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Polyakov SU(3) extended linear-o model: Sixteen mesonic states in chiral phase structure
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In the mean field approximation, the derivative of the grand potential, nonstrange and strange condensates, and
the deconfinement phase transition in a thermal and dense hadronic medium are verified in the SU(3) Polyakov
linear-o model (PLSM). The chiral condensates o, and o, are analyzed with the goal of determining the chiral
phase transition. The temperature and density dependences of the chiral mesonic phase structures are taken as free
parameters and fitted experimentally. They are classified according to the scalar meson nonets: (pseudo)scalar
and (axial) vector. For the deconfinement phase transition, the effective Polyakov-loop potentials ¢ and ¢* are
implemented. The in-medium effects on the masses of sixteen mesonic states are investigated. The results are
presented for two different forms for the effective Polyakov-loop potential and compared with other models,
which include and exclude the anomalous terms. It is found that the Polyakov-loop potential has considerable
effects on the chiral phase transition so that the restoration of the chiral symmetry breaking becomes sharper and
faster. Assuming that the Matsubara frequencies contribute to the meson masses, we have normalized all mesonic
states with respect to the lowest frequency. By doing this, we characterize temperatures and chemical potentials
at which the different meson states dissolve to free quarks. Different dissolving temperatures and chemical
potentials are estimated. The different meson states survive the typically averaged QCD phase boundary, which
is defined by the QCD critical temperatures at varying chemical potentials. The thermal behavior of all meson
masses has been investigated in the large-N, limit. It is found that, at high T, the scalar meson masses are T’
independent (except w and o). For the pseudoscalar meson masses, the large- NV, limit unifies the 7 dependences
of the various states into a universal bundle. The same is also observed for axial and axial-vector meson masses.
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I. INTRODUCTION

The systematic study of strongly interacting matter at finite
density allows analysis of special theories that probably agree
with the heavy-ion experiments aiming to tackle the quantum
chromodynamic (QCD) phase-transition between combined
nuclear matter and the quark-gluon plasma (QGP) and to
improve our understanding of the evolution of the early
Universe. All these can be probed in experiments such as STAR
at the Relativistic Heavy Ion Collider (RHIC, at BNL), ALICE
at the Large Hadron Collider (LHC, at CERN), Compressed
Baryon Matter (CBM) at the Facility for Antiproton and
Ton Reaserch (GSI), and Baryonic Matter at the Nuclotron
(BM@N) at the Nuclotron-Based Ion Collider Facility (JINR).
In-medium effects on thermodynamics quantities are presented
in the numerical solutions of difference effective models,
especially the QCD-like ones. There are two main first-
principle models: the Polyakov Nambu-Jona-Lasinio (PNJL)
and Polyakov linear-o model (PLSM) or the Polyakov quark
meson (PQM) model.

As the finite quark masses break the chiral symme-
try of QCD explicitly, one has to resort to numerical
calculations in order to determine the chiral phase tran-
sition, such as the SU(3),xSU(3), linear-oc model [1].
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Thus, SU@3),xSUQ3),xU()4, — SUQB)y xSUB),4. A long
time ago, the quark constituents of scalar mesons were
debated [2,3]. Accordingly, the determination of all meson
states is possible: (Gq) = (grq¢ + Geqr) # 0 [4]. The chiral
structure of the four categories of the meson states is classified
through quantum numbers, orbital angular momentum J,
parity P, and charge conjugate C, which can be constructed
from u and d, and s quarks, into scalars (J©¢ = 07") and
pseudoscalars (JF¢ = 071), vectors (JP¢ = 17) and axial
vectors (JP€ = 17F). As the chiral symmetry is explicitly
broken, the deconfinement phase transition likely affects the
mass spectrum and shows under which conditions certain
states degenerate with another one and when the thermal and
density evolution goes through a phase transition.

In the present work, the in-medium effects on the masses
of different meson states are analyzed systematically. We
study the effects of finite temperature on sixteen meson states
at vanishing and finite baryon-chemical potentials and also
their density dependence at finite temperatures. To this end,
extending LSM to PLSM, in which information about the
confining gluonic sector is also embedded in the form of the
Polyakov-loop potential, is very crucial. The Polyakov-loop
potential is extracted from pure Yang-Mills lattice simula-
tions [5-8]. In investigating the chiral phase transition, LSM at
finite temperature has been implemented [9,10]. Furthermore,
U(N), xU(Ny) LSM with Ny = 2, 3, or even 4 quark flavors
has been analyzed [11-14].
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LSM thermodynamic properties such as pressure, equation
of state, speed of sound, specific heat, and trace anomaly
can be evaluated at finite and vanishing baryon chemical
potential [15-19] and under effects of an external magmatic
field [20]. Furthermore, the normalized and non-normalized
higher-order moments of the particle multiplicity are inves-
tigated [18,21,22]. With the inclusion of the Polyakov-loop
correction, the chiral phase structure of the scalar and pseu-
doscalar meson states at finite and vanishing temperatures has
been evaluated [23] with and without axial anomaly [24,25].
At finite isospin chemical potential, a three-flavor NJL model
for scalar and pseudoscalar mesonic states was presented
in Ref. [26]. In the three-flavor PNJL model [27], it is
found that the inclusion of the Polyakov-loop potential in the
NJL model considerably affects the meson masses. Results
from 2 4 1 lattice QCD for pseudoscalar and vector meson
states [28-31] and QCD thermodynamics including meson
masses at vanishing temperature have been reported [32].
The results deduced from the HotQCD [30] and PACS-
CS [31] Collaborations are compared with the Particle Data
Group (PDG) [33]. An excellent agreement was presented in
Refs. [23-26,30,31,33].

In general, PLSM has a wide range of implications. It can
describe not only the thermodynamics [16,18,34,35] but also
the higher-order moments of the particle multiplicity [18,21],
the hadron vacuum phenomenology [36—40], and the effects
of the chiral and deconfinement phase transitions [41-43]
besides the chiral phase structure of hadrons (the spectrum
of hadrons in both thermal and hadronic dense medium)
[23-25,44,45], and the decay width and the scattering length
of hadronic states [36-38,40,46,47].

In the present work, we introduce a systematic study
using the chiral symmetric linear-c model. We included in
it scalar, pseudoscalar, vector, and axial-vector fields and
estimate the representation of all these four categories in
dependence on the temperature 7" and the baryon chemical
potential p. This allows us to define the characteristics of the
chiral phase structure for all these meson states in thermal
and dense medium and determine the critical temperature
and density at which each meson state breaks into its free
quarks.

The present paper is organized as follows. Section II gives
details about the SU(3) Polyakov linear-c model (PLSM),
where the Lagrangians of the scalar and pseudoscalar fields are
extended to include vector and axial-vector fields as well and
interaction between mesonic sectors in the presence of U(1)4
symmetry breaking. The Polyakov-loop correction to the
Lagrangian of PLSM is introduced in Sec. IT A. The mean field
approximation is outlined in Sec. II B. The phase transition
including quark condensates and order parameters is estimated
in Sec. III. Topics such as deconfinement (crossover) phase
transition and order parameter due to chiral symmetry breaking
are studied as well. In Sec. IV, we introduce the Polyakov-loop
potential to LSM and investigate sixteen mesonic states in ther-
mal (Sec. IV A 1) and hadronic dense medium (Sec. IV A 2).
The critical temperature and the baryon chemical potential, at
which each bound hadron state should dissolve into free quarks
(QGP)is introduced in Sec. V. Section VII is devoted to the
conclusions.
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II. SU3) POLYAKOV LINEAR-0 MODEL

The Lagrangian of LSM with Ny = 3 quark flavors and
N, = 3 color degrees of freedom, where the quarks couple
to the Polyakov-loop dynamics @ field, represents a complex
(3x3) matrix for the SU(3);, xSU(3)r symmetric LSM La-
grangian Lenira = L4 + L.y, where the fermionic part reads

L,=3q[ip— g T (0a+iysma+ v VI +vursAL)]a, (D)

where p is an additional Lorentz index [48] and g is the
flavor-blind Yukawa coupling of the quarks to the mesonic con-
tribution £, = Lsp + Lyva + L + Luqy,, With Lgp rep-
resenting scalars (J©¢ = 0%") and pseudoscalars (J©¢ =
0~7), Ly 4 representing vector (J ¢ = 17%1) and axial-vector
(JP€ = 17*) mesons, and Ly, being the interaction between
them. Finally the Lagrangian of the anomaly term is given by
EU(DA [1,47,49—52]1

Lsp = Tr(3,dT9"® — m>®' @) — 1, [Tr(® )]
— M Tr(®T®)? + Tr[H (P 4 d1], )

1 2
Lay = =3 Te (L}, +R2) +Tr [(% + A) (L2 + Ri):|

+i %(Tr{L,w[L“,L”]} + Tr(R, [RY, RY])

+ g3[Tr(L,L,L*L") + Tr(R, R, R" R")]
+ g4[Tr(L, L* L, L") + Tr(R, R* R, R")]
+ g5 Tr(L, L") Tr(R,R")
+ g6[Tr(L, L") Tr(L,L") + Tr(R,R") Tr(R,R")],
3)
Lo = " TH(@ @) Tr (L2 + B2
Inl—? T ( )I‘( ll«+ ll«)

+hy Te[|L, @ + |®R,|*] 4 2h3 Tre(L, DR" D),

“4)
Ly, = c[Det(®) + Det(d1)] + co[Det(d) — Det(d")]*
+ ¢1[Det(®) + Det(dH)] Tr[dDT]. (5)

The first Lagrangian, Eq. (2), represents kinetic and poten-
tial terms for the scalar meson nonets. The third term stands
for the explicit symmetry breaking defined in Eq. (10). This
Lagrangian creates scalar and pseudoscalar mesonic states
defined in @ nonets; see Eq. (9). The second Lagrangian,
Eq. (3), represents the vector meson nonets involving explicit
symmetry breaking in the second term defined in Eq. (10).
The 3x3 matrix of the vector meson nonets involves vector
and axial-vector fields; see Eq. (9). This creates the vector
and axial-vector mesonic states and the interactions between
the (pseudo)scalar and (axial) vector introduced in Eq. (4).
As the symmetry is broken, explicitly and spontaneously, the
anomaly term Ly, in SU(3), xSU(3), should be introduced
into the effective Lagrangian, and c,cy,c; are the parameters
to be determined experimentally [38]. The first two terms
approximate the original axial anomaly term [53,54], while the

015204-2



POLYAKOV SU(3) EXTENDED LINEAR-oc MODEL.: ...

third term is a mixed one. It is proportional to the first term. The
concept of choosing the first anomaly term is essential; other
terms are used to compare with other effects of the different
anomaly terms on the hadronic structure [52].

To describe experimental data, large-order terms with local
chiral symmetry should be included [38]. It is worthwhile
to highlight that Ly, symmetry in the QCD Lagrangian is
anomalous [55], known as the QCD vacuum anomaly [23,55],
i.e., broken by quantum effects. Without anomaly a ninth
pseudoscalar Goldstone boson corresponding to the sponta-
neous breaking of the chiral U(3),xU(3), symmetry should
unfold [23,55]. It is apparent that the hadron theory is not
fundamental. Thus, it is assumed to be valid at mass scale of
1-2 GeV [38] and therefore the local chiral symmetry would
not cause big problems. Nevertheless, the constraint terms
are conjectured to affect such QCD approaches [38]. This
well-known Ly, problem of QCD is effectively controlled
by the anomaly term c in the Lagrangian [56]. The squared
tree-level masses of mesons m? and m? contain a contribution
arising from the spontaneous symmetry breaking [38].

The introduction of scalar and vector meson nonets
into the Lagrangian of PLSM requires redefinition for the
contracovariant derivative of the quark meson contribution
represented in Eq. (6), where the degrees of freedom of scalar
® and vector L* and R" meson nonets are coupling to the
electromagnetic field A*. Equations (7) and (8) are the left-
handed and right-handed field strength tensors, respectively.
They represent the self-interaction between the vector and
axial-vector mesons with the electromagnetic field A*. The
local chiral invariance emerging from the globally invariant
PLSM Lagrangian requires that g = g, = g3 = g4 = g5 =
g6 = g [381:

D'® = "D —ig|(L'® — DR") — ie A" [T3, D], (6)
LM = 9"L" —ieAM[T5,L"] — {3"L" — ieA"[T3,L"]},
N
R" = "R —ieA"[T5,R"] — {0"R" — ieA"[T5,R"]}.
®)

It is apparent that T, = ia/Z with a =0, ...,8 are nine
U(3) generators, where )Am are the Gell-Mann matrices with
the fields ® of a 3x3 complex matrix comprising the scalars
o, (JP€ = 0), pseudoscalars 7, (JF€ =01), VI vector

Ta Oq =

Sl -

L0 1 1
BT T Tt 570

+
Tana = T

Sl -

Kt
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(JP€ =179, and AY axial-vector (J©¢ = 17*) meson states
given by

8
® =) Tuloq +im),

a=0
8
L* =" T, (VI + A%), ©))
a=0
8
R =T, (V- AL).
a=0

Ao =
algebra [57]. The chiral symmetry is explicitly broken by

\/g 1 and T, are normalized such that they obey the U(3)

8 8

H= Z T,he, A= Z T,8,. (10)

a=0 a=0

The symmetry breaking terms originate by U(3), xUQ3)p =
UQB)y xU@B3),. The terms are proportional to the matrix H
and A as given in Eq. (10). This relation describes the explicit
symmetry breaking due to

(i) finite quark masses in the (pseudo)scalar and (axial)-
vector sectors,
(i1) breaking U(3), if Hy,Ao # 0, and
(@iii) breaking U(3)y — SUQ)y xU(1)y if Hg,Ag # 0.

For more details, the readers are referred to Ref. [45]. It is
conjectured that the spontaneous chiral symmetry breaking
takes part in the vacuum state. Therefore, finite vacuum
expectation values for the fields ® and & are assumed to
carry the quantum numbers of the vacuum [49]. As a result, the
components of the explicit symmetry breaking term (diagonal)
are hg, h3, and hg, and &y, 83, and &g should not vanish [49].
This leads to extracting three finite condensates 6y, 73, and .
On the other hand, &3 breaks the isospin symmetry SU(2) [49].
To avoid this situation, we restrict ourselves to SU(3). This
can be the Ny =2+ 1 [23] flavor pattern. Correspondingly,
two degenerate light (up quark and down quark) and one
heavier quark flavors (strange quark), i.e., m, = my # my are
assumed. Furthermore, the violation of the isospin symmetry
is neglected. This facilitates the choice of &, (hy # 0, h;3 = 0,
and hg # 0) and for §, (§p # 0, §3 = 0, and &g # 0):

ay K

7540+ 7z 08 + 75 00 R’ ; an
0 —\/gog+\/%00
T K~

_\/LE 70+ %5”8 + \/lgno K° , (12)
KO —\/gng—i-%ﬂo

015204-3



ABDEL NASSER TAWFIK AND ABDEL MAGIED DIAB

and
@o+° + o\
1 V2 g :
T, VI = E o~ wo\;{" K*0 , (13)
K* K*O wg
fip+a? K
(S a x
Tu AZ' = — a” f|0—a? KO (14)
V2 1 V2 !

- 70
K, K fig
It would be more convenient to convert the condensates oy

and o3 into a pure non-strange o, and a pure strange o, quark
flavor [58]:

Oy _ L \/Q 1 (o)) (15)
o) " S\l —v2)\os)’
It is worthwhile to mention that ¢ > (0,,7,, V., A%).

A. Polyakov-loop potential

The Lagrangian of LSM can be coupled to the Polyakov-
loop dynamics [16,23]:

L= L:chiral - U(¢,¢*,T) (16)

The second term in Eq. (16), U(¢,¢*,T), represents the effec-
tive Polyakov-loop potential [5], which gives the dynamics of
the thermal expectation value of a color-traced Wilson loop in
the temporal direction [5]:

1 -
~ (P a7

o) =

&

Then, the Polyakov-loop potential and its conjugate read
¢ = (Tt. P)/Ne, ¢* = (Tr. P)/N,, (18)

where P is the Polyakov loop, which can be expressed as a
matrix in the color space [5],

B
P(x) = Pexp |:i / der()?,r)] , (19)
0

where 8 = 1/T is the inverse temperature and A, is the
temporal component of Euclidean vector field [5,6]. The
Polyakov-loop matrix can be reexpressed as a diagonal
representation [59], as in Eq. (18), where the gauge filed
Ay =gs A A /2 witha=1,... ,ch — 1 and g, being the
gauge coupling.

The coupling between the Polyakov loop and the quarks
is unrivaled and is given by the covariant derivative D, =
9, —iA,, Eq. (16), where A, = §,9 A is given in the chiral
limit, Eq. (16), and therefore is invariant under the chiral flavor
group. This is the same as the QCD Lagrangian [60-62].
In order to reproduce the thermodynamic behavior of the
Polyakov loop for the pure gauge, we use the temperature-
dependent potential U(¢,¢*,T), which agrees with lattice
QCD calculations and has Z(3) center symmetry [42,60—62]
like the pure gauge QCD Lagrangian [42,60]. In case of no
quarks, ¢ = ¢* and the Polyakov loop is considered as an order
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parameter for the deconfinement phase-transition [42,60].
In the present work, we use U(¢,¢*,T) as a polynomial
expansion in ¢ and ¢* [42,60-62],
upoly(¢a¢*aT) _ _bZ(T)
T4 4

b
(1 + 19* ") — §(¢>3 +¢")
b
+ %(W + 192, (20)

where by (T) =ao+a; (Ty/T) + a (TO/T)2 + aj (TO/T)3.
To reproduce the pure gauge QCD thermodynamics and the
behavior of the Polyakov loop as a function of temperature, we
use the parameters ay = 6.75, a; = —1.95, a, = 2.625, a3 =
—7.44, b3 = 0.75, and by = 7.5 [60]. Accordingly, the decon-
finement temperature, 7o = 270 MeV, in the pure gauge sector.

B. Mean field approximation

The partition function can be constructed, when taking
into consideration a spatially uniform system in a thermal
equilibrium at finite temperature 7 and finite quark chemical
potential u ¢, where f stands for u,d and s quarks. The change
in particles and antiparticles is governed by the grand canonical
partition function. A path integral over the quark, antiquark and
meson fields leads to [23]

/ r

Z =Trexp | — H— Z Mfo
f=u,d,s

= / [ [ Po.Dx, / Dy DY

X exp / L+ Z webys || @D

x f=u,d,s

where [ =i f/"dt [, d*x and V is the volume of the

system. For a symmetric quark matter, the uniform blind
chemical potential fulfills the conditions that wu, = u, =
Wa = Wy [23,63,64]. The meson fields can be replaced by their
expectation values d, and &, [65]. In estimating the integration
over the fermions yields, other methods were introduced [65].
The effective mesonic potential can be deduced and the
thermodynamic potential density reads

—ThhZ

QT.p)= =U(0x,0y) + U, ", T) + Qqq (T, ).

(22)

The explicit quark contribution to the LSM is given as

< Pk
Qg (T, i) = v T Z/O m{ln[l—nq,f(tuf)]
f=u,d,s

+In[1 — ng  (Top ), (23)

with the usual fermionic occupation numbers (for quarks)
ng s(T,uy) ={1+exp[(E; — ,uf)/T]}’l. For antiquarks
ng f(T,;p) =ng ¢(T, — jty). The number of internal quark
degrees of freedom is denoted by v. = 2N, = 6. The flavor-
dependent single-particle energies are given as E, = (k> +
m?)l/ 2 where m 1 is the flavor-dependent quark masses. Also,
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the light quark sector is conjectured to decouple from the
strange quark sector [42]. Assuming degenerate light quarks,
i.e., ] = u,d, then the masses can be simplified as [58]

Oy oy
my=g—, MmMg;= gﬁ-

2
For PLSM, the quarks and antiquarks contributions to the
potential are given as [65]

(24)

(T 1)

[ee] 3=
=—vT ) / (Zn‘)’ ~{In[1 4 3(p + ¢*e~Er/T)
f=ts?0

x e~ Er=m/T 4 g=3E;=w)/T]

+1In[1 + 3(¢* + pe~Er T/
% e—(EfHL)/T 4 6—3(Ef+ll)/T]}’ (25)
Based on nonstrange o, and strange o, condensates and taking
into consideration Eq. (15), then the purely mesonic potential
reads

2

m
U(oy,0y) = —hyox —hyoy + T(GXZ + ayz) — 2

c
Gx Gy

24/2

M o, 5 1 . 4
+_0x0y + §(2)\.1 +)“2)0x + Z()\] +)\.2)O’y.

2
III. PHASE TRANSITIONS AND THEIR
ORDER PARAMETERS

By minimizing the thermodynamic potential, Eq. (22), with
respective to oy, oy, ¢, and ¢*, we obtain a set of four equations
of motion o, oy, ¢, and ¢*:

902 9 92 9%

=— == —0, (26)
a0, aUy ¢ ¢ 0y =0y ,0y=0Cy,p=, p*=¢*
u=0.0 MeV
12 | -uuuuuv-uﬁ
0=0
"
(@)
0 s, ™ | |
0 100 200 300 400
T (MeV)
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with o, = 6y, 0y = Gy, ¢ = ¢, and ¢* = ¢* being the global
minimum, where all thermodynamics quantities are related to
the parameters oy, oy, ¢, and ¢*.

In order to determine the chiral phase transition, o, and oy,
and the deconfinement phase transition, ¢ and ¢* should be
estimated. The chiral mesonic phase structures in temperature
and density dependence are taken as free parameters to be fitted
experimentally. These parameters are classified corresponding
to scalar meson nonets m?, h,, hy, i, Ay, and ¢ [23]. The
vector meson nonets have the parameters m%, g1, hy, hy, hs, 8y,
and 8, [36].

In the present work we use o = 800 MeV. At vanishing
temperature, the chiral condensates for light and strange
quarks are taken as o,, = 92.4 MeV and o,, = 94.5 MeV,
respectively [16,23]. These values are used to normalize their
thermal evolution at vanishing chemical potential. In this limit,
the two Polyakov loops are identical, i.e., (¢) = (¢*). To
determining the critical temperature of the phase transition
(crossover), two approaches can be implemented:

(i) The first one is the point at which the order parameter
intersects with the curve of the corresponding chiral
condensate.

(i) The second one is based on the maxima/peaks of
the temperature derivative of the condensates (chiral
susceptibilities) for strange and nonstrange quarks. The
peaks should be ordered to the critical temperatures.

The first approach was used to derive the results depicted in
Fig. 1. Accordingly, we find that the chiral restoration of the
nonstrange condensate is related to T2 ~ 181 MeV, while for
the strange quark to 7} ~ 270 MeV.

The lattice QCD simulations prefer dimensionless quanti-
ties. Therefore, the chiral order parameter is expressed in the
chiral condensate [66]:

_ my (6T )

My = ———.

= @7)

14

12

10

M,
oo

HISQ/tree: N.= 8, O(4)

i M, /M, = 0.025

M, /M = 0.050

L PLoM — |

0.7

FIG. 1. (Color online) Left-hand panel: the chiral condensates o, and o, (solid and dotted curves, respectively) and the Polyakov loops
¢ and ¢* (dashed curve at ¢ = 0, i.e., without anomaly) are given as functions of the temperature at vanishing baryon chemical potential. At
u = 0 MeV, the two Polyakov loops are identical, i.e., ¢ = ¢*. Right-hand panel: the chiral condensate in O(4) lattices [66] with HISQ/tree
with N, = 8 is compared with the PLSM calculations (solid curve). The rectangular symbols stand for M, /M, = 0.025 and the circular ones

represent M, /M, = 0.05.
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500
________ ms .
400 | T |
ml \\
= 300 1
Q \
=
= 200 |
(b)
100 T=10MeV 1
0 |
0 150 300 450 600

i [MeV]

FIG. 2. (Color online) The left-hand panel presents the thermal evolution of nonstrange m; (solid curve) and strange m; (dashed curve) at
© = 0 MeV. The right-hand panel shows their dependence on the baryon chemical potential at a fixed temperature 7 = 10 MeV.

The right-hand panel of Fig. 1 compares the chiral condensate
from the highly improved staggered quark action plus tree-
level action (HISQ/tree) with temporal dimensions N; = 8§,
and two quark masses M,/M, = 0.025 and M,/M, = 0.05
in O(4) lattices [66] with the PLSM calculations for M,; see
Eq. (27).

When the light constituent quark mass takes the value m; =
300 MeV, the coupling g = 6.5 and the strange constituent
quark mass reads m; ~ 433 MeV. These are normalized to the
values at zero temperature 7 and vanishing baryon chemical
potential x. In cases of finite 7 and vanishing x, and vanishing
T and finite u, the chiral phase transition is determined by non-
strange and strange quarks fields, Eq. (24), as shown in Fig. 2.
The left-hand panel of Fig. 2 shows the thermal evolution of
nonstrange and strange quarks at vanishing . The right-hand
panel shows their density dependence at T = 10 MeV. The
contribution of finite quark mass seems to have a considerable
effect on the chiral phase transition. To this end, the normalized
condensates are studied in 7 and u dependence.

100 T
n=0.0MeV =
e w=100.0 MeV ===
1L=180.0 MeV
u=220.0 MeV
75 1L =300.0 MeV 1

<0.,>
Gy

S
]
2 50} <c> ]
A
©
\2
25+
0 ‘ : .
0 100 200 300 400

For the in-medium thermal and density effects on the
mesonic masses, we present in the left-hand panel of Fig. 3 the
chiral condensates at varying temperatures and fixed baryon
chemical potentials. In doing this, we take into consideration
the thermal and density dependences of the chiral condensates.
For instance, we present the chiral condensates at different
temperatures and chemical potentials. At these temperatures
and chemical potentials, we should estimate the thermal and
density dependences of the mesonic states. We notice that
the values of o, and o, decrease with increasing 7. There is a
rapid decrease within a narrow range of temperatures. The light
quarks are more sensitive than the strange quarks. This likely
describes the characteristics of the chiral phase transition.

There is a similar decrease in both quantities with increasing
hadronic dense medium (baryon chemical potential), seen in
the right-hand panel of Fig. 3. We notice that the sudden
decrease around the chiral phase transition is sharper than
the one in the left-hand panel. This would indicate that the
chiral phase transition at large density and low temperature

<op> [MeV]

0 150 300 450 600

FIG. 3. (Color online) Left-hand panel: the averaged chiral condensate, (o, ), is given as functions of temperature at different chemical
potentials u = 0, 100, 180, 200, and 300 MeV (solid curves from top to bottom, respectively). For the chiral condensate (o) we fix the same
values of . The right-hand panel presents the dependence on 1, where the temperatures are fixed at the given values 7 = 10, 100, 150, 180,
and 200 MeV (solid curves from top to bottom, respectively).
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FIG. 4. (Color online) The expectation values of the Polyakov-loop fields, ¢ and ¢* (left-hand panel), are given as functions of temperature
at different chemical potentials u = 0, 100, 180, 200, and 300 MeV for ¢* (upward from the solid curve) and for ¢ (downward from the solid
curve). The chiral condensates, ¢ and ¢* (right-hand panel), are given as functions of the chemical potential numerically in logarithmic scale
at different temperatures 7 = 10, 100, 150, 180, and 200 MeV as points: ¢ (top curves) and ¢* (bottom curves).

(very near to the abscissa of the QCD phase diagram [67])
is more prompt than the one at low chemical potential and
high temperature. The earlier would likely be characterized as
a first-order phase transition, while the latter as a moderate
phase transition (crossover) [67,68].

We also notice that the fast decrease of o, takes place
earlier and faster than that of 0. For instance, in the left-hand
panel of Fig. 2, we find that TJ = 181 MeV at vanishing
density, and the decreases are smooth, while at finite baryon
chemical density and fixed 7 = 10 MeV the critical value
© =360 MeV. This would be interpreted as a smooth phase
transition know as crossover [69]. Thus, in presence of the
Polyakov-loop potential, UA(1) of the symmetry breaking
term is kept constant throughout the chiral and deconfinement
phase transition.

For the results depicted in Fig. 4, we analyze the deconfine-
ment phase transition at varying baryon chemical potentials
and temperatures and include the Polyakov-loop corrections
to the meson masses at five different fixed temperatures and
five different chemical potentials. The thermal effects of the
hadronic medium on the evolution of ¢ seem to be very smooth.
In hadronic dense medium, the slope of ¢ () seems to depend
on the temperature. It is always positive and increases rapidly
with w, while ¢(u)* decreases slowly compared to ¢(u). Both
quantities intersect at a characteristic value of © depending on
value of the temperature 7.

IV. MASSES OF SIXTEEN MESONIC STATES

A. Inclusion of anomalous terms

It is assumed that the contribution of the quark potential to
the Lagrangian vanishes in the vacuum. Therefore, the meson
potential determines the mass matrix, entirely. In other words,
the meson masses do not receive any contribution from quarks
or antiquarks in vacuum. Thus, the meson masses are governed
by the meson potential [23,45].

The masses are defined by the second derivative of the
grand potential Q(T, u ), Eq. (22), evaluated at its minimum

Eq. (28), with respect to the corresponding fields. In the
present calculations, the minima are estimated by vanishing
expectation values of all scalar, pseudoscalar, vector, and
axial-vector fields. The pure strange &, and nonstrange &,
condensates are finite,

) PQT.uy)
mi,ab -
06.49%ib | min
where i stands for scalar, pseudoscalar, vector, and axial-vector

mesons and a and b range O, . ..,8. In vacuum, the mesonic
sectors are formulated in the nonstrange and strange basis:

, (28)

(i) Scalar meson masses are given as

3)\2_2 \/EC_
2%

my =m’+ 1 (5] +56;) + 5 Gy, (29)
m? =m? + i (62 +57)

+ %2(63 +26,6, +257) + géx, (30)
m2 = m?,oo cos” 0, + migg sin® 6,

+2m; 4 sin 6 cos 6y, 3D
m, = mg g Sin’ O + m{ g cos” b

— 2m? g sin 6, cos 6, (32)

with
A
m? oy = m? + ?1(763 +4v26,6, + 552)

2c
+22 (57 +67) — 5- (V26 +5y),

y

A
m; g = m* + ?1(55}2 — 4v26,6, + 757)

-2 —
o, _2 V2¢ _ oy
+ A (7 +20y> +5 (\/on - 7) ,
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2X
m; oy = Tl(\/ig ‘/_U v)

— 0,0y —
c
+/21 (— —02> + —— (6, — V25,),
2 32 '
and s (scalar) refers to i in Eq. (28).
(i) Pseudoscalar meson masses read
A 2
ml =m’ 42 (50 +67) + F67 - ch'ry, (33)

2 2 2 | =2
myg =m +k1(ox —}-O’y)
A2 _2 f_ _ _2 C_
+ 3(@ — V26,6, +257) — 70 (34)
m% = mi,oo cos’ 0, + mi,sx sin’ 0,
+2m3, 4 $in 6, cOs O, (35)
m% = mi,oo sin® 6, + miygg cos’ 6,

— 2’"?;,08 sin6, cos6,, (36)

with
»
my 0 = m’ 4 (07 +67) + 5 (07 +57)

c
+ 3(25'): + \/Eéy)’

m* 8:m2+k1(0 —i—o)—i——(a —|—4a)

P8 6
c
- —(45—X —V23,),
A
m;,os \/; 2 (cr — 20 ) — g(ﬁéx —26y);

the mixing angles are given by

2
2m; o

tan 26; = s—, i=s,p, (37)

Mioo — Mg

and p (pseudoscalar) refers to i in Eq. (28).
(iii) Vector meson masses are given as

h
m> =m7i + (h1+h2+h3)a +5 &7 + 2.,
(38)
2 2 52 Xy 2
mK,:ml-I-Zx(gl—i-Zhl—i-hz) ﬁ(h3 81)
0_—2
+ 5 (8] o+ ho) + 8+, (39)

J

, 2T uy)
Migh = 77,
’ 08i.a0&ip

min Z f (2m)3 2E,,

[( ng,f +ng, f)<mfah
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m? = m? (40)

h h
m? =ml+ ?153 + (% +hy+ h3)6—§ + 26y,

(41)
and vectors V* refer to i in Eq. (28).
(iv) And finally the axial-vectors masses are
) 1
mi =mi+ = 5 (287 + hi + ha — h3) 5,
hi_,
+ 52425, 42)

2

1
my, =mi+ 1 (g +2h1 + hy) &7

1
— —6.6y (hs — g°
ﬁ y( 3 gl)
1
+5( h1+h2)0 + 8 + 6y, (43)
m%x = mﬁl, 44)

2 2, O; 2 _
my, = my+ —chi 4| 281+ 5 +hy — hs ) 65

+26,, (45)
and axialvector A* refer to i in Eq. (28).

The evolution of masses of (pseudo)scalar states depends
on the anomaly term of Ly;),. This term causes the anomaly
in the ¢ term. The way of choosing the anomaly term defines
and describes of the structure of the hadronic states [52]. The
anomaly term, which we have implemented here, agrees with
the calculation of Refs. [23,24,70] but differs from Ref. [38].
Moreover, the estimated masses of (axial-)vector states are not
affected by the anomaly term [38].

The quantum and thermal fluctuations of the mesonic fields
are neglected. It is worthwhile to mention that the integration
over the mesonic fields is not used. Furthermore, the mesonic
fields are replaced by their expectation values, oy and oy,
resulting in the mesonic potential U(oy,03). The quarks are
treated as quantum fields. The integration over the quark fields
yields a determinant, which can be rewritten as a trace over
a logarithm defined by Eq. (23) for LSM and Eq. (25) for
PLSM. The Matsubara formalism [71] gives an estimation for
the quark contribution to the meson masses; see Sec. V.

In order to include the quark contribution to the grand
potential, the meson masses should be modified due to the in-
medium effects. In calculating the second derivative, Eq. (28),
we take into account Eq. (23) and diagonalize the resulting
quark mass matrix. Then, we can deduce an expression for the
modification in the meson masses [23]:

m2 m2 > 2
fia”" fib f.b
L2 by s + by f)(—>]. (46)
2E2, LTI 2B, ¢ T

The quark mass derivative with respect to the meson fields Ci,a,m%ﬂa = am%ﬂ /0¢&; 4 and that with respect to the meson fields

g,,aag,,,,,m?ab = 8m§/8{i,a8§i,b are listed in Table I. Correspondingly, the antiquark function by ((T,1tf) =

bq,f(Ta - l'l’f),
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by r(T,up) =ng s (T,pup)[1 —ng (T, p)]. 47)

An expression for the meson mass modification can be estimated from PLSM, Eq. (25), and the diagonalization of the resulting

quark mass matrix [24],

m = 2QUT i p)
e 08i.a0&ip

in Z f Qn)*2E, ;

In estimating miab,the definitions E, ¢(T,u) = E4 (T, — )
and
be™ E‘ivf/T —+ 2@*@72 EIZAf/T + 673 E’ivf/T
Noy = TE, N E T £ o 49
14 3(¢p + p*e Ear/Tye=Eas/T 4 e=3Eay/
d*e Ear/T 1 2Ppe2Ear/T 4 o=3Eqs/T
Nq,f = —Ez /T p— (50)
L+ 3(¢* + pe=Far/T)e

Eqy/T 4 ¢—3Eqs/T
are implemented [24]. Furthermore, for quarks B, ; =

3(Nq’f)2 — Cq.r and for antiquarks B r = 3(Ng rp—c,.f
where

e EarlT 4 4 e=2Far/T 1 3¢=3Eqs/T
Cor = 143 + ¢preEar/ Ty e=Eas/T  ¢=3Eas/T"

(G

d*e Eas/T 4 4de~2Eas/T 4 3¢=3Eas/T
1 +3(¢p* + pe Ear/Tye Eas/T 4 g=3Eas/T

are defined [24].

The quark masses have to be taken into account and
accordingly same isospin of light quarks m, = m,, but
different for m;. The first and second derivatives of squared
quark mass in nonstrange and strange basis with respect to
meson fields are evaluated at minima [23]. In Table I, the
summations over the two light flavors denoted by symbol /
are in given in the first two columns, presenting the first and
second derivatives of squared light quark masses, respectively.

Cop= (52)

TABLE 1. The first and second derivatives of squared quark
masses in nonstrange (first two columns) and strange (last two
columns) basis with respect to the meson fields are evaluated at
minima [23].

2 2 4 2 2 2 2 4 2 2
ml.amq,b/g ml,ab/g mx,umx,b/g ms.ab/g
1.2 2 1 2 1
% % 3% 3 3%y 3
o1 o] %(‘IXZ 1 0 0
Oy +x/iﬂy 20y +20,
04 04 0 Ox 03720;7 0 y 203*0}
1.2 1 2.2 2
o3 0% 6%x 3 39y 3
2 2 V2 V2 2 V2
% 08 6 Ox 3 39 N
Ty Ty 0 % 0 %
Ty T 0 1 0 0
O'X—\/EO'\» «/5(7; —20y
TT. TT. [oF 2 ) .
4 4 0 ¥ 62202 0 Y oi-20}
g Ty 0 % 0 %
Wm0 % 0 2

2

2 2
fa My sp
[(qu+qu)<mfab 2E2 )+(qu+qu)( 2E, ;T >j|

(48)

(

The last two columns are devoted to the strange quark mass.
In spite of the consideration of SU(2) isospin symmetry, the
first and second derivatives of squared light quark masses are
different for the u and d quarks, where their summation is
canceled out [23].

Table II presents a comparison between the different scalar
and vector meson nonets in various effective thermal models,
such PLSM (present work) and PNJL [27] compared to
PDG [33] and lattice QCD calculations [30,31]. Some remarks
are now in order. The errors are deduced from the fitting
for the parameters used in calculating the equation of states
and other thermodynamics quantities. The fitting requires
information from the experimental inputs about (axial-)vector
and (pseudo)scalar states. The output results are very precise
for some light hadrons described by the present model, the
PLSM. We aim to describe hadron vacuum phenomenology
with such extreme precision and not only to describe the hadron
spectrum in both thermal and hadronic dense medium. We
show the effects of the chiral condensate and deconfinement
phase transition in order to characterize the chiral phase
structure of many hadrons. The PNJL model is limited
to study (pseudo)scalar meson states. Only pseudoscalar
and vector meson masses are available in the lattice QCD
calculations of the HotQCD Collaboration [30] and PACS-CS
Collaboration [31].

The estimation of the meson masses seems to agree
well with Refs. [23,24,38,70]. But for mixing strange with
nonstrange scalar states, one state <1 GeV and another one
>1 GeV were obtained in Ref. [38]. To this end the authors
needed to implement Gyuri fit to correct this [56].

1. Temperature dependence

In the presence of chiral symmetry breaking and the
correction of the Polyakov-loop potential, we present different
scalar and vector meson nonets in thermal and hadronic dense
medium and estimate the corresponding meson spectrum. We
start with meson masses at finite temperature and varying
baryon chemical potential in both LSM and PLSM. The
thermal evolutions for scalars and pseudoscalars are shown
in Figs. 5 and 6, respectively. The vector and axial-vector
results are presented in Fig. 7. In the same way, the mass
spectrum at nonzero chemical potential in both LSM and
PLSM in dense medium are shown in Figs. 8 and 9 for scalar
and pseudoscalar mesons and in Fig. 10 for both vector and
axial-vector mesons.

The temperature variations of mesonic masses can be under-
stood as the in-medium thermal effects on the mesonic states.
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TABLE II. A comparison between (pseudo)scalar and (axial-)vector meson sectors in PLSM (present work) and the corresponding results
from PNJL [27]. Both are compared with the experimental measurements, PDG [33] and the lattice QCD simulations [30,31].

Sector Symbol PDG [33] PLSM PNIL [26,27] Lattice QCD
HotQCD[30] PACS-CS [31]
ap ao(980+20) 1026 837
K K5(1425%50) 1115 1013
Scalar
JPC _ o+ o o (400 — 1200) 800 700
fo £o(1200 — 1500) 1284 1169
4 70(134.97%69) 120 126 134%6 135.4%62
Pseudoscalar K K°(497.614%248) 509 490 422.6%13 498+22
JPCu . n n(547.853%274) 553 505 579%73 688+
- n 1 (957.78%%0) 965 949
) p(775.49%388) 745 756.2%36 59786
Vector wy (782.65%447) 745 884+18 861%2
JPC _ - K* K*(891.66%2) 894 1005%% 1010.2%77
- wy $(1019.455%51) 1005
a a,(1030 — 1260) 980
. fix £1(1281%60) 980
[;ﬁlcalzvelcffr K K:(1270+7) 1135
fiy £1(1420%713) 1315

As shown in Figs. 5 and 6, respectively, the bosonic thermal
contributions to the mesonic masses decrease with increasing
temperature, while the fermionic contributions increase at high
temperatures. The fermionic (quark) contributions are negli-
gible at small temperatures. At high temperatures, the bosonic
thermal contributions dominate. This leads to degeneration in
the mesonic masses, which in turn leads to a natural change
in chiral and deconfinement phase transition with increasing
temperature.

In Fig. 5, the left-hand panel shows the two scalar meson
sectors, ap and o, and the two pseudoscalar meson sectors, 1’
and m, in thermal hadronic medium at vanishing baryon chem-
ical potentials p in the presence of U(1)4 symmetry breaking.
The U(1)4 symmetry breaking gets effectively restored and
repeals the mass gap between the chiral partners [23], where at
very large temperatures comparable to the strange quark mass,
the difference between the strange and nonstrange mesons
becomes negligible; see Fig. 2. Accordingly, all mesonic
masses will degenerate. Since at very high temperature the
major effect takes place in the strange masses, such as ag
and n’, the masses of o and 7 degenerate in close vicinity of
reduced temperature. This result is compatible with the result
reported in Ref. [23]. The masses of ay and ' ~250 MeV
and masses of o and w ~181 MeV. The term with U(1)4
symmetry breaking appears in the meson masses through the
anomaly breaking term, c. It is strongly related to the strange
condensate o. In the right-hand panel, the Polyakov-loop
correction is introduced. This correction seems to enhance the
quark dynamics and raise the mass degeneration in a sharp and
fast way.

In Fig. 5, the different panels present a systematic study of
the effects of the chemical potentials on the sixteen mesonic

states. We find that increasing the baryon chemical potential
(from top to bottom panels) enhances the degeneration of the
mesonic masses. For example, at © = 100 MeV, four meson
states ap and ' become degenerate at ~240 MeV, o and 7w
at ~180, while at © =220 MeV the four states ay and 7’
degenerate at ~170 MeV, o and 7 at ~125 MeV. This has
a close relationship with the chiral condensate and the de-
confinement phase-transition. In Fig. 3, the chiral condensates
o, and &, and deconfinement phase-transition ¢ and ¢* vary
with T and w. The contributions from the nonstrange quarks
to the rapid crossover in the nonstrange sector are different
and affect the contributions of the mesonic masses very
strongly [23].

Figure 6 presents the thermal evolution of the scalars fj
(horizontal dashed curve) and « (vertical dashed curve) and
pseudoscalars 7 (dotted curve) and K (solid curve) at differ-
ent baryon chemical potentials © = 0, 100, 180, 220, and
300 MeV. We find that the masses of these states degenerate at
T ~ 240 MeV, especially in LSM. In the same way as shown
in Fig. 5 for example, at © = 100 MeV, the temperatures at
which the three mesonic states «, K, and n become degenerate
T ~ 240. The strength of the stability state at low temperatures
delays as the density increases.

The left-hand panel of Fig. 7 gives the thermal evolution of
0, w, ai, fi, k*, K*, and ¢ calculated in the LSM. We find
that the masses of these states degenerate at 7 ~ 200 MeV,
while «*, K*, and ¢ degenerate at T ~ 240 MeV. At high
temperatures, it is obvious that the effects of the nonstrange
mass vanish. This makes the differences between the various
masses disappear. Increasing the baryon chemical potential
reduces the temperatures at which the masses degenerate. This
can be understood on the basis of the thermal evolution of
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FIG. 5. (Color online) Scalar ap
(dashed curve) and o (dotted curve)
and pseudoscalar states 7' (solid
curve) and m (dashed-dotted curve)
are given as function of temperature
at different baryon-chemical potentials
u =0, 100, 180, 220, and 300 MeV.
The left-hand panel shows LSM results.
The PLSM results are presented in the
right-hand panel.

The mass degeneration can be interpreted as an effect of
the fermionic vacuum fluctuations on the chiral symmetry
restoration [23], especially on the condensate o,. The effect
seems to melt the strange condensate faster than the nonstrange
one o,; see Fig. 1. At very high temperature, the mass gap

between mesons seems to disappear and decrease with the
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melting strange condensate o. This mass gap appears at low 2. Density dependence

temperatures, where the nonstrange condensate remains finite. The meson masses are shown for the case with U(1)4
At temperatures higher than the critical value only the strange a1y ag a function of baryon chemical potential at different
condensate remains finite. This thermal effect is strongly temperatures in the LSM (left-hand panel) and the PLSM
related to the degeneration of the meson masses. (right-hand panel), where the scalar and pseudoscalar are
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FIG. 7. (Color online) Left-hand
panel (LSM) and right-hand panel
(PLSM): vector mesons p and w (solid
= s curve), k* (long-dotted curve) and ¢
=) =) (dotted curve) and axial-vector mesons
= = a; = fi (dashed-dotted curve), K* (dotted
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presented in Figs. 8 and 9 while the vector and axial-vector ~ drops below the mass of the = meson at the value where the
mesons are depicted in Fig. 10. first-order transition should be positioned [72]. This means

In left-hand panel of Fig. 8, we notice that all masses that the masses of pseudoscalar mesons stay nearly constant
keep their vacuum values almost unchanged until the baryon  until the phase transition takes place, Fig. 8, while the scalar
chemical potential reaches the Fermi surface for the light =~ mesons show a stronger melting behavior above the Fermi
quarks [72] at u ~ 350 MeV. The mass of the o meson surface for the light quarks [72]. The right-hand panel presents
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the effects of the Polyakov-loop correction introduced to the
quark dynamics. This causes a sharp transition in the mass
degeneration. The increase of the melting behavior above T,
derives the masses to be compacted with each other.

In left-hand panel of Fig. 9, we find again that all masses
stay at their vacuum values until the baryon chemical potential

reaches the Fermi surface for the light quarks at £ ~ 350 MeV.
The meson masses drop at the first-order transition and the «
meson drops below the masses of K and n mesons. Only in
the curve for the f; meson is the Fermi surface for the strange
quarks clearly visible. The mass of f, decreases below «.
Masses of K and 7 decrease only after the light quark phase
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] (PLSM) show scalars f, (horizontal
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curve) and pseudoscalars 7 (dotted
curve) and K (solid curve) in hadronic
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transition (this the second phase transition) and degenerate
with other meson masses at very high chemical potential u =
700 MeV. This value decreases as the melting point of the sys-
tem increases. The first slight drop of the f; meson takes place
at u ~ 350 MeV, due to the induced drop in the strange con-
densate. The right-hand panel shows that the Polyakov-loop

correction introduces quark dynamics. Apparently, this en-
hances the mass degeneration through the deconfinement
phase transition to appear sharper and faster than in the LSM.

Figure 10 shows the LSM (left-hand panel) and PLSM
(right-hand panel) results of vector and axial-vector mesons as
a function of the baryon chemical potentials at different fixed
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temperatures. This gives a systematic study for the variation of
heating effect on the hadronic dense medium. In the left-hand
panel we find that the axial-vector mesons a; and f; keep their
vacuum values till © = 350 MeV. Then, they drop below the
values of vector mesons p and w. This is accompanied by a
strong phase transition (first order) and a degeneration in the
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FIG. 10. (Color online) The left-hand
panel (LSM) and right-hand panel (PLSM)
show vector mesons p,w (solid curve), «*
(long-dotted curve), and ¢ (dotted curve)
and axial-vector mesons a; = f; (dashed-
dotted curve), K* (dotted curve), and f*
(short-dashed-dotted curve) in hadronic
dense medium at different temperatures
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800

masses. The axial-vector meson K * keeps its vacuum value till
the same value of the baryon chemical potential. Then, it drops
below the values of vector mesons p and w. In this case, this
is accompanied by a rapid phase transition (first order). The
strange meson states f;* and ¢ degenerate only at very high
chemical potential, u ~ 700 MeV. These u values decrease
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with increasing 7. Increasing T reduces the baryon chemical
potential, at which the mass degeneration gets compatible with
the previous cases and easily gaps the Fermi surface for the
light quarks. These would mean that the masses of vector
mesons stay nearly constant until the phase transition takes
place, while the masses of the axial-vector mesons show a
stronger melting above the Fermi surface for the light quarks.

The right-hand panel Fig. 10 shows the in-medium effect of
the baryon chemical potential (density) on the vector and axial-
vector mesons in the presence of Polyakov-loop correction
and symmetry breaking. We find that the deconfinement phase
transition has considerable effects on the chiral phase transition
in meson masses, where the restoration of the chiral symmetry
breaking becomes sharper and faster than in the LSM. For
example, very close to the critical temperature, 7 = 180 MeV,
the axial-vector mesons a; and f; keep their vacuum values
till u ~ 180 MeV. Then, the two masses become smaller than
that of the vector mesons p and w. The axial-vector meson,
K*, keeps its vacuum value till © ~ 300 MeV. Then, its mass
drops below the ones of the vector mesons p and w. At
a characteristic value of the baryon chemical potential, the
masses of all mesons degenerate with each other.

B. Exclusion of anomalous terms

The axial anomalous term U(l)4 is considered by an
effective "t Hooft determinant in the Lagrangian, which breaks
U(1)4 symmetry [4,73]. This term appears in the anomaly La-
grangian, Eq. (5), and in the pure mesonic potential, Eq. (26),
through the parameter c. Eliminating this term likely affects
the chiral phase transition and plays an essential role onin the
phenomenology of scalar and pseudoscalar masses at finite
temperature and density. The vector and axial-vector masses
are not affected by the anomalous term; see Egs. (38)—(45). It
is conjectured that the axial anomaly-breaking term is constant
(not depending on temperature and chemical potential) [23].
In this section, we introduce the influence of the axial anomaly
on the meson masses.

In the case that the anomalous terms depend on the temper-
ature, a fast effective restoration of the axial symmetry takes
place [23]. It was found that the anomalous term decreases
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with increasing temperature [23]. At very high temperatures,
both chiral condensates o, and o, degenerate [23].

In the case that the chiral condensates depend on the baryon
chemical potential, we find that the upper Fermi surface of the
light quarks coincides with the light quark mass, u ~ m; =
300 MeV, where the chiral condensates are in the broken phase
(below the phase transition) and the strange condensate has no
influence on the axial anomaly [23]. The phase transition is
mainly estimated by the nonstrange condensate o,, while the
leap in the strange condensate o, can be neglected. Below
the Fermi surface (above the phase transition), the strange
condensate should be taken into account: u ~ m, = 433 MeV.

1. Temperature dependence

The thermal evolution of the meson states in the case
of negligible influence of the axial anomaly term U(1)a
at vanishing baryon chemical potential © = 0.0 MeV, LSM
(left-hand panel) and PLSM (right-hand panel), in Fig. 11,
shows that the critical temperature 7, remains unchanged,
the mass gap between the chiral partners vanishes in the
restored phase, and all meson states begin to degenerate at
the chiral restoration temperature 7,/ of light quarks. This
value of 7,/ does not change when introducing the anomaly
term. The introduction of color and gluon dynamics in form of
Polyakov-loop corrections to ¢ and o. Both drop to " and 7.

Figure 12 shows that the chiral restoration remains incom-
plete till the temperature exceeds the critical one corresponding
to the chiral restoration for light quarks. In the presence of an
axial anomaly term, it is obvious that the four meson states
degenerate at the same approximative temperature. The chiral
restoration for strange quarks is not fully completed because
n degenerates with k and K at values larger than that of the
chiral restoration of the light quarks, T2 . These values are not
changed in both cases, i.e., with/without anomaly. But they
increase when introducing color and gluon interaction.

2. Density dependence

The density evolution of mesonic states in the case of neg-
ligible influence of the axial anomaly term U(1)4 at finite tem-
perate is evaluated at 7 = 10 MeV in LSM (left-hand panel)

1200 [ ' ' ;f ]
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= 0.0 [MeV] Vi
900 | 1
>
(]
= 600 1
=
aO ..............
P
300 | ne :
T
O 1 1 1
0 100 200 300 400
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FIG. 11. (Color online) Left- (LSM) and right-hand panels (PLSM) show scalar a( (dashed curve) and o (dotted curve) and pseudoscalar
states 7’ (solid curve) and 7 (dashed-dotted curve) as a function of temperature at vanishing baryon chemical potentials . = 0.0 MeV.

015204-17



ABDEL NASSER TAWFIK AND ABDEL MAGIED DIAB

1500

1200

900

M [MeV]

600

1(‘0
(a) LSM K wemnnun
300 | 1= 0.0 [MeV] K 1
n

0 ! ! !
0 100 200 300 400

T [MeV]

PHYSICAL REVIEW C 91, 015204 (2015)

1500
1200 1
= 900 1
[}
=)
= 600 |
100
(b) PLSM K-
300 r 1= 0.0 [MeV] K 1
n
0 I I I
0 100 200 300 400

T [MeV]

FIG. 12. (Color online) Left- (LSM) and right-hand panels (PLSM) show scalars f; (horizontal dashed curve) and « (vertical dashed curve)
and pseudoscalars 7 (dotted curve) and K (solid curve) as a function of temperature at vanishing baryon chemical potentials u = 0.0 MeV.

and PLSM (right-hand panel) in Fig. 13. The critical tempera-
ture does not change from the case in which the axial anomaly
term is included. But the introduction of the color dynamics in
the absence of the axial anomaly term appears in the left-hand
panel of Fig. 13. The limit of the Fermi surface is unchanged in
both cases, i.e., with and without anomaly. In Fig. 13, the drops
of ap and o states to " and 7 states are slow. This is sharp and
localized in a small region around the critical .. The phase
transition is first order. This means that the scalar mesons
show a stronger melting behavior, while the introduction of
the color dynamics of quarks bears out the pseudoscalar states
to have a large melting point as shown in the left-hand panel of
Fig. 13. The degenerate states between all four meson masses
are assumed to take place at second-order phase transition.

In Fig. 14, the « state drops to the K and 7 states in a
first-order phasetransition, but the chiral phase restoration will
not be completed till f; degenerates at a higher-order phase
transition. All properties obtained in the case of including
an anomaly are also observed in the case without anomalous
terms.
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C. Numerical parameters of the model

Table IV summarizes the numerical values of the various pa-
rameters of the present work. These have be deduced from the
thermal and density evolution of the scalar and pseudoscalar
meson masses [23]. Here, we distinguish between the cases
where the anomalous terms, c, are finite and vanishing.

Table V summarizes the numerical values of the various
parameters of the model used in this work. They have been
deduced from the thermal and density evolution of the vector
and axial-vector meson masses [23].

V. NORMALIZATION TO LOWEST
MATSUBARA FREQUENCY

In finite temperature field theory, the Matsubara frequencies
are a summation over the discrete imaginary frequency,
S, = TZiw” g(iw,), where g(iw,) is a rational function,
w, = 2n7w T for bosons, and w, = (2n + 1) T for fermions
and n =0,x1,4£2,... is an integer (plays the role of a
quantum number). By using Matsubara weighting function

1200
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400

200

0 100 200 300 400 500 600
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FIG. 13. (Color online) Left- (LSM) and right-hand panels (PLSM) present scalars a, (dashed curve) and o (dotted curve) and pseudoscalars
n’ (solid curve) and 7 (dashed-dotted curve) in dense medium at fixed temperature 7 = 10 MeV.
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FIG. 14. (Color online) Left- (LSM) and right-hand panels (PLSM) show scalars f; (horizontal dashed curve) and k (vertical dashed curve)
and pseudoscalars 1 (dotted curve) and K (solid curve) in dense medium at fixed temperature 7 = 10 MeV.

hy,(z), which has simple poles exactly located at z = iw,,
then
T
S, = 327 ?{ 8@ hy(2)dz, (53)
where n = £ stands for the statistic sign for bosons and
fermions, respectively. h,(z) can be chosen depending on
which half-plane the convergence is to be controlled,

14-n,(z)
T 9

hy(z) = {nm

T °

(54)

where 1,(z) = (1 4+ ne®/T)~! is the single-particle distribution
function.

The mesonic masses are conjectured to have contributions
from the Matsubara frequencies [74]. Furthermore, at high
temperatures (>T7,), the behavior of the thermodynamics
quantities, including the quark susceptibilities, besides the
masses, is affected by the interplay between the lowest
Matsubara frequency and the Polyakov-loop correction [75].
We apply normalization for the different mesonic sectors with
respect to the lowest Matsubara frequency [76] in order to
characterize the dissolving temperature of the mesonic bound
states. It is found that the different mesonic states have
different dissolving temperatures. This would mean that the
different mesonic states have different 7,.’s, at which the bound
mesons begin to dissolve into quarks. Therefore, the masses of
different meson states should not be different at 7 > T,. To a
large extend, their thermal and density dependence should be
removed, so that the remaining effects are defined by the free
energy [74], i.e., the masses of free bosons are defined by m;.

That the masses of almost all mesonic states become
independent of T, i.e., constructing a kind of a universal
line, would be seen as a signature for meson dissociation
into quarks. It is a deconfinement phase transition, where the
quarks behave almost freely. In other words, the characteristic
temperature should not be universal, as well. So far, we
conclude that the universal 7, characterizing the QCD phase
boundary is indeed an approximative average (over various
bound states).

A. Critical temperatures and critical chemical potentials

In left-hand panel of Fig. 15, it is obvious that each scalar
and pseudoscalar meson normalized to the lowest Matsubara
frequency begins to dissolve into its quark constituents,
individually. At very high temperatures, we expect a universal
line independent of temperature, where many bound particles
dissolve entirely. For example, «, K, ag, 1, 0, fo, 0, and
dissolve slowly. The right-hand panel shows the same behavior
but corresponding to vector and axial-vector mesons, where
P, w, ay, fi dissolve rapidly, while f;* is the last bound state,
which seems to survive the typical 7. In Table III, different
meson states are listed corresponding to their dissolving
temperatures.

In Fig. 16, the top panels show the in-medium effects
of the baryon-chemical potential (density) on the masses of
mesonic states normalized to the lowest Matsubara frequency
at a fixed temperature lower than the typical 7. It is obvious
that increasing w also brings the masses very close to a
universal value, i.e., free energy. The bottom panels show the
same but at a fixed temperature higher than the typical 7.

TABLE III. The approximative dissolving temperature corresponding to the different meson states.

Meson Scalar mesons Pseudoscalar mesons Vector mesons Axial-vector mesons

ap K o Jo 7 K n p Kq ] ¢ a K, i Vi

Ve (Vo) 200 250 320 320 320 230 235 300 195 300 195 300 205 250 205 350
dissolving
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FIG. 15. (Color online) The left-hand panel shows scalar and pseudoscalar meson sectors in thermal medium at vanishing baryon chemical
potential, while the right-hand panel refers to the vector and axial-vector meson sectors.

Here, increasing p seems to bring the masses very close to
a universal value in a faster and easier way. Finally, it is
apparent that the temperature (an essential quantity in the
lowest Matsubara frequency) should be corrected or weighted
in order for the matrix model to reproduce the mean field results
correctly [75].

VI. MESON MASSES IN THE LARGE-N, LIMIT

When replacing the QCD gauge symmetry SU(3) by
SU(N,.), where N. > 3 is the number of colors, we obtain
a simpler QCD theory. In other words, such a large-N,
limit offers an effective approach to study QCD [77]. The
relevant quantities can be given in N " series, so that large- N,
dominance can be separated from suppressed terms. In doing
this and in order to guarantee a consistent large- N, approach,
the QCD coupling gocp must be scaled [78]; gocp Ne —
finite, if N, — co. Accordingly, it was concluded in Ref. [78]
that the meson masses scale with N, while the interaction
scales with N;(kfz)/ * The decay amplitudes are suppressed as
1/+/N. [78]. In this limit, the meson masses will be stable and
noninteracting. At finite 7, a noninteracting gas of mesons is
realized for N, > 3.

In defining the quarkyonic phase [79] which is conjec-
tured to separate the hadronic from the partonic phases in
the T — p phase diagram, the large-N,. approach has been
implemented [80]. Accordingly, the limits for the chiral
models should be corrected for low-energy hadrons (having
densities close to that of the nuclear matter) [79]. At very low
temperatures, this should agree with the Walecka limit [81].
The properties of nuclear matter and chiral phase transition
have been investigated in the large-N, limit [77,79]. There
is only one case in which nuclear matter does not disappear

by increasing N.. This is the naive quarkonium assigned to
the lightest scalar resonance [82]. The low-energy hadrons
(light scalar states below 1 GeV) do not formulate quarkonium
states predominantly. On the other hand, the resulting nucleon-
nucleon attraction in the scalar channels is not strong enough
to bind nuclei [77,79].

In order to study the behavior of the meson masses
with varying N,, we start with the PLSM normalized chiral
condensates, o, and o, and the Polyakov-loop fields, ¢ and
¢*, at finite temperatures and vanishing baryon chemical
potential; see Fig. 17. We find that ¢ and ¢* are good
indicators for the deconfinement phase transition. Both order
parameters possess information about the confining glue
sector to the effective chiral model, the LSM. From the
quark-antiquark potential, Eqs. (18) and (25), it is obvious
that the Polyakov-loop expectation values vary with N.. We
expect that the deconfinement phase transition moves to higher
critical temperatures with increasing N, and T, — oo when
N, — oo. Table VI summarizes T for light and strange quarks
at different N,.

Figure 18 shows the scalar meson sectors at different
N, as function of T at £ =0 and N, =3 (solid curves),
N. = 6 (dotted curves), N. = 12 (dashed-dotted curves), and
N, — oo (dashed curves). The masses of all mesons are not
influenced when varying N,. It seems that the mesons are
stable and noninteracting, especially at densities close to that
of nuclear matter. At very low temperatures, the results seem
to agree with a Walecka-like model [81]. The meson channels
can be divided into three regions; one at low 7': one around 7,
and one at very high T':

(i) The first region is established where the strong force
between quarks should be dominant and the mass

TABLE IV. Scalars and pseudoscalars: the numerical values of the parameters used in the calculations [23].

¢ (MeV) hy MeV?) h, (MeV?) m? (MeV?) A Aa g
With anomaly 4807.84 (120.73)? (336.41) —(306.26)> 13.49 46.48 6.5
Without anomaly 0 (120.73) (336.41) —(503.55)? —4.55 82.47 6.5
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FIG. 16. (Color online) The left-hand panel shows scalar and pseudoscalar mesons at 7 < 100 MeV and at T > 200 MeV. The right-hand

panel presents vector and axial-vector mesons.

degeneration appears despite of the variation of N,.
This can be interpreted as the effect of the vacuum
contributions on the chiral symmetry restoration.

(i) The second region takes place due to fluctuations in
the variation of colors N, relating to the deconfinement
phase transition at 7.

(iii) In the last region, the bosonic thermal contributions
are dominant and the mass gap between mesons
seems to disappear. The mesonic states degenerate at
large N..

In the large-N, limit, the meson masses are stable and
noninteracting at low 7'. They keep the mass gap between the
different meson channels. At high 7', this gap disappears and
the masses become 7 independent. Except 7 and o, the other
scalar meson masses are T independent at large N, and high T'.
For the pseudoscalar meson masses, Fig. 19, the large- N, limit

TABLE V. Vectors and axial vectors: the numerical values of the
parameters used in the calculations [38].

h hy hs m} (MeV?) 8, (MeV?) &, MeV?) g

0 9.87 4.8667 (0.4135) 0 (0.1511)* 6.5

unifies the 7 dependence of all states in a universal bundle.
The same is also observed for axial and axial-vector meson
masses in the large- N, limit; see Fig. 20.

0.25

0 50 100 150 200 250 300 350 400

T (MeV)

FIG. 17. (Color online) The normalized chiral condensates o,
and oy (solid and dotted curves, respectively) and the expectation
values of the Polyakov-loop fields, ¢ and ¢* [dotted curve (N, = 3),
dashed curve (N, = 6), dotted-dashed curve (N, = 12)], are given as
a function of the temperature at vanishing baryon chemical potential.
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TABLE VI. Dependence of the critical temperatures for light-
quark 7! and strange-quark T* on N,.

N. 3 6 12
T! [MeV] 181 189 195
T* [MeV] 225 245 270

VII. CONCLUSIONS

There are various approaches implementing theoretical
descriptions of the hadron masses in thermal and hadronic
dense medium [23-25,44,45]. The NJL (or PNJL) model
studies the thermal spectrum of eight mesons: four scalars and
four pseudoscalars at vanishing and finite baryon chemical po-
tential [26,27]. Previous works using LSM (or PQM) focused
on the study of (pseudo)scalar mesons at finite temperature but
vanishing density (baryon chemical potential) [23-25,44,45]
and described the vacuum phenomenology of some states in
scalar and vector meson nonets, besides the comparison with
the experimental measurements for the decay width and the
scattering length [36—40].

In the present work, a systematic study using the chiral
symmetric linear-o model is introduced. The scalar, pseu-
doscalar, vector, and axial-vector fields are included. The
representation of all these four categories in dependence on
the temperature and on the baryon chemical potential is taken
into consideration. This allows us to define the characteristics
of the chiral phase structure for all these mesonic states, i.e., in
thermal and hadronic dense medium, and determine the critical
temperature and density at which each mesonic state breaks
into its free quarks.

At vanishing temperature, the scalar, pseudoscalar, vector,
and axial-vector meson nonets are compared to the experimen-
tal measurements reported by the PDG [33]. Also, we compare
the results with the lattice QCD calculations [30,31] for
pseudoscalar and vector mesons. The scalar and pseudoscalar
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FIG. 18. (Color online) The scalar meson masses are given as a
function of 7 at u = 0 and N, = 3 (solid curves), N. = 6 (dotted
curves), N. = 12 (dashed-dotted curves), and N. — oo (dashed
curves).
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FIG. 19. (Color online) The same as in Fig. 18 but for pseu-
doscalar meson masses.

spectrum calculated from PNJL [26,27] is compared with the
present work, as well. We first want to highlight that the
uncertainties are deduced from the fitting for the parameters
used in calculating the equation of states and some other
thermodynamic quantities. The fitting requires experimental
inputs for axial/axial-vector and scalar/pseudoscalar states.
Thus, we conclude that the results are very precise for some
light hadron resonances. The effects of the chiral condensate
and the deconfinement phase transition would play an impor-
tant role in characterizing the chiral phase structure of many
hadrons, and therefore explain the differences seen in the heavy
states. The PNJL model is limited to study of (pseudo)scalar
meson states. Only pseudoscalar and vector meson masses
are available in the lattice QCD calculations of the HotQCD
Collaboration [30] and the PACS-CS Collaboration [31].
Relative to these two approaches, it can be concluded that
the present work reproduces well the mesonic spectrum.

In order to investigate the influence of the Polyakov-loop
potential on the chiral symmetry restoration, the present results
are compared with PLSM. The PLSM mainly describes the
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FIG. 20. (Color online) The same as in Fig. 18 but for axial and
axial-vector meson masses.
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chiral condensates in nonstrange o, and strange o, condensates
in addition to the deconfinement phase transition, ¢ and
¢*, in temperature and density (baryon chemical potential)
dependence. This allows the estimation of the spectrum of
some mesonic states in SU(3) as a result of the chiral phase
structure of scalar/pseudoscalar and axial/axialvector states
at various densities and temperatures. First, we compare the
critical temperatures estimated from at the phase transition
and from the order parameters. We found that the chiral phase
transition gets shifted to higher temperatures as a result of the
inclusion of the Polyakov loop in LSM. In the mesonic masses,
the thermal bosonic contributions decrease with increasing
temperature, while the fermionic contributions increase at high
temperature. At low temperatures, the fermionic contributions
are negligible. The early (related to low critical temperature
and/or small chemical potential) melting of the strange
condensate o, relative to the nonstrange one can be interpreted
due to the mass degeneration at larger values of temperature
and/or chemical potential. In the phase where the symmetry
is explicitly broken in PLSM, the meson masses generated by
PLSM have a good agreement with the experimental results.
We have illustrated that the PLSM can be used to check
which mesonic states degenerate with (an)other one(s) and
which states degenerate faster relative to the other ones,
especially near the Fermi surface. The limitation that all
hadrons should melt at a universal critical temperature (QCD
phase boundary) can be understood as an approximation. We
conclude that each bound state would have a characteristic
temperature and density (baryon chemical potential) at which
it dissolves to its free quarks. We plan to extend this study
by including more mesonic states and characterizing their

PHYSICAL REVIEW C 91, 015204 (2015)

thermal and density evolution. Also, we want to introduce
some low-lying baryonic states. Such a plan requires a basic
modification of the Lagrangian. The normalization of various
meson masses to the lowest Matsubara frequency removes all
thermal dependence of the bound mesons and estimates the
individual dissolving temperatures. It has been found that the
various mesonic states have different dissolving temperatures
and baryon chemical potentials, i.e., they survive the typically
averaged QCD phase boundary, defined by the QCD critical
temperatures with varying baryon chemical potentials.

We have studied the thermal behavior of meson masses
in the large-N, limit. At low temperatures, we find that the
meson masses are stable and noninteracting. With increasing
temperature, they keep the mass gap between the different
meson channels. At high T, this gap disappears and the
masses become T independent. The scalar meson masses are
T independent at large N, and high T (except = and o). For
the pseudoscalar meson masses, the large- N, limit unifies the
T dependence of all states in a universal bundle. The same is
also observed for axial and axial-vector meson masses in the
large- N, limit.
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