. (17), mσNS

from Eq. (18), and mσS

from Eq. (19) are given as functions of temperature at two
values of chemical potential, μ = 0.1 GeV in the left-hand
panel (a) and μ = 0.2 GeV in the right-hand panel (b), and
different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6 GeV2 from top to bottom. The normalization is done due
to the lowest Matsubara frequencies, 2πT ; see Appendix C.
At high temperatures, we notice that the masses of almost
all meson states become temperature independent, i.e., they
construct a kind of a universal bundle. This would be seen as a
signature for meson dissociation into quarks. In other words,
the meson states undergo a deconfinement phase transition. It
is worthwhile to highlight that the various meson states likely
have different critical temperatures.

At low temperatures, the scalar meson masses normalized
to the lowest Matsubara frequency rapidly decrease as the
temperature increases. Then, starting from the critical temper-
ature, we find that the thermal dependence almost vanishes.
The magnetic field effect is clear, namely the meson masses
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FIG. 14. (Color online) Left-hand panel (a): the four scalar meson masses are given as function of temperature at a constant chemical
potential μ = 0.1 GeV and different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 GeV2 from top to bottom. Right-hand panel (b): the
same as in the left-hand panel but at chemical potential μ = 0.2 GeV.

increase with increasing magnetic field. This characterizes the
T vs eB phase diagram.

The pseudoscalar meson masses are [66]

m2
η′ = m2

p,00 cos2 θp + m2
p,88 sin2 θp + 2m2

p,08 sin θp cos θp,

(20)

m2
η = m2

p,00 sin2 θp + m2
p,88 cos2 θp − 2m2

p,08 sin θp cos θp,

(21)

m2
ηNS

= 1
3

(
2m2

p,00 + m2
p,88 + 2

√
2m2

p,08

)
, (22)

m2
ηS

= 1
3

(
m2

p,00 + 2m2
p,88 − 2

√
2m2

p,08

)
, (23)
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FIG. 15. (Color online) Left-hand panels: the scalar meson masses normalized with respect to the lowest Matsubara frequency are given as
functions of temperature at a constant chemical potential μ = 0.1 GeV and different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 GeV2

from top to bottom. Right-hand panels: the same as in the left-hand panels but at chemical potential μ = 0.2 GeV.

where θp is the pseudoscalar mixing angle [66]

θp = 1

2
arctan

[
2
(
m2

p

)
08(

m2
p

)
00 − (

m2
p

)
88

]
,

with (m2
p)ab = m2 δa b + 6Gabcσ̄c + 4Habcd σ̄c σ̄d . The expres-

sions for Habcd are given in Eq. (11c) in Ref. [66].
In Fig. 16, the pseudoscalar meson masses, mη′ from

Eq. (20), mη from Eq. (21), mηNS
from Eq. (22), and mηS

from Eq. (23), are given as functions of temperature at a
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FIG. 16. (Color online) The same as in Fig. 13 but for pseudoscalar meson masses, mη′ from Eq. (20), mη from Eq. (21), mηNS
from

Eq. (22), and mηS
from Eq. (23).

constant magnetic field eB = 0.1 GeV2 and different chemical
potentials, μ = 0.0 GeV (dotted curve), 0.1 GeV (dashed
curve), and 0.2 GeV (double-dotted curve). It is obvious
that the pseudoscalar meson masses remain constant at low
temperature. At temperatures � Tc, the vacuum effect be-
comes dominant. Accordingly. the pseudoscalar meson masses
increase with the temperature. We shall notice that even the
contribution by the vacuum will be moderated through the
normalization with respect to the lowest Matsubara frequency.

In Fig. 17, the four pseudoscalar meson masses, mη′ from
Eq. (20), mη from Eq. (21), mηNS

from Eq. (22), and mηS

from Eq. (23), are given as functions of temperature at two
constant chemical potentials, μ = 0.1 GeV in the left-hand
panel (a) and μ = 0.2 GeV in the right-hand panel (b), and
different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6 GeV2 from top to bottom. Again, at low temperature,
the masses remain temperature independent. At T � Tc, the
vacuum effect is switched on. Accordingly, the masses increase
rapidly with the temperature.

In Fig. 18, the four pseudoscalar meson masses, mη′

from Eq. (20), mη from Eq. (21), mηNS
from Eq. (22), and

mηS
from Eq. (23), normalized with respect to the lowest

Matsubara frequency are given as functions of temperature
at two constant chemical potentials, μ = 0.1 GeV in the
left-hand panel (a) and μ = 0.2 GeV in the right-hand panel
(b), and different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4,
0.5, and 0.6 GeV2 from top to bottom. The normalization
should result in temperature-independent mesonic states. This
would be seen as a signature for meson dissociation into
quarks. It is obvious that various critical temperatures can
be assigned to various pseudoscalar meson states. The nor-
malized masses start with high values reflecting confinement,
especially at low temperatures. Then, they decrease as the
temperature increases until the critical temperature, Tc, which
differs for different meson states. At higher temperatures, the
dependence of meson masses on temperature is almost entirely
removed.

As introduced in Ref. [67], Table I presents a comparison
between pseudoscalar meson nonets in various effective
models, such as PLSM (present work) and PNJL [68],
compared to the particle data group [69] and lattice QCD
calculations [70,71]. The comparison for scalar states would
be only partly possible. Some remarks are now in order. The

errors are deduced from the fitting for the parameters used in
calculating the equations of state and other thermodynamic
quantities. The output results are very precise for some of the
lightest hadron resonances described by the present model,
PLSM. An extended comparison is given in Ref. [67].

IV. CONCLUSIONS AND OUTLOOK

The QCD phase diagram at vanishing chemical poten-
tial and finite temperature subject to an external magnetic
field gained prominence among high-energy physicists; for
instance, our previous work [63] was based on two concepts
in order to explain the effects of external magnetic field
on the QCD phase diagram. Another study was done in
the framework of the Nambu–Jona-Lasinio (NJL) model and
Polyakov NJL (PNJL) model [73]. The main idea is that the
scalar coupling parameter is taken to be dependent on the
magnetic field intensity. Thus, the scalar coupling parameter
decreases as the magnetic field increases. We also implemented
the relation between the magnetic field and the scalar coupling
parameter in order to fit the lattice QCD results [31]. We
conclude the increase in the magnetic field increases the critical
temperature.

In the presence work, we use the Polyakov linear-σ
model and assume that the external magnetic field adds
some restrictions to the quarks due to the existence of free
charges in the plasma phase. In doing this, we apply Landau
theory (Landau quantization), which quantizes of the cyclotron
orbits of charged particles in a magnetic field. First, we have
calculated and then analyzed the thermal evolution of the
chiral condensates and the deconfinement order parameters.
We notice that the Landau quantization requires additional
temperature to drive the system through the chiral phase
transition. Accordingly, we find that the values of the chiral
condensates increase with increasing external magnetic field.
In contrast to various previous studies, the effects of the
external magnetic field are analyzed, systematically. Accord-
ingly, the dependence of the critical temperatures of chiral and
confinement phase transitions on the magnetic field could be
characterized. We deduced T -μ curves using SU(3) PLSM in
an external magnetic field.

Furthermore, by using the mean field approximation, we
constructed the partition functions and then drove various
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FIG. 17. (Color online) Left-hand panels: the pseudoscalar meson masses are given as functions of temperature at a constant chemical
potential μ = 0.1 GeV and different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 GeV2 from top to bottom. The right-hand panels
show the same as in the left-hand panels but at a constant chemical potential μ = 0.2 GeV.

thermodynamic quantities, such as energy density and inter-
action rate (trace anomaly). Their dependence on temperature
and chemical potential highlights that the effects of an external
magnetic field on the chemical potential were disregarded in
all calculations at finite chemical potential.

We have analyzed the first four non-normalized higher-
order moments of particle multiplicity. The thermal evolution

was studied at a constant chemical potential but different
magnetic fields and also at a constant magnetic field but
different chemical potentials. Doing this, the chiral phase
diagram can be mapped out. We determined the irregular
behavior as a function of T and μ. We found that increasing
temperature rapidly increases the four moments, and the
thermal dependence is obviously enhanced when moving
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FIG. 18. (Color online) Left-hand panels: the pseudoscalar meson masses normalized to the lowest Matsubara frequency are given as
functions of temperature at a constant chemical potential μ = 0.1 GeV and different magnetic fields, eB = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 GeV2

from top to bottom. The right-hand panels show the same as in the left-hand panel but at a constant chemical potential μ = 0.2 GeV.

from lower to higher orders. The values of the moment
are increasing as we increase the chemical potential. But
the critical temperature Tc decreases with μ. The peaks are
positioned at the critical temperature.

The higher-order moments normalized to temperature are
studied at a constant chemical potential and different magnetic

fields. Also, they are studied at different chemical potentials
and a constant magnetic field. The statistical normalization
requires scaling with respect to the standard deviation σ , where
σ is related to the susceptibility χ or the fluctuations. Due to
the sophisticated derivations, the discussion was limited to
dimensionless higher-order moments. This can be done when
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TABLE I. A comparison between pseudoscalar meson masses, JPC = 0−+, in MeV and the corresponding results from PNJL [68]. Both
are compared with the experimental measurements: the Particle Data Group (PDG) [69] and the lattice QCD calculations [70,71].

Symbol PDG [69] Present work PNJL [68,72] Lattice QCD

Hot QCD [70] PACS-CS [71]

π 134.970 ± 6.9 120 126 134 ± 6 135.4 ± 6.2
K 497.614 ± 24.8 509 490 422.6 ± 11.3 498 ± 22
η 547.853 ± 27.4 553 505 579 ± 7.3 688 ± 32
η

′
957.78 ± 60 965 949

the normalization is done with respect to the temperature or
chemical potential. We find that the higher-order moments
increase with the magnetic field. We found that the moments
increase with the chemical potentials, and that the peaks at
corresponding critical temperatures can be used to map out
the chiral phase diagrams: T vs eB and T vs μ.

The effects of the magnetic field on the chiral phase
transition have been evaluated. There are different methods
proposed to calculate the critical temperature and chemical
potential, μc, through implementing fluctuations in the nor-
malized higher-order moments or by the order parameters.
The latter was implemented in the present work. It is obvious
that PLSM has two types of order parameter. The first one
gives the chiral phase transition and is related to strange and
nonstrange chiral condensates. The second one gives hints for
the deconfinement phase transition. Therefore, we can follow
the principle that, at a constant magnetic field and by using
strange and nonstrange chiral condensates, a dimensionless
quantity would reflect the difference between the nonstrange
and strange condensates �q,s(T ) as a function of temperature
at fixed chemical potentials; i.e., a chiral phase transition. At
the same chemical potential, we can deduce the other order
parameter related to the Polyakov-loop fields as a function
of temperature. Both calculations give one point at which the
two order parameters cross each other. It is assumed that such
a point represents the transition point at the given chemical
potential. We repeat this at various chemical potentials and
get a set of points in a two-dimensional chart: the QCD
phase diagram. We have compared five QCD phase diagrams,
T/Tc0 vs μ/μc0, with each other at five different values of the
magnetic field. We found that both critical temperature and
critical chemical potential increase with increasing magnetic
field.

The masses can be deduced from the second derivative of
the grand potential with respect to the corresponding fields,
evaluated at its minimum, which is estimated at vanishing ex-
pectation values of all scalar and pseudoscalar fields. We have
studied scalar and pseudoscalar meson masses as functions
of temperature at two different values of magnetic field and
different chemical potentials. We concluded that the meson
masses decrease as the temperature increases. This continues
until T reaches the critical value. Then, the vacuum effect
becomes dominant and rapidly increases with the temperature.
The decrease of the critical temperature with increasing
chemical potential is represented by the low points (minima)
in the thermal behavior of meson masses before switching
on the vacuum effect. At low temperatures, the scalar meson

masses normalized to the lowest Matsubara frequency rapidly
decrease as the temperature increases. Then, starting from
the critical temperature, we find that the thermal dependence
almost vanishes. Furthermore, the meson masses increase with
increasing magnetic field. This characterizes the T vs eB phase
diagram. At high temperatures, we notice that the masses of
almost all meson states become temperature independent, i.e.,
constructing kind of a universal line. This would be seen as a
signature for meson dissociation into quarks. In other words,
the meson states undergo a deconfinement phase transition. It
is worthwhile to highlight that the various meson states likely
have different critical temperatures.
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APPENDIX A: MAGNETIC CATALYSIS

For simplicity, we assume that the direction of the magnetic
field B goes along the z direction. From the magnetic
catalysis [74] and by using Landau quantization, we find that
when the system is affected by a strong magnetic field, the
quark dispersion relation will be modified to be quantized by
the Landau quantum number, n � 0, and therefore the concept
of dimensional reduction will be applied:

Eu =
√

p2
z + m2

q + |qu|(2n + 1 − σ )B, (A1)

Ed =
√

p2
z + m2

q + |qd |(2n + 1 − σ )B, (A2)

Es =
√

p2
z + m2

s + |qs |(2n + 1 − σ )B, (A3)

where σ is related to the spin quantum number and S
(σ = ±S/2). Here, we replace 2n + 1 − σ by one quantum
number ν, where ν = 0 is the lowest Landau level (LLL). The
maximum Landau level (MLL) was determined according to
Eq. (A7) [75]. The masses mf , where f runs over u-, d-, and
s-quark masses,

mq = g
σx

2
, (A4)

ms = g
σy√

2
. (A5)
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We apply another magnetic catalysis property [74], namely
the dimensional reduction. As the name says, the dimensions
will be reduced as D −→ D − 2. In this situation, the three-
momentum integral will transformed into a one-momentum
integral,

T

∫
d3p

(2π )3
−→ |qf |BT

2π

∞∑
ν=0

∫
dp

2π
(2 − 1δ0ν), (A6)

where 2 − 1δ0ν represents the degeneracy in the Landau level,
since for the LLL we have single degeneracy and doublets for
the upper Landau levels,

νmax = �2
QCD

2|qf |B . (A7)

We use mq and ms for non-strange and strange quark masses,
i.e., the masses of light quarks degenerate. This is not the case
for the electric charges. In Sec. II, qu, qd , and qs are described.

APPENDIX B: MINIMIZATION CONDITION

We notice that the thermodynamic potential density as
given in Eq. (7), which has seven parameters m2, hx , hy , λ1,
λ2, c, and g, two unknown condensates σx and σy , and the
order parameters for the deconfinement, φ and φ∗. The six
parameters m2, hx , hy , λ1, λ2, and c are fixed in the vacuum by
six experimentally known quantities [55]. In order to evaluate
the unknown parameters σx , σy , φ, and φ∗, we minimize the
thermodynamic potential, Eq. (7), with respect to σx , σy , and
φ and φ∗ or φR and φ∗

R . Doing this, we obtain a set of four
equations of motion,

∂�1

∂σx

= ∂�1

∂σy

= ∂�1

∂φ
= ∂�1

∂φ∗

∣∣∣∣
min

= 0, (B1)

meaning that σx = σ̄x , σy = σ̄y , φ = φ̄ and φ∗ = φ̄∗ are the
global minimum.

APPENDIX C: MATSUBARA FREQUENCIES

In finite-temperature field theory, the Matsubara frequen-
cies are a summation over the discrete imaginary frequency,
Sη = T

∑
iωn

g(iωn), where g(i ωn) is a rational function,

ωn = 2 nπ T for bosons and ωn = (2 n + 1) π T for fermions
and n = 0, ± 1, ± 2, . . . is an integer playing the role of
a quantum number. By using Matsubara weighting function
hη(z), which has simple poles exactly located at z = i ωn, then

Sη = T

2πi

∮
g(z) hη(z) dz, (C1)

where η = ± stands for the statistic sign for bosons and
fermions, respectively. hη(z) can be chosen depending on
which half plane the convergence is to be controlled,

hη(z) =

⎧⎪⎨
⎪⎩

η
1 + nη(z)

T
,

η
nη(z)

T
,

(C2)

where nη(z) = (
1 + η ez/T

)−1
is the single-particle distribu-

tion function.
The mesonic masses are conjectured to have contributions

from Matsubara frequencies [76]. Furthermore, at high tem-
peratures, � Tc, the behavior of the thermodynamic quantities,
including the quark susceptibilities and the masses are affected
by the interplay between the lowest Matsubara frequency and
the Polyakov-loop correction [77]. We apply normalization
for the different mesonic sectors with respect to the lowest
Matsubara frequency [78] in order to characterize the dis-
solving temperature of the mesonic bound states. It is found
that the different mesonic states have different dissolving
temperatures. This would mean that the different mesonic
states have different Tc’s at which the bound mesons begin to
dissolve into quarks. Therefore, the normalized masses should
not be different at T > Tc. To a large extent, their thermal and
density dependence should be removed, so that the remaining
effects are defined by the free energy [76], i.e., the masses of
free besons are defined by ml .

That the masses of almost all mesonic states become
independent on T , i.e., constructing a kind of a universal line,
is seen as a signature for meson dissociation into quarks. It
is a deconfinement phase transition, where the quarks behave
almost freely. In other words, the characteristic temperature
should not be universal, as well. So far, we conclude that the
universal Tc characterizing the QCD phase boundary is indeed
an approximative average (over various bound states).
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