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Wilson coefficients of light four-quark condensates in QCD sum rules are evaluated for pseudoscalar D

mesons, thus pushing the sum rules toward mass dimension 6. In contrast to the situation for q̄q mesons, the
impact of the four-quark condensates for vacuum as well as in-medium situations is found to be rather small
within the Borel window used in previous analyses. The complete four-quark condensate contributions enable us
to identify candidates for an order parameter of spontaneous chiral symmetry breaking and/or restoration as well
as to evaluate stability criteria of operator product expansions.
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I. INTRODUCTION

QCD sum rules [1] represent a valuable tool for establishing
a link between quantum chromodynamics (QCD), formulated
in quark and gluon degrees of freedom, and hadron physics.
By separating the soft, long-range phenomena and the hard,
perturbatively calculable effects, many hadronic properties
become accessible. Hereby, the condensates—i.e., expectation
values of QCD operators absorbing the long-range effects—
serve as input parameters which can be adjusted at selected
observables. The separation of scales seems unproblematic in
the light-quark sector. However, when including heavy quarks,
their masses enter the scheme as additional scales requiring
extra effort. Nevertheless, since other methods (such as lattice
QCD evaluations, Schrödinger equation approaches with
potentials, Dyson-Schwinger and Bethe-Salpeter equations,
etc.) are at our disposal, a comparative evaluation is of interest.

Among the central issues of hadron physics in the light-
quark sector is chiral symmetry and its breaking pattern.
If one relates spontaneous chiral symmetry breaking with
the nonzero value of the chiral condensate in vacuum,
〈q̄q〉0 ≈ (−245 MeV)3, one is tempted to ask for observable
consequences of chiral restoration; i.e., to which extent do
hadron observables change under a change of the chiral
condensate [2]. In leading order, at nonzero temperature T
and/or density n, the chiral condensate is modified according
to 〈q̄q〉T ,n ≈ 〈q̄q〉0(1 − T 2

8f 2
π

− σN n
m2

π f 2
π

) (cf. [3,4]), where nonzero
temperatures are modeled by a pion gas and nonzero densities
by ambient nucleons. The symbol fπ denotes the pion decay
constant, mπ is the pion mass, and σN is the nucleon sigma
term [4]. That means, at nonzero temperature and/or density,
the chiral condensate is diminished relative to its vacuum
value. Chiral restoration may be understood accordingly as
being necessarily accompanied by 〈q̄q〉T ,n → 0. Also fur-
ther condensates, especially four-quark condensates, exhibit
noninvariant behavior under chiral transformations [5–7].
Such condensates are candidates for order parameters of
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spontaneous chiral symmetry breaking and restoration similar
to the chiral condensate.

While deconfinement accompanied by dissolving hadron
states is the obviously strongest medium modification of
hadrons, more modest modifications have been envisaged
during the last two decades (see [3,4,8] for surveys on medium
modifications of hadrons). The seminal paper by Hatsuda and
Lee [9] devises a scenario where spectral properties of mesons
(most notably condensed into moments characterizing masses
and widths) do change in a strongly interacting environment.
Clearly, there are further condensates which change at nonzero
temperature and density [3,8]. Most prominently, the gluon
condensate related to scale invariance breaking exhibits such
behavior.

Evaluation of QCD sum rules means the follow-
ing, within the present context. The hadronic spectral
density ρ(ω2) = Im �(ω2)/π is related to the current-
current correlator �(p) by a vacuum dispersion relation
1
π

∫ ∞
0 dω2 Im �(ω2)/(ω2 − p2) = �(p2) with the right-hand

side being accessible perturbatively at small distances. As
a first step, the operator product expansion (OPE), after
a Borel transformation �(p2) −→ �̂(M2) [1,10], leads to
a representation �̂(M2) = ∑

k Ck(M2) 〈Ok〉, where 〈Ok〉 =
{1,〈q̄q〉,〈(αs/π )G2〉, . . .} contains the unit element 1, as-
sociated with the perturbative term, and condensates, e.g.
〈O1〉 = 〈q̄q〉, 〈O2〉 = 〈(αs/π )G2〉, etc., associated with the
nonperturbative terms, dubbed power corrections; Ck(M2) are
the corresponding Wilson coefficients, which depend on the
Borel mass M as remainder of the momentum (p) dependence
of the correlator. In such a way the long-range phenomena are
separated from short-range phenomena. For the ρ meson at
rest the series reads1

�̂(ρ)(M2)=C
(ρ)
0 M2+ C

(ρ)
1

M2
〈q̄q〉 + C

(ρ)
2

M2

〈
αs

π
G2

〉
+ C

(ρ)
3

M4
〈O3〉

+ · · · , (1)

1The OPE leads to an asymptotic series, where dots in the displayed
series denote higher power corrections which may break down
the expansion, thus requiring a careful evaluation of the OPE’s
convergence behavior.
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where the superscript (ρ) is a reminder that, for the moment,
we are talking about the ρ meson which has been analyzed
extensively [11].

The second step in the sum rule evaluation consists of
deducing properties of ρ(ω2) once �̂(M2) is given. We
focus on step one, i.e., the calculation of the so-called
OPE side, e.g., in the form of the series expansion (1).
Writing schematically 〈O3〉 = κ〈q̄q〉2, where κ accounts
for deviations from factorization of four-quark condensates,
one observes in fact that, for Borel masses M ∼ 1 GeV, the
chiral condensate term ∝ C

(ρ)
1 /M2 is numerically suppressed,

and the gluon condensate term ∝ C
(ρ)
2 /M2 as well as the four-

quark condensate combinations ∝ C
(ρ)
3 /M4 are of the same

order of magnitude for a typical choice κ ∼ 2 [12]:

�̂(ρ)(M2) = 1 + αs
π

8π2
M2 + mq

M2
〈q̄q〉

+ 1

24M2

〈αs

π
G2

〉
− 112παs

81M4

κ

2
〈q̄q〉2 + · · ·

= M2

8π2

(
1.11 − 0.0058

GeV 4

M4

+ 0.039
GeV 4

M4
− 0.026

GeV 6

M6
+ · · ·

)
, (2)

where αs = g2/4π = 0.35, mq = 0.005 GeV, 〈q̄q〉 =
(−0.245 GeV)3, and 〈(αs/π )G2〉 = 0.012 GeV4 have been
used.

In the qQ sector2, the situation is different: The chiral con-
densate appears in the scale-dependent combination mQ〈q̄q〉;
i.e., the heavy-quark mass mQ acts as an amplification factor
of the chiral condensate term with sizable impact on spectral
properties of qQ mesons [7]. Furthermore, the in-medium sum
rule has an even and an odd part with respect to the meson
energy p0, satisfying �(p) = �even(p0, 	p) + p0 �odd(p0, 	p),
since particles and antiparticles are to be distinguished; i.e., the
above dispersion integral runs now over positive and negative
frequencies. In the light chiral limit, mq → 0, the first known
terms have the structure [13,14]

�̂even(M2) = C0 + e−m2
Q/M2

6∑
k=1

ceven
k (M2) 〈Ok〉even, (3a)

�̂odd(M2) = e−m2
Q/M2

3∑
k=1

codd
k (M2) 〈Ok〉odd, (3b)

with the perturbative term C0 and condensates 〈O1〉even =
〈O1〉, 〈O2〉even = 〈q̄gσGq〉, 〈O3〉even = 〈O2〉, 〈O4〉even =
〈(αs/π )[(vG)2/v2−G2/4]〉, 〈O5〉even =〈q†iD0q〉, 〈O6〉even =
〈q̄[D2

0 −gσG/8]q〉 and 〈O1〉odd =〈q†q〉, 〈O2〉odd =〈q†D2
0q〉,

2We use henceforth the shorthand notation qQ for q̄Q and Q̄q
mesons. The correlators of mesons q̄Q and antimesons Q̄q satisfy
the relation �q̄Q(p) = �Q̄q(−p) [13].

〈O3〉odd = 〈q†gσGq〉. The coefficients ceven,odd
k (M2) are the

Wilson coefficients modulo a common factor e−m2
Q/M2

. With-
out knowledge of the Wilson coefficients of the four-quark
condensates it is hardly possible to estimate their impact
on �̂ in the sum rule, and a simple order-of-magnitude
comparison can be misleading. [For example, in the above ρ
meson sum rule (2), 〈(αs/π )G2〉 = 0.012 GeV4 and 〈q̄q〉2 =
0.00022 GeV6 would lead one to guess that the latter con-
densate contribution is negligible at M ∼ 1 GeV. However,
it is the Wilson coefficient C

(ρ)
2 = 1/24 which makes the

gluon contribution comparable to the four-quark condensate
term with C

(ρ)
3 = (112/81)παs.] Therefore, a calculation of

Wilson coefficients of the in-medium four-quark condensates
entering QCD sum rules for qQ mesons is mandatory. This is
the goal of the present paper. Equipped with these four-quark
condensate contributions one can extend previous OPEs and
QCD sum rule studies of spectral properties of pseudoscalar
qQ mesons. Furthermore, and more importantly, one is able
to identify four-quark condensate contributions which are not
invariant under chiral transformations and, thus, may serve as
order parameters of spontaneous chiral symmetry breaking. As
pointed out in Ref. [7], also in qQ meson systems, the splitting
of the spectral densities between parity partners is driven by
such order parameters.

Medium modifications of D mesons have become an
interesting topic in recent years, since open charm mesons
and charmonium serve as probes of hot nuclear matter
and deconfinement effects [11]. Mesons with charm (or
bottom) can serve equally well as probes of dense or even
saturated nuclear matter (see [15–23] for recent works and
further references). For such theoretical investigations the
finite-density QCD sum rules look promising [13,14,24–26].
Although four-quark condensates can influence the in-medium
properties significantly, as recalled above for the ρ meson, no
light four-quark condensate contributions of the OPE have
been used so far to improve the evaluation of in-medium
modifications of qQ mesons. Accordingly, we are going to
include here light four-quark condensate contributions, thus
extending the previous studies.

The common problem of presently poorly known numerical
values of four-quark condensates requires a further treatment
of these contributions. Thus, we resort here to the argument
that heavy quarks are static and do not condense; i.e., one ne-
glects all contributions of condensates containing heavy-quark
operators [10]. Light four-quark condensates are eventually
factorized based on the ground state saturation hypothesis to
arrive at an order-of-magnitude estimate of their impact.

Including four-quark condensates is a difficult task and
has only been done in vacuum qQ systems employing
factorization up to now. In vacuum, the number of terms
involves only a small amount of the possible in-medium
contributions. Furthermore, assuming vacuum saturation from
the very beginning in order to factorize four-quark condensates
simplifies evaluations drastically. This is the reason why
even in vacuum only few works deal with nonfactorized
four-quark condensates [27,28], and factorized four-quark
condensates have never been considered in qQ systems in the
medium.
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Π(0) =

(a)

+

(b)

+

(c)

+

(d)

+

(e)

+

(f)

+

(g)

+

(h)

+ . . .

FIG. 1. Diagrammatic representation of the contribution (7a) to the current-current correlator, where a selection of topologically relevant
diagrams is displayed. Solid lines stand for free quark propagators, wiggly lines are for gluons, and crosses symbolize local quark or gluon
condensation. In our expansion scheme, we retain only the diagrams (a)–(c) contributing to the perturbative term C0 (a) and yielding the Wilson
coefficients ceven

3 and ceven
4 [(b) and (c)] in Eq. (3a) since the other ones [(d)–(h)] are of higher order in g.

In this work, the nonfactorized light four-quark condensate
contributions in the medium are presented, and their numerical
impact to the OPE is estimated using the factorization hypoth-
esis. The presented numerical examples focus on open charm
mesons in nuclear matter to be studied at the GSI Facility for
Antiproton and Ion Research (FAIR) by the CBM [29] and
PANDA [30] Collaborations, since such an investigation is
mandatory to provide an improved theoretical basis for these
future large-scale experiments.

Our paper is organized as follows. In Sec. II, we provide the
evaluation of the OPE leading to the power corrections of the
perturbative terms of the current-current correlator. In doing
so, we apply a certain truncation scheme which includes sys-
tematically light four-quark condensates in leading order of the
strong coupling. We list the four-quark condensates and their
Wilson coefficients for pseudoscalar qQ mesons in Sec. III.
Section IV employs factorization of four-quark condensates
to arrive at a sum rule where only known condensates enter.
Numerical estimates of four-quark condensate contributions
to the in-medium OPE of qQ mesons are presented in Sec. V.
Section VI compares four-quark condensate contributions of
ρ and D mesons. The summary can be found in Sec. VII. The
Appendix details the herein employed OPE technique, such
that all results can be confirmed by the interested reader.

II. QCD SUM RULES FOR qQ MESONS

We consider the causal current-current correlator in
leading-order perturbation theory α0

s :

�(p) = i

∫
d4x eipx〈T[j (x)j †(0)]〉 (4)

with the interpolating pseudoscalar current

j (x) = q̄(x)iγ5Q(x), (5)

where T[· · · ] means time ordering and 〈· · · 〉 denotes the Gibbs
average. We compute Wilson coefficients using the back-
ground field method in Fock-Schwinger gauge xμAμ(x) = 0
[31]. A compact description of the calculus in leading-order
perturbation theory is provided in [7,13]. Utilizing Wick’s
theorem the correlator decomposes as

�(p) = �(0)(p) + �(2)(p)

= + (6)

with

�(0)(p) = −i

∫
d4x eipx 〈: Trc,D[Sq(0,x)γ5SQ(x,0)γ5] :〉,

(7a)

�(2)(p) = +
∫

d4x eipx 〈: Q̄(0)γ5Sq(0,x)γ5Q(x)

+ q̄(x)γ5SQ(x,0)γ5q(0) :〉, (7b)

where terms associated with disconnected diagrams are omit-
ted. The notation Trc,D means traces over color and Dirac
indices respectively and : · · · : represents normal ordering
with respect to the perturbative ground state. �(0)(p) denotes
the fully Wick-contracted term and �(2)(p) is the two-quark
term; i.e., the superscript number in parentheses refers to
the number of Wick-uncontracted quark field operators of
the interpolating currents. The full light-quark propagator
in the gluonic background field is defined as Sq(x,y) =
−i〈0|T[q(x)q̄(y)]|0〉 (with q → Q for the full heavy-quark
propagator; see the Appendix for further details). In the
diagrammatic representation of the decomposition (6) dashed

Π(2) =

(a)

+

(b)

+

(c)

+

(d)

+

(e)

+ . . .

FIG. 2. Diagrammatic representation of the contribution (7b), where a selection of topologically relevant diagrams are displayed as in
Fig. 1, too.
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lines denote the pseudoscalar current, double lines sym-
bolize full quark propagators whereas single lines are for
free quark propagators, and circles denote nonlocal quark
condensation.

Employing the expansion (A2) in (7a) generates a series
of terms where a (few) soft gluon(s) couple to quark, gluon,
and quark-gluon condensates (see Fig. 1), while an analogous
series emerges from (7b) utilizing the covariant expansion of
the quark operator additionally; see Fig. 2.

Up to mass dimension 5 the corresponding infrared stable
Wilson coefficients can be found in [13,14], providing coeffi-
cients for the vacuum and medium-specific quark, gluon, and
mixed quark-gluon condensates listed below Eq. (3). These
refer to diagrams (a)–(c) in Fig. 1 and (a)–(c) in Fig. 2 as well
as diagrams associated with nonlocal condensation. Using the
formulas in [7,13] one also obtains Wilson coefficients of light
four-quark condensates, where the corresponding tree-level
diagrams [see Fig. 2, diagrams (d) and (e)] contain one
soft-momentum gluon line.

Since we truncate here the series expansion of (7a) and
(7b) at order g2, light four-quark condensate contributions
arise only from (7b), i.e., diagrams (d) and (e) in Fig. 2. The
other diagrams in the upper line of Fig. 2 refer to the two-quark
(a) and the quark-gluon condensate contributions (b) and (c),
respectively.

III. FOUR-QUARK CONDENSATE CONTRIBUTIONS

A. Wilson coefficients

We focus now on the evaluation of the light-quark con-
densate contributions in mass dimension 6 containing the
particularly interesting four-quark condensates.3 For a handy
notation, we denote by �dim6 those contributions to �(2), see
(6), where dimension-6 light-quark condensates are involved
[e.g., the four-quark condensate contributions in diagrams
(d) and (e) in Fig. 2]. We note that the gluon in the
contributions to �(2) may have an arbitrarily small momentum,
and thus they are dubbed soft-gluon contributions. However,
also tree-level four-quark contributions exist where the gluon
must carry the full momentum p of the meson (see Fig. 3).
These contributions are dubbed hard-gluon ones, and they
arise with the next-to-leading-order interaction term inserted
into the correlator [1,32,33]. However, their corresponding
condensates contain heavy-quark operators and are neglected
according to arguments in [10,34]: heavy quarks hardly
condense. Note that we disregard higher-order light four-quark
condensate contributions ∝ g2n with n � 2, such as diagram
(h) in Fig. 1.

In the light chiral limit, mq → 0, the exact result reads

�dim6(p) = 1

3

1(
p2 − m2

Q

)2

(
1 + 1

2

m2
Q

p2 − m2
Q

− 1

2

m4
Q(

p2 − m2
Q

)2

)
g2〈:O1 :〉

+ 1

9

1(
p2 − m2

Q

)3

(
p2 − 4

(vp)2

v2

) [〈
:g2O1 − 2

v2
(g2O2 − 2gO3 + 6gO4) :

〉
−

〈
:g2O1 − 2

v2
(g2O2 + gO5) :

〉

+ 2

v2
〈:g2O2 + 3gO5 − gO6 :〉 + 2

v2
g〈:O3 :〉 − 3

2

〈
:3g2O1 − 4

v2
(g2O2 + 2gO4 − gO7) :

〉]
− 2

15

1(
p2 − m2

Q

)4

(
p4 − 7p2 (vp)2

v2
+ 6

(vp)4

v4

)[
2

v2
g〈:O3 :〉 +

〈
:g2O1 − 2

v2
(g2O2 − 2gO3 + 6gO4) :

〉]

+ 1

30

1(
p2 − m2

Q

)4

(
p4 − 12p2 (vp)2

v2
+ 16

(vp)4

v4

) 〈
:g2O1 − 48

v4
O8 :

〉

− 2
mQ(

p2 − m2
Q

)3

(vp)

v2

[
g2〈:O9 :〉 + 2g(〈:O10 :〉 + 〈:O11 :〉) − 1

3
g〈:O12 :〉 + 1

3
g〈:O13 :〉

]

+ 8

3

mQ(
p2 − m2

Q

)4

(vp)

v2

(
p2 − (vp)2

v2

) [
g2〈:O9 :〉 + 3

2
g〈:O10 :〉

]
− 8

mQ(
p2 − m2

Q

)4

(vp)

v4

(
p2 − 2

(vp)2

v2

)
〈:O14 :〉,

(8)

3In medium, four-quark condensates cannot be considered solely,
but inclusion of corresponding light-quark condensates in mass
dimension 6, which cannot be reduced to four-quark condensates,
is required in order to ensure a continuous transition to the vacuum
(see the Appendix for technical details).

where the operators Ok are listed in Table I. The incorporated
four-quark operators are obtained from the perturbative quark
propagator exploiting the gluonic equation of motion. Even in
medium, the number of such operators is limited, because the
equation of motion predetermines Dirac and color structures.
Current-current correlators with a single quark flavour q form
three different four-quark operators (of this origin) according
to Eq. (A13) which are invariant under parity and time-reversal
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ΠNLO
dim6 =

(a)

+

(b)

FIG. 3. Diagrammatic representation of hard-gluon contributions
giving tree-level four-quark condensate terms for the correlator in
next-to-leading-order (NLO) perturbation theory α1

s .

transformations. The corresponding condensates, i.e., 〈Ok〉
with k = 1, 2, and 9, are classified as full condensates with
indices 2v, 2v′, and 2vs in Table 1 (for q = qf ) and with
indices 4v, 4v′, 4vs, and 6vs in Table 2 (for q �= qf ) of Ref.
[6], which provides an exhaustive list of independent light
four-quark condensates.

Only the first line in (8) contains the vacuum contribution
whereas the remaining terms are medium specific and conse-
quently must vanish in vacuum [35]. Furthermore, it has been
shown by consistency arguments alone that the particular linear
combinations of operators collected in Table II must vanish
identically in vacuum. This imposes vacuum constraints as
interrelations among the operators of Table I, in particular also
between terms which already occur in vacuum, i.e., O1, and
those which additionally and exclusively enter in the medium.
Note that vacuum specific terms additionally exhibit a separate
medium dependence.

In order to test our computational procedure we consider
the light four-quark condensate contributions of pseudoscalar
D mesons in vacuum. Employing the Borel transformation and
after factorization of the four-quark condensates (see Sec. IV),
we recover the result first calculated by Aliev and Eletsky [36]
and confirmed by Narison [37],

�̂vac
4q (M)=−16π

27

e−m2
Q/M2

M2

{
1− 1

4

m2
Q

M2
− 1

12

m4
Q

M4

}
αsκ1〈q̄q〉2

0.

(9)

The result of Hayashigaki and Terasaki [38] differs by a factor
of −2 in the second of the three terms in {· · · } forming the
Wilson coefficient. It is conceivable that they missed one of
the three terms of mass dimension 6 leading to light four-quark
condensate contributions eventually (see [33] and the details in

TABLE II. List of medium-specific light-quark operator combi-
nations in mass dimension 6 incorporating operators related to O1

which already occurs in vacuum.

g2O1 − 2
v2 (g2O2 − 2gO3 + 6gO4)

g2O1 − 2
v2 (g2O2 + gO5)

2
v2 (g2O2 + 3gO5 − gO6)

2
v2 gO3

3g2O1 − 4
v2 (g2O2 + 2gO4 − gO7)

g2O1 − 48
v4 O8

the Appendix). In fact, omitting the four-quark term in (A11)
recovers the result in [38].

Having accomplished the evaluation of the OPE for light-
quark condensates in mass dimension 6, one has to note that, in
our expansion scheme, further diagrams contribute in leading
order. These are, for example, the gluon condensates depicted
in Fig. 1, diagrams (d), (e), and (f), which deserve separate
elaborations beyond the scope of this paper.

B. Condensates and chiral transformations

As stressed in the introduction, the chiral condensate
〈q̄q〉 may serve as an order parameter of spontaneous chiral
symmetry breaking (or can constitute an element thereof),
since it is not invariant under chiral transformations

qL,R −→ q ′
L,R = e

−i
a
L,R τ a

qL,R, (10)

where q = qL + qR is an Nf dimensional light-flavor vector
with qL,R = PL,Rq and PL,R = (1 ∓ γ5)/2. The matrices τ a are
the generators of the SU(Nf)L,R symmetry groups. Other quark
condensates reveal invariant as well as noninvariant behavior
under chiral transformations, thus, they are dubbed chirally
even or chirally odd condensates, respectively. Four-quark
condensates entering the OPE (8) are of both kinds. Since these
condensates (see Table I) are flavor singlet structures, such
four-quark condensates containing exclusively γμ and/or γ5γμ

as Dirac structures are invariant under chiral transformations
(10). Therefore, the first two entries in Table I, i.e. 〈:O1 :〉 and
〈:O2 :〉, are invariant under chiral transformations (10) whereas

TABLE I. List of light-quark operators of mass dimension 6 forming condensates which enter the results for soft-gluon diagram contributions
to �(2) (see Fig. 2) emerging from (7b).

∑
f means summing over light quark flavours u,d(,s). The quantity /v denotes the medium four-velocity

contracted with a Dirac matrix and (vD) its contraction with the covariant derivative.

k Ok k Ok k Ok

1 q̄γ ν tAq
∑

f

q̄f γνt
Aqf 6 q̄/vσ νμ[(viD),Gνμ]q 11 q̄(vi

←
D)σGq

2 q̄/vtAq
∑

f

q̄f /vtAqf 7 q̄i
←
Dμγ5/vGνλqεμνλτ vτ 12 q̄σ μν[iDμ,Gνλ]vλq

3 q̄(vi
←
D)σG/vq 8 q̄(vi

←
D)3/vq 13 q̄σ νμ[(viD),Gνμ]q

4 q̄(v
←
D)γ μGνμvνq 9 q̄tAq

∑
f

q̄f /vtAqf 14 q̄(vi
←
D)3q

5 q̄γ ν[(vD),Gνμ]vμq 10 q̄σG(viD)q
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TABLE III. List of light four-quark condensates 〈:Ok :〉 entering the result (8) in genuine and factorized form. Resulting from the two-quark
condensates in linear density approximation, the fourth column depicts the density dependent and factorized four-quark condensates, utilized
in Sec. V.

k 〈:Ok :〉 Factorized Density dependent

1
〈
: q̄γ ν tAq

∑
f

q̄f γνt
Aqf :

〉
−2

9
κ1

[
2〈: q̄q :〉2 − 〈: q̄/vq :〉2/v2

]
−4

9
κ1

[
〈: q̄q :〉2

0

(
1 − σN

m2
πf 2

π

n

)2

− 9

8
n2

]

2
〈
: q̄/vtAq

∑
f

q̄f /vtAqf :
〉

−1

9
κ2

[
v2〈: q̄q :〉2 + 〈: q̄/vq :〉2

]
−1

9
κ2

[
〈: q̄q :〉2

0

(
1 − σN

m2
πf 2

π

n

)2

+ 9

4
n2

]

9
〈
: q̄tAq

∑
f

q̄f /vtAqf :
〉

−2

9
κ3〈: q̄q :〉〈: q̄/vq :〉 −1

3
κ3〈: q̄q :〉0

(
1 − σN

m2
πf 2

π

n

)
n

the condensate

〈:O9 :〉 = 〈: q̄RtAqLq̄L/vtAqL :〉 + 〈: q̄LtAqRq̄L/vtAqL :〉
+ (L ←→ R) (11)

is chirally odd, i.e., it is turned into its negative for |
a
R −


a
L| = (2k + 1)π with integer k. We note that this chirally

odd four-quark condensate is medium specific, in contrast
to the chiral condensate. The chirally odd nature of 〈:O9 :〉
can be also deduced from the difference of chiral partner
spectra (Weinberg-type sum rules), where the dependence
on chirally symmetric condensates cancels out [7]. Further-
more, the operator O9 emerges from a commutator with the
generator of the axial-vector transformation [39], similarly to
operators providing potential order parameters, e.g., the chiral
condensate. Thus, the chirally odd four-quark condensate
contributions may give insight to the breaking patterns of
chiral symmetry as well as symmetry restoration scenarios
[28,40,41].

IV. ESTIMATES OF FOUR-QUARK CONDENSATE
CONTRIBUTIONS

Once the evaluation of the OPE is completed, even in a
truncated form and according to a particular organization of
the nested multiple expansion schemes, one needs numerical
values of the various condensates. The low-mass dimension
condensates are constrained fairly well, even with some
debate on the gluon condensates [42].4 The mass dimension-6
four-quark condensates are less well investigated. They enter
QCD sum rules in different combinations, as exemplified,
for instance, in [6] for the nucleon and in [27] for the
ρ meson.

To arrive at some numerical estimates of the impact of
the light four-quark condensates, we employ tentatively the
factorization hypothesis, being aware of its limited reliability
and lacking foundation [44,45]. Despite the validity of the
factorization ansatz for an infinite number of colors, its
accuracy for QCD is still questionable. Factorization of four-
quark condensates is based on the ground state saturation

4We also refer the interested reader to [43] for a general discussion
of condensates and their relation to hadron wave functions with
emphasis on the light-front formulation.

hypothesis. Accordingly, only the ground state is assumed
to yield a relevant contribution after insertion of a complete
set of hadronic eigenstates into the four-quark condensate. In
[1] the contribution of the lightest hadronic state, the pion
state, is estimated as 1/20 of the ground state contribution.
Thus, the four-quark condensate is assumed to factorize into
two ground state expectation values of two-quark operators. In
a medium, two different two-quark condensates exist, 〈: q̄q :〉
and 〈: q̄γ μq :〉, where the latter one is employed as 〈: q̄/vq :〉
vμ/v2 after projection of the Lorentz index. Factorization
formulas for in-medium contributions can be found in [8].
Our investigation uses

〈: q̄�1t
Aqq̄�2t

Aq :〉
= −κ(�1,�2)

36
{〈: q̄q :〉2TrD[�1�2]

+〈: q̄q :〉〈: q̄γμq :〉(TrD[�1γ
μ�2] + TrD[γ μ�1�2])

+〈: q̄γμq :〉〈: q̄γνq :〉TrD[γ μ�1γ
ν�2]}, (12)

and

〈: q̄�1t
Aqq̄f �2t

Aqf :〉 = 0, (13)

where �1 and �2 denote the Dirac structures of the condensates
and q �= qf in Eq. (13). The factors κ(�1,�2) may be
introduced to account for deviations from strict factorization,
which is recovered for κ(�1,�2) = 1. The relevant expressions
are listed in Table III.

However, Table III exhibits further issues which arise
due to factorization of four-quark condensates. Condensates
originally considered chirally even, such as 〈:O1 :〉 and 〈:O2 :〉,
factorize into powers of the chiral condensate 〈: q̄q :〉 which
is genuinely chirally odd. Since factorization changes the
behavior of four-quark condensates under chiral transforma-
tions, the transformation properties of the OPE and, therefore,
of the (operator product) expanded correlator are altered. A
procedure analogous to the one in [27] can overcome such
artifacts.

V. NUMERICAL EVALUATION

The Borel transform [4,46] of the light-quark condensate
contributions in the meson rest frame, pμ = (p0,	0), vμ = (1,	0),
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and after a Wick rotation p0 = iω, reads

�̂even
dim6(M2) = 1

3

e−m2
Q/M2

M2

(
1 − 1

4

m2
Q

M2
− 1

12

m4
Q

M4

)
g2〈:O1 :〉

− 1

3

e−m2
Q/M2

M2

(
1 − 1

2

m2
Q

M2

)[
〈:g2O1 − 2

(
g2O2 − 2gO3 + 6gO4

)
:〉 − 〈:g2O1−2

(
g2O2+gO5

)
:〉

+ 2〈:g2O2+3gO5−gO6 :〉 + 2g〈:O3 :〉 − 3

2
〈:3g2O1 − 4

(
g2O2 + 2gO4 − gO7

)
:〉
]

+ 1

6

e−m2
Q/M2

M2

(
1 − m2

Q

M2
+ 1

6

m4
Q

M4

)
〈:g2O1 − 48O8 :〉, (14a)

�̂odd
dim6(M2) = e−m2

Q/M2
mQ

M4

[
g2〈:O9 :〉 + 2g (〈:O10 :〉 + 〈:O11 :〉) − 1

3
g〈:O12 :〉 + 1

3
g〈:O13 :〉

]

− 4
e−m2

Q/M2
mQ

M4

(
1 − 1

3

m2
Q

M2

)
〈:O14 :〉, (14b)

where even and odd parts with respect to p0 have been
separated. As described in Sec. III A the medium-specific
condensates entering the results (14) must vanish for zero
nuclear density per construction. This can be satisfied for
the odd OPE (14b) by vanishing of the square-bracketed
terms and 〈:O14 :〉, and it implies nontrivial constraints on the
vacuum expectation values of operators in the even OPE (14a)
containing the medium velocity vμ. These vacuum constraints
can be formulated in terms of a system of linear equations (for
the entries listed in Table II) which can be shown to be solvable
and ensures vanishing of all medium-specific condensates in
vacuum.

However, because the density dependence of the medium-
specific light-quark condensates in mass dimension 6 is still
unrestricted, we assume that it is dominated by the four-
quark condensate contribution whose medium dependence
can be estimated by factorization (see Table III), i.e., only
Oi with i = 1, 2, and 9 exhibit a medium dependence. The
other condensates are constant with respect to density and
temperature and remain at their vacuum values dictated by
vacuum constraints. This reduces the numerical values of
the medium-specific condensates to the density dependent
terms of the four-quark condensate contributions of the fourth
column in Table III. Furthermore, the factorization parameters
κi are also related via these constraints. One has

κ2(n = 0) = 3κ1(n = 0). (15)

In order to indicate the numerical evaluation of �̂dim6 under
these assumptions we introduce the notation �̂4q-dom.

Note that we utilize four-quark condensates beyond linear
density approximation with the following reasoning. Taking
into account only the linear density terms in the fourth
column of Table III yields a chirally odd condensate, namely
〈:O9 :〉, which does not vanish at higher densities, i.e., exhibits
no signals of chiral restoration, in contradiction with the
chiral condensate. However, employing the linear density
approximation to the two-quark condensates entering the
factorized four-quark condensates provides a quadratic density

dependence which overcomes such issues. (It turns out that
imposing the above described constraints and using the linear
density dependence of factorized four-quark condensates, only
the odd term carries a medium dependence, whereas the
medium dependence of the even term—including the vacuum
specific term—completely cancels out.)

Assuming constant κ’s with respect to density and using the
notation 〈On

i 〉 = 〈Oi〉 − 〈O0
i 〉 with the vacuum part 〈O0

i 〉 =
− ai

9 κi〈q̄q〉2
0 for i = 1 and 2 with a1 = 4 and a2 = 1 the Borel

transformed density dependent result reads

�̂even
4q-dom(M2) = 1

3

e−m2
Q/M2

M2

(
1 − 1

4

m2
Q

M2
− 1

12

m4
Q

M4

)
g2〈O1〉

− 1

3

e−m2
Q/M2

M2

(
1 − 1

2

m2
Q

M2

)

×
[

2g2
〈
On

2

〉 − 3

2
g2

〈
3On

1 − 4On
2

〉]

+ 1

6

e−m2
Q/M2

M2

(
1 − m2

Q

M2
+ 1

6

m4
Q

M4

)
g2

〈
On

1

〉
,

(16a)

�̂odd
4q-dom(M2) = e−m2

Q/M2
mQ

M4
g2〈O9〉, (16b)

where condensates are displayed without normal ordering,
since we introduce physical condensates by renormalization of
the normal-ordered condensates to one-loop level as described
in [47]. According to arguments in [13,47] for gluon conden-
sates we obtain no further terms upon renormalization since
four-quark condensate contributions are already of order αs.
Note that the vacuum constraints are the minimal requirements
for a consistent vacuum limit. Any more sophisticated medium
dependence must go beyond factorization with constant
parameters and/or also impose medium dependence to the
terms Oi with i = 3, . . . ,8 and 10, . . . ,14 in Table I.
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Our numerical evaluation employs the values of the
condensates including their nucleon density dependencies
presented in [14]. We resort here to the four-quark condensate
factorization parameters κ1 = 1, κ2 = 3, and κ3 = 1, bearing
in mind that the actual values may considerably deviate from
the assumed values. We use for the heavy-quark mass mQ =
1.5 GeV and determine the strong coupling from the one-loop
result αs = 4π/[(11 − 2Nf/3) ln(μ2/�2

QCD)] with the renor-
malization scale μ = 1 GeV, the dimensional QCD parameter
�QCD = 0.25 GeV, and the number of light-quark flavors
Nf = 3. The nucleon saturation density is n = 0.15 fm−3.

Subject to the following investigation is the OPE side of the
Borel transformed QCD sum rule of qQ mesons [cf. Eq. (3)],

�̂even(M2) = C0 + e−m2
Q/M2

6∑
k=1

ceven
k (M2) 〈Ok〉even

+ �̂even
4q-dom(M2), (17a)

�̂odd(M2) = e−m2
Q/M2

3∑
k=1

codd
k (M2)〈Ok〉odd

+ �̂odd
4q-dom(M2). (17b)

A full sum rule analysis up to condensates of mass
dimension 5 shows that the density dependence of the mass
centroid for D and D mesons is mainly determined by the even
part, while the mass splitting of the meson-antimeson pair is
influenced by the odd part of the OPE [14].5 To get an estimate
on the impact of light-quark condensate contributions in mass
dimension 6, especially four-quark condensate contributions,
on the meson properties we compare them to contributions of
condensates up to mass dimension 5.

The QCD sum rules of qQ mesons are governed by
the perturbative and the chiral condensate contributions (see
Fig. 4). The purely perturbative contribution is even more
prominent than that displayed in Fig. 4, where we already
subtracted the continuum contribution of the spectral density
of the sum rule employing the quark-hadron duality. The
continuum threshold ω2

0, which needs to be chosen to meet
stability criteria of the sum rule, is set to the typical value of
6 GeV2 for our investigation (see [34]). The chiral condensate
contribution (blue dotted curve) has the strongest impact on
the sum rule among the power corrections (green dashed
curve). However, at typical Borel masses M = 0.9–1.3 GeV
[14] further condensates contribute weakly.

The absolute numerical values of light four-quark con-
densate contributions �̂even

4q-dom (thick black solid curve) are
two orders of magnitude below the contribution of the chiral
condensate in the presumed Borel window, due to the heavy-
quark mass accompanying the chiral condensate acting as an
amplification factor. Evaluation of individual contributions to
the even and odd OPE exhibited in Fig. 5 shows the tendency

5If four-quark condensates are included in linear density approxima-
tion into the sum rule, their medium-modification affects only the odd
OPE, and thus only the mass splitting of D and D. The mass centroid
remains unaffected by such four-quark condensate contributions.
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10−2

10−1
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n
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4
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FIG. 4. (Color online) Various contributions to the even OPE part
of the qQ sum rule at saturation density. The red solid curve depicts
the perturbative term subtracted by the continuum contribution of the
phenomenological side of the sum rule according to quark-hadron

duality, i.e., C0 = C0 − 1
π

(
∫ ω−

0
−∞ + ∫ +∞

ω+
0

)dω ω e−ω2/M2
Im C0(ω2) =

1
π

∫ ω2
0

m2
Q

ds e−s/M2
Im C0(s), where we assume ω+

0 = −ω−
0 = ω0 for the

second equality with the symmetric continuum threshold parameter
ω2

0 = 6 GeV2 (see [14]). The green dashed curve is the modulus of

the power correction e−m2
Q/M2 ∑6

k=1 ceven
k 〈Ok〉even of the in-medium

OPE (3a) up to mass dimension 5 according to [14]. The contribution

of the chiral condensate, i.e., −e−m2
Q/M2

mQ〈q̄q〉, is shown by the blue
dotted curve. The modulus of the four-quark condensate contribution
�̂even

4q-dom (14a) is displayed by the thick solid black curve. For the
curves with sign flips in the depicted region the left (right) branch of
the green dashed (thick solid black) curve originates from negative
values.

of decreasing values of the contributions of the condensates
with increasing mass dimension. The four-quark condensate
contributions are of mass dimension 6 and therefore the highest
order contribution of the evaluated OPE. Despite varying
κ1 = κ2/3 = κ3 between 0.5 and 2 they are more than one
order of magnitude smaller than most other contributions of
the OPE up to mass dimension 5 yielding small absolute
values which supports the convergence of the OPE. Moreover,
trusting the order of magnitude of light four-quark condensate
contributions exhibited in Fig. 4 lends credibility of the
previous analyses, e.g. [14], which were truncated at mass
dimension 5.

Besides four-quark condensates also gluonic condensates
contribute additionally to the in-medium OPE (17) in mass
dimension 6. Their contributions may numerically influence
the OPE as strongly as the presented light-quark condensate
terms, thus, they deserve separate further investigation. We
choose the light four-quark condensates to serve as the starting
point for the analysis of the OPE in mass dimension 6, because
they are especially important in other meson sum rules as
stressed in the introduction.
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FIG. 5. (Color online) Modulus of the individual contributions to the even (left panel) and the odd (right panel) OPEs (3) at saturation
density up to mass dimension 5 according to [14], supplemented by the four-quark condensate contributions exhibited by the solid black curves
and the contours with κ1 = κ2/3 = κ3 ∈ [0.5,2]. Using the notation of the contributions according to the condensates 〈Ok〉even,odd listed below
(3) for the even OPE on the left panel, the following line code applies: 〈O2〉even–red solid curve, 〈O3〉even–green dashed curve, 〈O4〉even–blue
dotted curve, 〈O5〉even–magenta dot-dashed curve, and 〈O6〉even–cyan dot-dot-dashed curve. For the curves with sign flips in the depicted region,
the left branches of the green dashed and cyan dot-dot-dashed curves and the right branch of the black solid curve originate from negative values.
On the right panel the red solid curve depicts the 〈O1〉odd contribution, the green dashed curve displays the sign flipped 〈O2〉odd contribution,
and the blue dotted curve shows the 〈O3〉odd contribution, where the right branch originates from negative values.

VI. COMPARISON OF FOUR-QUARK CONDENSATES IN ρ

MESON AND D MESON SUM RULES

To compare with the ρ meson OPE neglecting higher-
twist terms, where the gluon and four-quark condensate

contributions are of similar magnitude (upper left panel in
Fig. 6), we consider the vacuum four-quark condensate term
of the D meson (upper right panel in Fig. 6). Its contribution
is up to one order of magnitude smaller than the vacuum gluon
condensate term. This order of magnitude difference arises
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FIG. 6. (Color online) Comparison of ρ meson (left panels) and D meson (right panels) contributions in vacuum (upper panels) and at
nucleon saturation density (lower panels). Dashed green curves denote the gluon condensate contributions and thick solid black curves display
the modulus of light four-quark condensate contributions containing the soft gluon diagrams (d) and (e) in Fig. 2. The modulus of the four-quark
condensate contribution of the ρ meson from hard-gluon diagrams in Fig. 3 is depicted by the dotted red line.
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from the ρ meson OPE where the soft-gluon diagrams (d)
and (e) in Fig. 2 are supplemented by hard-gluon diagrams
(a) and (b) in Fig. 3, whose numerical contributions exceed
the soft-gluon contributions by a factor of 5 (left panels in
Fig. 6) and the gluon condensate term contributes half as
much as the gluon condensate contribution in the D meson
sum rule. We argue that this can be disentangled as follows.
While terms proportional to positive integer powers of the
light-quark mass squared are neglected in the ρ meson OPE,
analogous heavy-quark terms significantly contribute to the
D meson OPE, where additionally the chiral condensate as
well as the quark-gluon condensate are redefined to render
the gluon condensate term free of infrared mass singularities
which is necessary in heavy-light systems [47].

Wilson coefficients of the OPEs for qQ meson systems
exhibit nonmonotonic behaviors for varying Borel mass pa-
rameters in contrast to light meson systems, due to the nonzero
heavy-quark mass entering QCD sum rules of heavy-light sys-
tems as an additional scale. Non-negligible terms proportional
to positive integer powers of the heavy-quark mass squared
[see Eq. (9)] lead to roots of the Wilson coefficient in the
Borel mass region near M = 1 GeV (see Fig. 5), which is in
the Borel window of D meson sum rules resulting in small
OPE contributions for terms with altering Wilson coefficients,
such as light four-quark condensate contributions.

Studying the ρ meson sum rule in the VOC (vanishing of
chirally odd condensates) scenario (see Ref. [27]), where the
mass and/or width of the ρ meson are evaluated in a hypotheti-
cal chirally symmetric world, the omission of medium-specific
contributions6 is justified. In such a clear-cut scenario, the
chirally odd objects, e.g., the chiral condensate, do not vanish
due to their medium-modifications, but are set to zero, while
the chirally symmetric condensates retain their vacuum values.
In contrast, investigating signals of chiral restoration in the
observed chirally broken world, chirally odd condensates are
diminished due to an ambient medium. Thus, the inclusion
of medium-specific contributions to the ρ meson OPE is
mandatory for a consistent in-medium description. Four-quark
condensate contributions without their medium-specific part
exhibit an artificially strong medium dependence in compari-
son with the complete D meson four-quark terms which show
a minor medium dependence only (see the Fig. 6 lower panels
compared to the upper ones). Furthermore, these medium-
specific contributions also contain chirally odd objects,
e.g., 〈(ψ̄/vγ5λ

aτ3ψ)2 − (ψ̄/vλaτ3ψ)2〉 traceable to the Gibbs
averaged twist-4 operator 〈ST (ψ̄γμγ5λ

aτ3ψ)(ψ̄γνγ5λ
aτ3ψ)〉

(with adopted notation from [27]). However, identification of
such chirally odd objects requires the decomposition of the
nonscalar terms analogous to the procedure presented here for
the D meson, and deserves further investigations.

VII. SUMMARY

A systematic evaluation of the current-current correlator
within the framework of QCD sum rules leads to a series

6Medium-specific contributions of the ρ meson OPE are usually
denoted nonscalar or higher-twist terms [48].

of expectation values of combined QCD operators multiplied
by Wilson coefficients. The seminal analysis of the ρ meson
[9] points to the crucial impact of light four-quark operator
structures (see [27,28,40,41]). Driven by this insight we
have evaluated the in-medium QCD sum rule for pseu-
doscalar q̄Q and Q̄q mesons up to mass dimension 6 with
emphasis on light four-quark condensate contributions, thus
extending previous studies for vacuum [34,36–38,49–53] and
medium [13,14].

Due to lack of information on precise numerical values of
four-quark condensates, we employed tentatively the factor-
ization hypothesis to estimate the numerical importance of
light four-quark condensate contributions. In contrast to the ρ
meson sum rule, the power corrections of higher mass dimen-
sion are obviously consecutively smaller, as mentioned already
in [10] for vacuum and highlighted in [14] for in-medium
situations. The heavy-quark mass in the combination mQ〈q̄q〉
provides a numerically large contribution to the OPE, making
it dominant. Having now the exact Wilson coefficients for
light four-quark condensates at our disposal, their impact for
in-medium situations can be quantified: Within the previously
employed Borel window relevant for pseudoscalar q̄Q and
Q̄q excitations, the individual contributions to the even part
are one to two orders of magnitude smaller than most of the
other known terms at saturation density. A similar statement
holds for the contributions of the odd part. By comparing
to the ρ meson OPE terms we are able to locate the origin
of these order-of-magnitude differences in the D meson
contributions: (i) the absence of light four-quark terms from
hard-gluon diagrams and (ii) Wilson coefficients altering more
strongly with changing Borel mass due to the non-negligible
heavy-quark mass. Despite the small numerical impact of these
higher mass dimension contributions, they are required for a
profound estimate of the reliable Borel window: Extending
the OPE up to light-quark condensates of mass dimension 6
delivers the bonus to allow for a better determination of the
Borel window, because the lower limit is constrained by the
highest order OPE terms which must not contribute more than
∼10 % to the OPE [54].

Our presentation makes obvious the avenue for improve-
ments: Insertion of the next-to-leading-order interaction term
into the correlator provides loop corrections to the Wilson
coefficients for condensates of lower mass dimension as well
as further four-quark condensate contributions with associated
diagrams on tree level. We emphasize the rapidly growing
complexity of higher order contributions, especially for in-
medium situations. Our evaluation of the Wilson coefficients of
leading-order αs terms related to light four-quark condensates
demonstrates this already. Furthermore, including condensa-
tion of heavy quarks can be accommodated in the present for-
malism, albeit resulting in cumbersome expressions. Probably
new methods are needed for executing the OPE and subsequent
evaluation of the sum rules as a complement to lattice QCD
methods.

Although the numerical impact of light four-quark conden-
sate terms on the OPE proved to be small, they are structurally
important in hadron physics due to their close connection
to chiral symmetry. Apart from the chiral condensate which
serves as an order parameter of spontaneous chiral symmetry
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breaking we identify a further chirally odd condensate,
〈: q̄tAq

∑
f q̄f /vtAqf :〉, among the four-quark condensate con-

tributions of the pseudoscalar D meson sum rule. Chirally
odd condensates quantify the difference of chiral partner
spectra and can also be studied by Weinberg-type sum rules,
proven, e.g., in [28,40,41], to be extremely useful when
addressing issues of chiral restoration in a strongly interacting
medium.

The physics motivation of the present investigation is
clearly driven by the contemporary interest in open charm
(also bottom) mesons as probes of the hot, strongly interact-
ing medium created in ultrarelativistic heavy-ion collisions
(cf. [11,15–23] and further references therein). Moreover,
the planned experiments of the CBM and PANDA Col-
laborations at FAIR will study charm degrees of freedom
in proton and antiproton induced reactions of nuclei and
in heavy-ion collisions as well. For these experimental in-
vestigations a solid theoretical basis is mandatory. Among
possible approaches with emphasis on medium modifications
are QCD sum rules as a method with intimate contact to
QCD.
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APPENDIX: CALCULATION OF WILSON
COEFFICIENTS OF LIGHT-QUARK CONDENSATES OF

MASS DIMENSION 6

For the calculation of Wilson coefficients of light four-quark
condensates corresponding to tree-level diagrams containing
a soft gluon line we utilize Eq. (7b). Using standard OPE
techniques—projection of Dirac indices onto elements of
the Clifford algebra as well as the covariant expansion of
quark field operators exploiting the Fock-Schwinger gauge—
the light two-quark term �(2) after Fourier transformation
reads [7]

�(2)(p)=
∑

a

1

4

∞∑
n=0

(−i)n

n!
∂ 	αn
p

×〈: q̄ ←
D 	αn

�aTrD[�aγ5SQ(p)γ5]q :〉, (A1)

where heavy-quark condensates are neglected. The symbol
←
D 	αn

= ←
Dα1 · · · ←

Dαn
stands for the covariant derivative, and

an analogous notation for the partial derivative is em-
ployed. Quark fields and derivatives thereof are evaluated
at x = 0. The projection of Dirac indices gives the sum
over the basis elements �a of the Clifford algebra, where
�a ∈ {1,γμ,σμ<ν,iγ5γμ,γ5} normalized by the scalar prod-
uct TrD[�a�

b] = 4δb
a ; and we define σμν = i(γμγν − gμν).

Treated in a classical, weak gluonic background field, the
interaction of the quark is modeled by soft gluon exchange
with the QCD ground state and the full heavy-quark propagator

SQ(p) = ∫
d4x eipxSQ(x,0) can be written as

SQ(p) =
∞∑

n=0

S
(n)
Q (p) (A2)

with

S
(n)
Q (p) = −S

(0)
Q (p)γ μÃμS

(n−1)
Q (p)

= −S
(n−1)
Q (p)γ μÃμS

(0)
Q (p), (A3)

where S
(0)
Q (p) is the free heavy-quark propagator. Ãμ denotes

the derivative operator which arises due to the Fourier
transform of the perturbative series for the quark propagator
in coordinate space from the gluonic background field Aμ:

Ãμ =
∞∑

n=0

Ã(n)
μ (A4)

with

Ã(0)
μ = i

g

2
Gμν(0)∂ν

p, (A5a)

Ã(n)
μ = −g

(−i)n+1

n!(n + 2)

[
D	αn

,Gμν(0)
]

(n)∂
ν
p∂ 	αn

p (A5b)

= −g
(−i)n+1

n!(n + 2)

[
Dα1 ,

[
Dα2 , · · ·

[
Dαn

,Gμν(0)
] · · · ]]

× ∂ν
p∂α1

p ∂α2
p · · · ∂αn

p , (A5c)

where Gμν = i
g

[Dμ,Dν] = GA
μνt

A is the gluon field strength

tensor and g is the coupling. The matrices tA are the generators
of the color group and A = 1, . . . ,N2

c − 1 [55]. Throughout
this paper, quark propagators constructed from a finite number
of terms in Eqs. (A2) and (A4) are referred to as perturbative
quark propagators.

Light-quark condensate terms in mass dimension 6 enter
�(2) with n = 3 and SQ = S

(0)
Q , n = 0 and SQ = S

(1)
Q (Ã(1))

, as

well as n = 1 and SQ = S
(1)
Q (Ã(0))

[31], where an additional
subscript is introduced to specify the order of the background
field expansion. The light-quark condensate contribution reads

�dim6(p) = �
[1]
dim6(p) + �

[2]
dim6(p) + �

[3]
dim6(p) (A6)

with the three terms

�
[1]
dim6(p) =

∑
a

1

4

(−i)3

3!
〈: q̄ ←

Dν

←
Dλ

←
Dρ�aq :〉

× TrD
[
�aγ5∂

ν
p∂λ

p∂ρ
pS

(0)
Q (p)γ5

]
, (A7)

�
[2]
dim6(p) =

∑
a

1

4
〈: q̄�aTrD

[
�aγ5S

(1)
Q (Ã(1))

(p)γ5
]
q :〉, (A8)

�
[3]
dim6(p) =

∑
a

1

4

(−i)1

1!
∂ν
p

×〈: q̄ ←
Dν�aTrD

[
�aγ5S

(1)
Q (Ã(0))

(p)γ5
]
q :〉, (A9)

where �
[1]
dim6 contains contributions associated with dia-

gram (d) and �
[2,3]
dim6 incorporate terms associated with
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diagram (e) in Fig. 2. Using the perturbative quark propa-
gators S

(1)
Q (Ã(1))

(p) = −S
(0)
Q (p)γ ρÃ(1)

ρ S
(0)
Q (p) and S

(1)
Q (Ã(0))

(p) =
−S

(0)
Q (p)γ ρÃ(0)

ρ S
(0)
Q (p) with Ã(1)

ρ = g
3 [Dν,Gρλ]∂λ

p∂ν
p and

Ã(0)
ρ = i g

2 Gρλ∂
λ
p , respectively, one obtains

�
[2]
dim6(p) = − g

12

∑
a

〈: q̄�a[Dν,Gρλ]q :〉

× TrD
[
�aγ5S

(0)
Q (p)γ ρ

(
∂λ
p∂ν

pS
(0)
Q (p)

)
γ5

]
, (A10)

�
[3]
dim6(p) = −g

8

∑
a

〈: q̄ ←
Dν�aGρλq :〉∂ν

p

× TrD
[
�aγ5S

(0)
Q (p)γ ρ

(
∂λ
pS

(0)
Q (p)

)
γ5

]
. (A11)

Subsequently, �
[1,2,3]
dim6 are treated analogously. Utilizing the

identity

∂μ
p S

(0)
Q (p) = −S

(0)
Q (p)γ μS

(0)
Q (p) (A12)

and insertion of the free quark propagator S
(0)
Q (p) = (/p +

mQ)/(p2 − m2
Q) yields traces of products of Dirac matrices,

which stem from elements of the Clifford algebra �a as
well as free quark propagators and vertex functions. The
results of the Dirac trace evaluations are to be contracted with
the tensor decompositions of the Gibbs averaged operators

〈: q̄ ←
Dν

←
Dλ

←
Dρ�aq :〉, 〈: q̄�a[Dν,Gρλ]q :〉, and 〈: q̄ ←

Dν�aGρλq :〉.
In order to obtain a continuous transition of the

OPE for T ,n → 0, the in-medium decomposition into

Lorentz structures composed of gμν (metric tensor), εμνλσ

(Levi-Civita symbol), and vμ (medium four-velocity) [56]
requires the separation of vacuum and medium-specific
condensate contributions, where the former are present in
vacuum while the latter vanish at zero temperature or nucleon
density [35]. If the (anti)symmetries within the Lorentz indices
of the operators are imposed on the decomposition struc-
tures one is able to identify unambiguous medium-specific
operators.

The resulting Gibbs averaged operators can be reduced
to condensates of lower mass dimension using the quark
equation of motion, or they contain covariant derivatives which
cannot be eliminated by application of the equation of motion,
i.e., exhibiting light-quark condensation in mass dimension 6.
Especially, the combinations DλDνDλ, [Dλ,Gνλ], and GνλD

λ

incorporate the desired four-quark condensate terms. The first
and third terms contain the second combination [Dλ,Gνλ],
which allows for the application of the gluon equation of
motion. One obtains

〈: q̄�[Dλ,Gνλ]q :〉 = g

〈
: q̄i�tAqi

∑
f

q̄f γνt
Aqf :

〉
, (A13)

where � ∈ {vν,γ ν,/vvν}, because other elements of the Clifford
algebra lead to expectation values which are not invariant under
time reversal and parity transformations [8]. The result of these
calculations is Eq. (8), with operators listed in Table I providing
the complete light-quark condensate contribution to the OPE
of pseudoscalar qQ mesons in mass dimension 6.

[1] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys.
B 147, 385 (1979).

[2] W. Weise, Nucl. Phys. A 574, 347c (1994).
[3] T. Hatsuda, Y. Koike, and S. H. Lee, Nucl. Phys. B 394, 221

(1993).
[4] T. D. Cohen, R. J. Furnstahl, D. K. Griegel, and X. Jin, Prog.

Part. Nucl. Phys. 35, 221 (1995).
[5] S. Leupold, J. Phys. G 32, 2199 (2006).
[6] R. Thomas, T. Hilger, and B. Kämpfer, Nucl. Phys. A 795, 19
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