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Alternative way of describing hadronic processes within the parton model
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A set of evolution equations for correlators of densities of quarks and gluons is considered. Approximate
solutions are derived in the framework of the gluon and quark dominance. A new approach to estimate the cross
sections of the processes with the interaction of high energy hadrons within the parton model is proposed. This
approach is demonstrated in a set of processes of hadron-hadron collisions with QCD subprocesses of 2 → 2
type. The process with the subprocess gb → tH− was also considered.
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I. INTRODUCTION

The quark parton model of Feynman [1] provides a simple
description of deep inelastic phenomena as well as the
processes of the collision of hadrons with high energy. This
model was theoretically justified in terms of asymptotically
free gauge theories [2]. This approach is based on the
factorization of contributions from small and large distances
justified by the authors of Ref. [3]. The deviation from the naive
Bjorken scaling of the structure functions of deep inelastic
scattering (DIS) was recognized to be broken by the so-called
“large logarithms”—the logarithms of the ratio of transferred
momentum squared Q2 = −q2 (virtualities) of particles,
which are far from the mass shell to their masses squared m2,
i.e., L ≡ ln(Q2/m2). The reasons for the appearance of these
logarithms in QED were clarified with the use of methods
of quasireal photons and electrons [4–7]. Nevertheless, even
taking into account the contributions of higher orders of
perturbation theory in the leading logarithmical approximation
the description of the processes can be formulated at the parton
language with the use of parton (quark, gluon) densities—the
so-called structure functions, qi(x,t), G(x,t). These structure
functions depend on the scale Q2 of consideration. This
evolution of parton densities is described by the equations
of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [8]
(here we use the original notation of Ref. [8])
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where qi(x,L) and G(x,L) are the quark and gluon densities
of the proton, i.e., describe the densities of the parton with
the energy fraction x of the total proton energy on a scale
of Q2 (where Q2 > 0). Here m is the suitable normalization
point m ∼ Q0 ∼ Mp ≈ 1 GeV. The quantity αs(L) is the QCD
coupling constant on the scale Q2 and Pij (x) are the DGLAP
equation kernels
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with CF = N2−1
2N

and CV = N for the color group SU (N ).
These quantities satisfy the following properties:

∫ 1

0
dzPqq(z) = 0,

∫ 1

0
dzzPGG(z) = 0. (2)

It is useful to recall here the statistical interpretation of the
DGLAP equations in terms of densities [9] by means of a
set of correlation functions satisfying the system of statistical
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equations (renormalization group equation). It was a success
of the numerous applications of the DGLAP set of equations,
working with two densities q, G of quarks and gluons in
a proton. However, the problems associated with processes
with large multiplicity [10–12] require some generalization of
traditional approach introducing the correlation functions [13].

This paper is organized in the following manner. In Sec. II,
we define the parton density and the set of equations for them.
In Sec. III, we apply the arguments of the quark dominance
and derive the same equations within this approximation and
write out the explicit analytical solutions. In Sec. IV, we show
the general way how one can use parton densities obtained in
the previous sections for the calculation of the cross sections
of high energy proton collisions. In Sec. V, we demonstrate
the application of this approach to two concrete processes.
In Sec. VI, we discuss the results and give some note about
logarithmical and double logarithmical regimes.

II. GENERAL FORMALISM

Let us introduce three distributions Da(x,L) (where
a = q,q̄,g), which are the densities of partons of type a with
the energy fraction x inside the parent quark q on the scale
Q2 (see Fig. 1). Similarly, we must introduce three quantities

p xp

Dq(x, L)
p xpGg(x, L)

p xpDg(x, L)
p xpGq(x, L)

p xp
Dq̄(x, L)

p xp
Gq̄(x, L)

FIG. 1. Definition of correlator densities (see Sec. II).

D̄a that are the densities of a parton of type a inside the parent
antiquark. We also need three distributions Ga that are similar
parton densities inside the parent gluon. The evolution of
these densities with the scale Q2 is described by the evolution
equations similar to DGLAP.1 That is, for quark densities we
have
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Here we notice that in the lowest order of perturbation theory the processes of the transition of a quark to an antiquark and an
antiquark to a quark are absent, i.e., Pqq̄ = Pq̄q = 0. A similar set of equations for parton densities inside the antiquark stems
from Eq. (3) by the replacement Da → D̄a . For gluon densities we have
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It follows from Eqs. (3) and (4) that
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We also note that omitting the densities of antiquarks Dq̄ and Gq̄ inside the quark and the gluon and identifying

Dq(x,L) + Gq(x,L) = q(x,L),

Dg(x,L) + Gg(x,L) = G(x,L),

we reproduce the DGLAP equations (1).

1A similar consideration was used in the framework of QED in Ref. [14].
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Our statement about the numerical smallness of the con-
tribution of the intermediate quark (antiquark) states in the
evolution of gluon density follows from the iteration procedure
in solving the first equation of a gluon set. So this can be taken
into account by including a relevant contribution to the K
factor. In addition, only light quarks must be considered by
describing the experiments without quark jet production.

III. APPROXIMATE EVOLUTION EQUATIONS

The quark dominance consists of the suggestion Dq �
D̄q,Gq . The gluon dominance implies Gg � Dg,D̄g and in
addition Dg � Dq̄ . The set of equations in these approxima-
tions reads as
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Note that the equation for Dq coincides with the equation for
the nonsinglet quark density qNS = q − q̄.

Solving the equation for Gg by the iteration method we
see that the regeneration of the gluon density in the channel
Gg → Dq → Gg is associated with the small factor

K0 =
(

CF

2CV

)2

=
(

4/3

6

)2

≈ 0.05. (6)

The terms of such a magnitude can be neglected thus
determining the accuracy of the approximation. Alternatively,
it can be included as some contribution to the K factor. Thus,
we have the following equations:
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Using the solutions of the homogeneous equations for quark
in the nonsinglet density Dq and Gg (we use the method

similar to one developed in the framework of QED in Ref. [15]
(see Eqs. (11) and (20) in Ref. [15]):
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where
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αs(L)

2π
(L − 1). (10)

These solutions satisfy the properties (2), i.e.,∫ 1

0
dxDq(x,L) = 1,

∫ 1

0
dxxGg(x,L) = 1. (11)

Similar solutions for other functions have the form
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2
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;
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2
φ(x)β2

q + O
(
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q

)
,

φ(x) = 1

3x
(1 − x)(4 + 7x + 4x2) + 2(1 + x) ln x. (12)

IV. GENERAL FORM OF THE CROSS SECTION
OF HADRON COLLISION

Let us consider the collision of protons

p + p → jet1 + jet2 + F, (13)

with the hard subprocess

a + b → F, (14)

where a and b are partons that are taken from initial protons
and F is some final state produced by them. Thus, the scale
of hard subprocess is of order of Q2 = M2

F , where MF is the
mass of produced system F . In our approach we write the
cross section of the process (13) in the center-of-mass system
in the following factorized form:

dσpp→F+X =
∫ 1

0
dx1

∑
a1

Wa1 (x1)
∫ 1

0
dy1

∑
b1

Db1
a1

(y1,L)Ka1

×
∫ 1

0
dx2

∑
a2

Wa2 (x2)
∫ 1

0
dy2

∑
b2

Db2
a2

(y2,L)

×Ka2dσ̂ b1b2→F (ŝ,t̂ ,û)�(z − zth),

z = x1y1x2y2, (15)

where the functions Wa(x) describe the probability to find a
parton a inside a proton. This quantity is taken on the scale
of the order of Q2 ∼ 1 GeV2 and was defined by the authors
of Ref. [16] as a result of self-consistent analysis of many
subprocesses and it was shown that it satisfies the momentum
conservation law and the parton number normalization. We
present these parametrizations in the Appendix. The next
piece of Eq. (15) is the convolution of these distributions
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with the quantities Db
a (x,L) = {Db(x,L),D̄b(x,L),Gb(x,L)},

which are the densities of the parton of sort b inside
the parton of sort a. This convolution in our approach is
the explicit realization of QCD evolution from the initial
scale Q2 ∼ 1 GeV2 to the scale of hard subprocess Q2 = M2

F .
The summation over {a1,a2} is performed over all possible
partons inside the proton, i.e., {a} = {u,d,s,ū,d̄,s̄,g}. The
summation over {b1,b2} is performed over all possible partons
that can be found inside the parton of sort {a1,a2}, i.e., in
principle all possible partons also, i.e., {b} = {u,d,s,ū,d̄,s̄,g}.

The quantity

dσ̂ b1b2→F (ŝ,t̂ ,û) (16)

in Eq. (15) is the cross section of a hard subprocess of two
parton b1 and b2 fusion that actually produces the final system
F , which is of experimental interest. This cross section should
be taken in the system of the center of mass of this subprocess
b1 + b2, i.e., these invariants {ŝ,t̂ ,û} are in this reference frame
of the subprocess and have a z-shifted form

ŝ = 4E2z, t̂ = −2E2z(1 − cos θ̂ ), û = −ŝ − t̂ , (17)

where θ̂ is the angle between three vectors of the initial parton
b1 momentum and the momentum of one of the particles from
the created state F in the center-of-mass reference frame of
the subprocess, which can be expressed in terms of the angle θ
between the directions of the initial beam and the momentum
of the same particles from the created state F

cos θ̂ = x1y1 + x2y2 cos θ

x2y2 + x1y1 cos θ
. (18)

The quantities Ka in Eq. (15) are the so-called K factors,
which take into account the nonleading contribution of
evolution. The K factor associated with the quark density has
the form [17]

Kq = 1 + αs

2π
kq, kq = 1

2
CV

(
67

18
− π2

6

)
− 5nf

18
≈ 1.5

and Kg is the K factor associated with the gluon density and
has the form

Kg = 1 + 1
2K0, (19)

where K0 is given in Eq. (6).
The � function in Eq. (15) assures that an experimental

setup allows registration of the jets of produced particles with
some finite threshold invariant mass sth only, i.e., the jets with
the invariant mass sj � sth. The quantity zth that characterizes
this threshold has the form

zth = sth

s
. (20)

In these setups, where the product of the subprocess is detected
at large angles with invariant mass square exceeding some
threshold value sth = s zth, the role of “sea” partons in the
proton can be neglected.

V. APPLICATION TO SOME DEFINITE SUBPROCESS

Below we consider two types of subprocesses. First, for
the sake of demonstration we will consider the process of
associative production of the top quark and the charged Higgs
boson H− since the application of our approach is simpler

in this case. Then we will use our approach to describe the
experimental data from the Tevatron [18].

A. Process p + p → t + H− + j j j j

Let us consider now the important application of our
approach to the process

p + p → t + H− + jjjj, (21)

where j denotes the jet. In this case, the dominant channel of
the charge Higgs production is through the subprocess

b + g → t + H−. (22)

The cross section of this subprocess has the form
(see Eq. (6.22) in Ref. [19] or Eq. (2.1) in Ref. [20])

dσ̂ bg→tH−

d cos θ̂
= σ0

ŝ

{
ŝ + t̂ − M2

H−

2ŝ

− m2
t

(
û − M2

H−
)+M2

H−
(
t̂ − m2

t

)+ŝ
(
û − m2

t

)
ŝ
(
û − m2

t

)

− m2
t

(
û − M2

H− − ŝ/2
) + ŝû/2(

û − m2
t

)2

}
, (23)

where the subprocess invariants ŝ, t̂ , û are defined as

ŝ = (pb + pg)2, t̂ = (pb + pt )
2, û = (pb + pH−)2, (24)

and the angle θ̂ from Eq. (17) is the angle between the momenta
of the initial b quark and produced t quark in the reference
frame of the center of mass of the subprocess (i.e., pb = −pg
where pb and pg are the three-momenta of the initial b quark
and the gluon, respectively). The quantity σ0 is the following
constant:

σ0 = πααs

(
m2

b tan2 β + m2
t cot2 β

)
6 M2

W sin2 θW

, (25)

where θW is the Weinberg angle and β is the parameter of
the minimal supersymmetric standard model (MSSM). For
tan β = 40 and αs = 0.1 (which is the approximate value of
αs at the scale of t-quark mass) we have σ0 ≈ 0.06.

The application of our master formula (15) to the
process (21) gives the cross section in the following form:

dσpp→tH−+jjjj

d cos θ

=
∫ 1

0
dx1

∫ 1

0
dy1

∫ 1

0
dx2

∫ 1

0
dy2 �(z − zth)

dσ̂ bg→tH−

d cos θ

×(Wu(x1)Dq ′
(y1,L)Kq + Wd (x1)Dq ′

(y1,L)Kq

+Wg(x1)Gq(y1,L)Kg)(Wu(x2)Dg(y2,L)Kq

+Wd (x2)Dg(y2,L)Kq + Wg(x2)Gg(y2,L)Kg), (26)

which is graphically illustrated in Fig. 2(a). Let us note
that in Eq. (26) there are many terms that appear from
the braces. Figure 2(a) corresponds to the term that comes
from the multiplication of the first term in the first braces
with the last term in the second braces. At this stage, we
need to notice that the cross section of the subprocess in
Eq. (26) depends on the angle θ between the direction of
the momentum of the produced t quark and the beam in
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p2

p1

x1p1

x1y1p1

x2y2p2

x2p2

jet2

(a) (b)

jetg

H−

t

jetb

jet1
Wb(x1)

Wg(x2)

Dq(x1y1, L)

Gg(x2y2, L)

p2

p1

x1p1

x2p2

x1y1p1

x2y2p2

jet6

jet5

jet4

jet3

jet2

jet1
W (x1)

W (x2)

FIG. 2. Process factorization schemes.

the system of the center of mass of the initial proton-proton
beams, while expression (23) depends on the scattering angle
θ̂ in the center-of-mass reference frame of the subprocess.
Since these angles correspond to each other according to
relation (18), i.e., we obtain

d cos θ̂ = x2
2y2

2 − x2
1y2

1

(x2y2 + x1y1 cos θ )2
d cos θ, (27)

and hence the following final form of the cross section (26):

dσpp→tH−+jjjj

d cos θ

=
∫ 1

0
dx1

∫ 1

0
dy1

∫ 1

0
dx2

∫ 1

0
dy2 �(z − zth)

×dσ̂ bg→tH−

d cos θ̂

x2
2y2

2 − x2
1y

2
1

(x2y2 + x1y1 cos θ )2
(Wu(x1)Dq ′

(y1,L)

×Kq + Wd (x1)Dq ′
(y1,L)Kq + Wg(x1)Gq(y1,L)Kg)

×(Wu(x2)Dg(y2,L)Kq + Wd (x2)Dg(y2,L)Kq

+Wg(x2)Gg(y2,L)Kg). (28)

The dependence of this cross section on the scattering angle θ
is presented in Fig. 3 via the quantity

FH (θ ) = s

4 σ0

dσpp→tH−+jjjj

d cos θ
, (29)

which is built for a few values of masses of Higgs boson MH .
The total cross section of this process is proportional to the
quantity TH

TH (s) =
∫ π

0
dθ FH (θ ), (30)

which is presented in Fig. 4.

B. Six-jets production at Tevatron

In Ref. [18] the data for the six-jet production

p + p → 6 jets (31)

MH 400 GeV

MH 600 GeV

MH 800 GeV

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
θ deg

50

100

150

200

250
FH

FIG. 3. The angular dependence of the quantity FH defined in
Eq. (29), for

√
s = 14 TeV.

for the total energy of the proton-proton in the center-of-mass
system equal to

√
s = 1.8 TeV are present. The application

of the master formula (15) to the process (31) gives a more
complicated result since we need to take into account a few
subprocesses [21]

dσ (qq̄ → qq̄)

d cos θ̂
= α2

s

9ŝ

[
t̂2 + û2

ŝ2
+ ŝ2 + û2

t̂2
− 2û2

3ŝ t̂

]
,

dσ (qq̄ ′ → qq̄ ′)
d cos θ̂

= α2
s

9ŝ

t̂2 + û2

ŝ2
,

dσ (gg → qq̄)

d cos θ̂
= α2

s

24ŝ
(t̂2 + û2)

(
1

t̂ û
− 9

4ŝ2

)
, (32)

where θ̂ is the angle between the direction of motion of
the initial parton and the momentum of the final quark, and
invariants ŝ, t̂ , û are defined in the same manner as in Eq. (24).
The factorization scheme for this process is shown in Fig. 2(b).

The comparison of the angular distribution of jet momenta
in the proton-proton scattering from Eq. (32)

Fqq(θ ) = 1

σtot

dσpp→6j

d cos θ
(33)

(where σtot is the total cross section of six-jet production) with
the experimental results (see Fig. 6 in Ref. [18]) is shown
in Fig. 5. To compare to the experimental results we need to

MH = 400 GeV

MH = 600 GeV

MH = 800 GeV

8000 9000 10000 11000 12000 13000 14000
s GeV0

500

1000

1500

2000

2500

TH

FIG. 4. The quantity TH defined in Eq. (30) as a function of the
total invariant mass s.
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0.5 0.0 0.5
0.0

0.5

1.0

1.5

cos θ

F q
q

FIG. 5. (Color online) The angular dependence of the quantity
Fqq defined in Eq. (33) is compared to the experimental data [18]
for the six-jet production in the proton-proton collision with the total
center-of-mass energy

√
s = 1.8 TeV.

take into account the same kinematical cuts that were used
in the experimental analysis. In our rough estimation we use
only one cut on the total invariant mass of the produced six
jets, i.e., we select the threshold invariant mass of the order of√

sth ∼ 1 TeV.

VI. CONCLUSION

In this paper, we discuss some modification of the method
of taking into account the QCD leading logarithm radiative
corrections based on the structure function approach. The
modification consists in the construction of a set of evolution
equations for the density of the parton of sort a in the initial
quark Da(x,L) and the density of the parton of sort b to be
in the initial gluon Gb(x,L). This set of equations is solved
analytically in the quark and gluon dominance approximation
Dq � Da , a 	= q and Gg � Ga , a 	= g. This approximation
can be improved for the accuracy level, which is required,
by using the iteration procedure. This assumption is known
as the gluon dominance which is used in the description of
multiplicity of π mesons in the hadron collisions [10–12].

We present the approximate solution for Da , Ga and
demonstrate the application of this function to the problem
of calculation of QCD radiative correction calculation in some
particular processes.

In the literature, some efforts were made to calculate the
subprocess cross section in the next-to-leading approximation.
The main attention in Refs. [22,23] was paid to the two-loops
level contributions. As a result, the terms of the order (αsL

2),
(αsL

2)2 were taken into account. However, the emission
of real (soft and hard) gluons with the one-loop radiative
corrections was not considered. The role of radiative (virtual
and real) corrections leads to the change of the (αL2)n regime
to a single-logarithmical regime [i.e., only terms ∼(αL)n

remain] in the inclusive experimental approach. The single-
logarithmical approach is determined by the renormalization

group evolution equations, and thus allows us to use the
structure function approach to obtain the cross section in
the leading [i.e., (αL)n] and next-to-leading [i.e., α(αL)n]
approximation. Further improvement can be made by using the
DGLAP equation kernels Pij (z) calculated in the next order
of perturbation theory. This would also modify the solutions
of Eqs. (7) and (8), which are also present in Ref. [15]. Thus
the main advantage of our approach is that one can easily take
into account a specific order of perturbation theory of QCD
evolution from the soft to the hard scale.
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APPENDIX: PARTON DENSITIES IN THE PROTON

Keeping in mind the problem of the description of inelastic
processes in the high energy collision of protons, it seems
natural to consider protons as an objects with definite contents
from quarks and gluons. This implies the presence of the
preliminary evolution from the mass shell to virtuality of the
order 1 GeV2 of all the constituents of the proton.

Note that due to the condition x1x2 > zth only valence
quarks and gluons inside the proton take part in the process.
We will choose the density of the valence quarks and gluons
approximately as found in Ref. [16]

xWu(x) = Aux
η1 (1 − x)η2 (1 + εu

√
x + γux);

xWd (x) = Adx
η3 (1 − x)η4 (1 + εd

√
x + γdx);

xWg(x) = Agx
δg (1 − x)ηg (1 + εg

√
x + γgx)

+Ag′xδg′ (1 − x)ηg′ , (A1)

where some numerical fitting parameters are

Au = 0.2; η1 = −0.73; η2 = 3.3;

Ad = 18; η3 = 0,1; η4 = 6;

Ag = 0.0012216.

Numerical constants were chosen so as to satisfy the constrains
from the number sum rules∫ 1

0
dxWu(x) = 2;

∫ 1

0
dxWd (x) = 1, (A2)

and also the momentum sum rule∫ 1

0
dxx[Wu(x) + Wd (x) + Wg(x) + S(x)] = 1, (A3)

with S(x) being the sea contribution, where γu = 8.9924,
γd = 7.4730, ηg = 2.3882, ηg′ = 0, Ag′ = 0, δg = −0.83657,
δg′ = 0, γg = 1445.5, εu = −2.3737, εd = −4.3654, and
εg=−38.997. More complicated expressions for the densities,
which were extracted from the description of the fixed target
HERA and Tevatron experiments, are presented in Ref. [16].
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