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Photon emission from a momentum-anisotropic quark-gluon plasma
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We compute the photon emission rate from a quark-gluon plasma with an anisotropic particle momentum
distribution induced by a nonvanishing local shear pressure tensor. Our calculation includes photon production
through Compton scattering and quark-antiquark annihilation at leading order in αs , with all off-equilibrium
corrections to leading order in the momentum anisotropy. For fermions we prove that the Kubo-Martin-Schwinger
relation holds in the hard loop regime for any particle momentum distribution function that is reflection symmetric.
This supports the equivalence, for 2-to-2 scattering processes, of the diagrammatic and kinetic approaches to
calculating the photon emission rate. We compare the viscous rates from these two approaches at weak and
realistic coupling strengths and provide parametrizations of the equilibrium and viscous photon emission rates
for phenomenological studies in relativistic heavy-ion collisions.
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I. INTRODUCTION

Heavy-ion collisions at the Relativistic Heavy-Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC) offer
a privileged window for studying the physics of hot and
dense strongly interacting matter. The smallness of the
electromagnetic coupling constant and small extent of the
hot quantum chromodynamics (QCD) medium produced in
heavy-ion collisions makes the latter largely transparent to
electromagnetic probes such as thermal photons and dileptons.
This is to be contrasted with the very small mean free path of
colored particles in the medium. This difference means that,
through their production rates in the medium, electromagnetic
probes can provide information about the entire space-time
evolution of the QCD medium that is not subsequently
scrambled by further interactions.

Controlled calculations of the rate of photon production
from a hot QCD medium are possible only in certain limit-
ing situations. For a perfectly thermalized, weakly coupled
(gs � 1) quark-gluon plasma (QGP) a complete calculation
of the rate at O(e2g2

s ) was available for a decade [1].
The next-to-leading-order correction O(e2g3

s ) to the thermal
photon rate was computed recently [2]. At temperatures below
the pseudocritical temperature for the quark-hadron phase
transition, Tc ∼ 155−165 MeV, where dense QCD matter is
modeled as a hadron resonance gas, effective Lagrangian
approaches have been adopted [3]. Those calculations assume
that the medium is static, homogeneous, and fully thermalized.

The success of hydrodynamical descriptions of the hot
QCD medium created in heavy-ion collisions [4,5] makes it
reasonable to assume that the medium is not too far from local
thermal equilibrium. However, nonzero values for its transport
coefficients, resulting from nonzero mean free paths of the
constituents, lead to deviations from local thermal equilibrium
in an expanding system which increase with the expansion rate.
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For example, in an anisotropically expanding system shear
viscosity causes the momentum distribution in the local rest
frame to become anisotropic itself, falling off more steeply in
the directions into which the system expands more rapidly.

A number of attempts have been made at evaluating the
consequences of such off-equilibrium effects on the (virtual)
photon emission rates in a QGP [6–8]. However, these previous
works all share one shortcoming: For a given collision process
that results in the emission of a photon, they include the viscous
corrections to the local momentum distribution functions only
for the incoming and outgoing particles, but ignore viscous
medium modifications of the collision matrix element itself.
For scattering processes in which the inclusion of medium
effects is essential (for example, when dynamical mass
generation for the medium constituents serves as a regulator
for infrared divergences associated with otherwise massless
particle exchange) viscous corrections to the distribution
functions can lead to significant modifications of the screening
mechanism and therefore to the collision matrix element. This
problem was first tackled in [9–11] for simple parametrizations
of the local momentum anisotropy.

The present paper builds on these publications and consid-
ers a more general ansatz of momentum anisotropy, namely,

f (K) ≡ f0(k) + δf (k)

= f0(k)

[
1 + (1±f0(k))

πμνk̂μk̂ν

2(e + P)
χ (k/T )

]
. (1)

Here e, P , T , and πμν are functions of space-time position
x denoting the local energy density, pressure, temperature,
and shear stress tensor of the expanding medium. The
particle’s energy in the local rest frame is k = K · u, k̂μ ≡
Kμ/k is a lightlike vector with unit time component in the
local rest frame, and the scalar function χ (k/T ) = (|k|/T )λ

with 1 � λ � 2 controls the energy dependence of the off-
equilibrium correction. The form (1) for the deviation δf from
local equilibrium, as well as the quoted range for the parameter
λ, follows from a solution of the kinetic equation for f (k)
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with a Boltzmann collision term that was linearized around
local equilibrium f0(k) [12]; the exponent λ is related to the
energy dependence of the differential scattering cross section.
For a system whose nonequilibrium transport properties are
dominated by shear viscosity, Eq. (1) is sufficiently general to
describe the momentum distribution of particles in a weakly
coupled expanding plasma as long as its πμν is not too
large [13]. Other transport effects, such as bulk viscosity and
heat conductivity, are neglected in this work, and the baryon
chemical potential is assumed to vanish. We note, however,
that the methods used in this paper should be generalizable to
different δf , such as that associated with bulk viscosity.

We will assume that the spatial dependence of the medium
is sufficiently weak that all space-time gradient effects can be
accounted for through the shear stress tensor πμν . This means
that f (x,K) depends on x only parametrically [through T (x),
πμν(x), etc.], and we will henceforth drop the x dependence of
f . Space-time integrals in the evaluation of Feynman diagrams
occurring in the computation of the emission rate at point x
will be done as if the system were infinite and static (with the
given values for T , πμν , etc.), i.e., we will continue to assume
that energy and momentum are conserved in any scattering
process. This corresponds with the assumption that photon
emission is local on length scales that characterize the space-
time variability of the emitting medium.

We consider here photon production from leading order (in
αs) 2 → 2 processes only. We further linearize the viscous
correction in the shear stress tensor, yielding a result accurate
to leading order in πμν/(e + P). The inclusion and calculation
of viscous corrections for the family of soft 2 → n diagrams
that are required for an evaluation of the photon emission rate
to full leading order in αs [1] is left for future work.

The paper is structured as follows: In Sec. II we present
the calculation of the viscous corrections to the QGP photon
emission rate. In Sec. II A we introduce a tensor decomposition
technique to isolate the linear off-equilibrium correction
coefficient and write the rate in the convenient form,

k
dR

d3k
= T 2

(
�̃0 + πμνk̂μk̂ν

2(e + P)
�̃1

)
, (2)

where both the thermal equilibrium rate �̃0 ≡ �0/T 2 and the
viscous coefficient �̃1 ≡ �1/T 2 [see Eqs. (9) and (10) below]
are dimensionless scalar functions of the normalized photon
local rest frame energy κ = k/T ≡ u·K/T . In Sec. II B we
compute �̃0 and �̃1 using a diagrammatic approach, starting
with a proof of the KMS relation for the fermionic self-
energy to leading order in a high-temperature [soft external
momentum or hard thermal loop (HTL)] approximation. This
KMS relation is necessary for the equivalence of the photon
emission rate calculated in the diagrammatic approach with

the kinetic theory calculation that we present in Sec. II C.
In Sec. III we evaluate the rates and viscous correction
coefficients numerically for both weak and realistically strong
coupling αs . In particular, we explore the sensitivity of the
diagrammatic calculation, which is split into a soft and hard
exchanged momentum contribution, on the cutoff momentum
separating the soft and hard regions. The kinetic approach
effectively implements an alternate resummation scheme for
subleading terms that are higher order in gs and does not
require such a cutoff. Comparing the two approaches quan-
titatively, we use the difference between the corresponding
equilibrium rates and viscous correction coefficients as a
measure to gauge the theoretical uncertainty of our result.
Conclusions and final comments are offered in Sec. IV. Some
technical details of the calculation in Sec. II B are relegated to
Appendix A.

For convenience, a parametrization of �̃0 and �̃1 is given in
Appendix B.

II. PHOTON EMISSION RATES

A. General formalism

The photon emission rate for a static medium is given in the
real-time or closed time path (CTP) formalism [14] by [9,15]

k
dR

d3k
= i

2(2π )3
(
12(K))μ μ, (3)

where 1 (2) refers to the (anti-)time-ordered contour branch in
the CTP formalism. If the medium is in thermal equilibrium,
the different components in the real-time formalism of the pho-
ton self-energy 
μν are related by the fluctuation-dissipation
theorem. This is a consequence of the Kubo-Martin-Schwinger
(KMS) condition satisfied by thermal equilibrium propagators
from their (anti-)periodicity in imaginary time with period β =
1/T [16,17]. Using this property of the photon self-energy, the
photon emission rate can be written:

k
dR

d3k
= − Im (
ret(K))μ μ

(2π )3(eK0/T −1)
, (4)

where 
ret is the retarded photon self-energy.
Finite temperature cutting rules for the calculation of the

imaginary part of the retarded photon self-energy [18–21]
allow one to rewrite the rate in kinetic theory form [22].
For a process with m incoming particles with four-momenta
P1, . . . ,Pm colliding to produce n outgoing particles with
momenta Pm+1, . . . ,Pm+n plus a photon with momentum K ,
the contribution to the photon emission rate is

k
dR

d3k
= N

∫
d3p1

2E1(2π )3
· · · d3pm

2Em(2π )3
· · · d3pm+n

2Em+n(2π )3
(2π )4δ(4)

⎛
⎝ m∑

i=1

P
μ
i −

m+n∑
j=m+1

P
μ
j − Kμ

⎞
⎠

× |M|2fB/F (P1) · · · fB/F (Pm)(1 ± fB/F (Pm+1)) · · · (1 ± fB/F (Pm+n)), (5)

where fB(F )(P ) are Bose (Fermi) distribution functions for bosons (fermions), and N is an overall degeneracy factor that depends
on the specific production channel.
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For an imperfectly thermalized, anisotropically expanding
medium the particles’ momentum distributions are no longer
isotropic in the local rest frame. Considering shear viscous
effects and writing the distribution function f as in Eq. (1),
the deviation δf from locally isotropic equilibrium contributes
to the photon emission rate (5) generally both through the
thermal weights for the incoming and outgoing particles and
through the (medium-modified) production matrix element
M. Assuming that the inverse Reynolds number for the shear
stress tensor πμν is small, Re−1

π ≡ √
πμνπμν/(e + P) � 1,

such that viscous fluid dynamics is applicable and δf � f0,
we can expand the photon emission rates in powers of πμν :

k
dR

d3k
= �0 + πμν

2(e + P)
�μν + O

((
πμν

2(e + P)

)2)
. (6)

Here �0 stands for the thermal equilibrium emission rate while
�μν is the rate coefficient of the first-order viscous correction.
Both �0 and �μν involve only integrals over equilibrium
distribution functions and, for a medium consisting of massless
particles, are proportional to T 2 times dimensionless functions
of the local rest frame photon energy in units of temperature
k/T .

By definition πμν is symmetric, traceless, and has only
spatial components in the local rest frame. This is formally
expressed in the identity,

πμν = �
μν
αβπαβ, (7)

with the symmetric, locally spatial, and traceless projector,

�
μν
αβ = 1

2

(
�μ

α�ν
β + �ν

α�
μ
β

) − 1
3�μν�αβ, (8)

where �μν = gμν−uμuν and gμν = (1,−1,−1,−1).
The most general tensor decomposition of �μν involves

symmetrized terms proportional to gμν, uμuν, uμk̂ν , and k̂μk̂ν .
Because of the properties of �

μν
αβ , only the last term survives

in the product πμν�μν [6]:

πμν�μν = πμν�αβ
μν�αβ = �1π

μνk̂μk̂ν . (9)

The scalar coefficient �1 can be obtained from �μν by
contracting with

aμν = 1
2�μα�νβ(gαβ + 3k̂αk̂β). (10)

This leads to Eq. (2), with �̃1 ≡ aαβ�αβ/T 2.
It is worth noting that the structure (2) of the photon

emission rate is independent of the collision kernel and holds,
to linear order in πμν , for any medium. Medium properties
enter only in the explicit calculation of the scalar functions �0

and �1.
Note that the factorization of the viscous correction to

the emission rate (2) into two Lorentz scalars, πμνk̂μk̂ν and
�1 = aαβ�αβ , is numerically advantageous because each of
those scalars can be evaluated in a different reference frame.
The term πμνk̂μk̂ν can be computed in the laboratory frame
used for solving the hydrodynamic equations where πμν(x)
and the measured photon momentum are known directly. The
factor �1, on the other hand, is most easily worked out in the
local rest frame where the thermal equilibrium distributions
simplify. Numerically expensive repeated Lorentz boosts of
vectors and tensors between frames are thus avoided. For

phenomenological studies, the local equilibrium rate �0 and
viscous correction coefficient �1 can both be tabulated or
parametrized as functions of the local rest frame photon energy
which is easily computed as k = u·K from the hydrodynamic
flow velocity and measured photon momentum in the labo-
ratory frame. We provide parametrizations of �̃0 and �̃1 in
Appendix B.

B. Diagrammatic approach

In the diagrammatic approach the calculation of the
photon production rate starts from Eq. (3). The evaluation
of (
12(K))μ μ involves a momentum loop integral split into
two domains, referred to as the soft and hard parts, which
are separated by a cutoff momentum qcut. We begin with the
calculation of the soft part, which requires the use of HTL
resummed quark propagators to properly take into account
the effect of the thermal medium on particle exchanges.
In equilibrium, the use of the KMS relation simplifies this
task significantly. [For the fermion propagator this relation
reads [14,16,23,24] G12(Q) = −e−Q0/T G21(Q).] We therefore
first demonstrate that the KMS relation continues to hold,
to leading order in gs , if thermal equilibrium distributions
are replaced by the viscously deformed distribution (1). The
proof does not rely on πμν being small, but only on the
momentum-reflection symmetry of Eq. (1) in the local rest
frame, and on the smallness of gs � 1 such that one can replace
e−Q0/T ≈ 1 for soft momentum Q0 ∼O(gsT ).

1. KMS-like relation for the fermionic self-energy with
anisotropic momentum distributions

Following [10], we calculate the one-loop off-diagonal
quark self-energies 
12(P ) (see Fig. 1) and 
21(P ) and check
that the approximate KMS relation 
12(P ) = −
21(P ) holds
in the hard loop limit K0,|K | ∼ T � P 0 ∼O(gsT ). We write

−i
12(P ) =
∫

d4K

(2π )4
(tata)(igγ μ)iS12(K)(−igγ ν)

× (−igμν�12(P−K))

as


12(P ) = −2ig2CF

∫
d4K

(2π )4
S12(K)�12(P−K), (11)

where ta are the SU (3) gauge group matrices in the fundamen-
tal representation, and S(K) and �(K) are the free fermion and

1

1 1 2 2

2K

P−K

P P

FIG. 1. Off-diagonal component 
12(P ) of the one-loop quark
self-energy.
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scalar propagators,

S(K) = /K

[( 1
K2+iε

0
0 −1

K2−iε

)
+ 2πiδ(K2)

×
(

fF (K) −θ (−K0) + fF (K)
−θ (K0) + fF (K) fF (K)

)]
, (12)

�(K) =
[( 1

K2+iε
0

0 −1
K2−iε

)
− 2πiδ(K2)

×
(

fB(K) θ (−K0) + fB(K)
θ (K0) + fB(K) fB(K)

)]
. (13)

Inserting the propagators into Eq. (11) we find



μ
12(P )

= −2ig2
s CF

∫
d4K

(2π )4
Kμ2πiδ(K2)[−θ (−K0) + fF (K)]

× (−2πi)δ((P − K)2)[θ (−(P 0 − K0)) + fB(P − K)]

≈ −2ig2
s CF

∫
d4K

(2π )2
Kμδ(K2)[−θ (−K0) + fF (K)]

× δ(2P · K)[θ (K0) + fB(K)]. (14)

In the last step we assumed P ∼O(gsT ) � K ∼O(T ). Letting
Kμ → −Kμ and assuming that the off-equilibrium particle
distribution functions satisfy fB/F (−K) = fB/F (K), we find



μ
12(P ) = 2ig2

s CF

∫
d4K

(2π )2
Kμδ(K2)[−θ (K0) + fF (K)]

× δ(2P · K)[θ (−K0) + fB(K)]

= −

μ
21(P ). (15)

This proves the desired relation. Note that our ansatz for
the anisotropic momentum distribution, Eq. (1), respects the
symmetry fB/F (−K) = fB/F (K). This is easier to see in the
fluid rest frame. By definition f0(k) = 1/(e−|K0|/T ± 1), which
is symmetric under K → −K . The contraction πμνk̂μk̂ν is
also symmetric under reflection of K . Finally, χ (k/T ) can
be written as (|K0|/T )λ, 1 < λ < 2, which again respects the
necessary invariance.

We now proceed further to show that Eq. (15) implies the
validity of the fluctuation-dissipation theorem, which can be
written as [14,23,24]

G12(P ) = 2i

eP 0/T + 1
Im GR(P ), (16)

where GR is the retarded fermion propagator and the prefactor
2i/(eP 0/T + 1) reduces to a simple factor i in the hard loop
limit P 0 ∼O(gsT ) � T . We start with the Dyson equation,

G = G0 + G0
G, (17)

where in the CTP formalism both the propagators and
self-energy are 2 × 2 matrices. The (12)-component of the
resummed propagator can be written in terms of 
12 and the

retarded and advanced propagators GR,A as [14,23,24]

G12(P ) = GR(P )
12(P )GA(P )

= (−2i)

12(P )


21(P ) − 
12(P )
Im GR(P ). (18)

The validity of Eq. (18) is not only restricted to the case of
thermal equilibrium. A detailed derivation and discussion can
be found in Sec. V of Ref. [23]. In thermal equilibrium, the
KMS relation links 
12(P ) and 
21(P ) through 
12(P ) =
−e−P 0/T 
21(P ). Then,

G12(P ) = 2i

eP 0/T + 1
Im GR(P ). (19)

This is (a variant of) the fluctuation-dissipation theorem. With
the KMS-like relation (15) we see that in the hard loop limit
Eq. (18) reduces to the simple form,

G12(P ) = iIm GR(P ). (20)

We note that the validity of the KMS-like relation Eq. (15)
for anisotropic momentum distributions offers the possibility
of generalizing results that were thought to be valid only in
thermal equilibrium. In particular sum rule techniques devel-
oped in [2,25] will be useful to push the photon production
rate presented here to the next order in gs .

2. Retarded quark self-energy in near thermal equilibrium

As we shall see in Sec. II B 3, Eq. (15) greatly simplifies
the following calculations, by enabling us to relate the (12)-
component of the photon self-energy 


μν
12 to only the retarded

quark self-energy 
R .
In the hard loop approximation, the retarded quark self-

energy can be written as [26]


R(P ) = CF

4
g2

∫
d3k

(2π )3

f (K)

|	k|
K · γ

K · P + iε
≡ γμ


μ
R(P ),

(21)

where the γ μ are the Dirac matrices and

f (K) = 2(fF (K) + f̄F (K)) + 4fB (K). (22)

In chemical equilibrium at zero net baryon density, fF (K) =
f̄F (K). Hence,


R(P ) = CF g2
∫

kdk

2π2

d�k

4π
(fF (K) + fB(K))

k̂ · γ

k̂ · P + iε
,

(23)

remembering that k̂μ = Kμ/k. The evaluation of 
R(P )
in the momentum-isotropic case is done, e.g., in [27].
Here we insert the anisotropic distribution function as
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in Eq. (1):



μ
R(p0,p)

= CF g2

2π2

∫
kdk(fF0(k) + fB0(k))

∫
d�k

4π

k̂μ

k̂ · P + iε

+ CF g2

2π2

παβ

2(e + P)

∫
kdk [fF0(k)(1−fF0(k))

+ fB0(k)(1 + fB0(k))] χ

(
k

T

) ∫
d�k

4π

k̂αk̂β k̂μ

k̂ · P + iε
. (24)

Note that the additional term is linear in παβ . We write



μ
R(Q) = 


μ
0 (Q) + παβ

2(e + P)



αβμ
1 (Q), (25)

with



αβμ
1 ≡ CF g2

2π2

∫
kdk [fF0(k)(1−fF0(k)) + fB0(k)

× (1 + fB0(k))]χ

(
k

T

) ∫
d�k

4π

k̂αk̂β k̂μ

k̂ · P + iε
. (26)

For a given choice of χ ( k
T

), the k integral can be evaluated and
yields a pure number that we denote as Cneq:



αβμ
1 (P ) = CF g2T 2

2π2
Cneq

∫
d�k

4π

k̂αk̂β k̂μ

k̂ · P + iε
. (27)

Using tensor decomposition and the tracelessness and transver-
sality of παβ again, we write

παβ

αβμ
1 (P ) = παβ[A1(P )p̂αp̂βp̂μ + B1(P )p̂αp̂βuμ

+C1(P )(p̂αgβμ + p̂βgαμ)], (28)

where p̂μ = P μ/p with p = |P |. The coefficients A1, B1, and
C1 are found by tensor projection. Writing them as functions
of p and the ratio z = P 0/p we find

A1(p,P 0) ≡ A1(p,z) = m2
∞

Cneq

π2p

[
(5z2−3)Q0(z) − 5z2 + 4

3

]
,

B1(p,P 0) ≡ B1(p,z) = m2
∞

Cneq

π2p

[(
−5z3 + 6z − 1

z

)
Q0(z)

+ 5z3 − 13

3
z

]
,

C1(p,P 0) ≡ C1(p,z) = m2
∞

Cneq

π2p

[
(z2−1)Q0(z) − z2 + 2

3

]
,

(29)

where m2
∞ = CF g2

s T
2/4 is the leading-order asymptotic

thermal quark mass, and Q0(z) = 1
2 ln( 1+z

1−z
) is the Legendre

function of the second kind.
We have now derived all the essential ingredients for the

calculation of the photon emission rate in Eq. (3). In the
following two subsections we work out, in turn, the soft and
hard contributions to that rate.

K

K + Q

K

Q

K

Q

K

K − Q

1 2 1 2

FIG. 2. (12)-component of one-loop photon self-energy with one
HTL-resummed quark propagator.

3. Soft contribution

Figure 2 shows the Feynman diagrams that need to be
evaluated for the soft contribution to the photon emission rate:

To leading order in gs , only one of the two quark
propagators in the loop requires HTL resummation [28–31],
indicated by the blob. The Feynman rules give

i

μ
12μ(K) = e2

(∑
s

q2
s

)
NC

∫
d4Q

(2π )4
Tr

× [γ μiS̃�
21(Q)γμiS12(Q + K)

+ γ μiS21(Q − K)γμiS̃�
12(Q)], (30)

where S12(Q + K) = γμS
μ
12(Q + K) and S21(Q−K) =

γμS
μ
21(Q−K) are free quark propagators as in Eq. (12)

and S̃�
12(Q) and S̃�

21(Q) are hard-loop resummed propaga-
tors [27,29]:

S̃�
12(21)(Q) = S̃�

R(Q)
12(21)(Q)S̃�
A(Q). (31)

Using this together with the relations derived in Sec. II B 1 in
the hard loop approximation,


12(Q) = −
21(Q) = −iIm 
R(Q), (32)

we can rewrite Eq. (30) as

i

μ
12μ(K) = −e2

(∑
s

q2
s

)
NC

8

k
fF (K)

×
∫ qcut d3q

(2π )3
Im (KνS̃

�ν
R (Q)). (33)

Dynamical quark mass generation through hard loop resum-
mation for the quark propagator is important only in the
soft region Q� T where the massless bare quark propagator
otherwise causes an infrared divergence. On the other hand,
only in the soft region Q� gsT � T is HTL resummation a
consistent resummation scheme [28]. We therefore introduced
here an upper cutoff qcut ∼O(gsT ) � T in the q integral and
will evaluate the remaining “hard” contribution from internal
quark momenta q > qcut in the following subsection without
medium corrections for the internal quark propagator.
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Inserting Eqs. (1) and (25) into Eq. (33) and linearizing in παβ/2(e + P) we obtain

i

μ
12μ(K) = −e2

(∑
s

q2
s

)
NC

8

k
fF0(K)

∫ qcut d3q

(2π )3

[
Im

{
K · Q0

Q0 · Q0

}
+ παβ

2(e + P)

(
Im

{
−Kμ


αβμ
1

Q0 · Q0

}

+ Im

{
K · Q0

Q0 · Q0

2Q0μ

αβμ
1

Q0 · Q0

}
+ k̂αk̂β(1−fF0(K))χ

(
k

T

)
Im

{
K · Q0

Q0 · Q0

})]
, (34)

where we used the shorthand Q0 = Q − 
0(Q). The equilibrium part of the emission rate thus reads

�0(K) = − e2

2(2π )3

(∑
s

q2
s

)
NC

8fF0(K)

k

∫ qcut d3q

(2π )3
Im

{
K · Q0

Q0 · Q0

}
, (35)

while the viscous correction coefficient is given by

�αβ(K) = − e2

2(2π )3

(∑
s

q2
s

)
NC

8

k
fF0(K)

∫ qcut d3q

(2π )3

[
k̂αk̂β(1−fF0(K))χ

(
k

T

)
Im

{
K · Q0

Q0 · Q0

}

− Im

{
Kμ


αβμ
1

Q0 · Q0

}
+ Im

{
K · Q0

Q0 · Q0

2Q0μ

αβμ
1

Q0 · Q0

}]
. (36)

4. Hard contribution

The hard contribution to the photon emission rate can be
computed by writing down all two-loop diagrams with bare
propagators (13) that contribute to the photon self-energy, and
computing its imaginary part by applying the finite temperature
cutting rules [20]. One finds formally the same expression as
in thermal equilibrium [30] but with anisotropically modified
distribution functions:

k
dR

d3k
=

∑
channels

∫
p,p′,k′

1

2(2π )3
(2π )4δ(4)(P + P ′ − K − K ′)

× |M|2f (P )f (P ′)(1±f (K ′)), (37)

where
∫
p

is a shorthand notation for 1
(2π)3

∫
d3p

2P 0 (all incoming
and outgoing particles are on-shell and massless). Note that the
same expression, with modified matrix elements, is used in the
kinetic approach [18] discussed in the following subsection.

There are two contributing processes, (anti-)quark-gluon
Compton scattering q + g → q + γ , q̄ + g → q̄ + γ , and
quark-antiquark annihilation q + q̄ → γ + g (see Fig. 3). For
Compton scattering |M|2 ∝ − s

t
− t

s
while for pair annihi-

lation |M|2 ∝ u
t
. We treat the phase space integrals as done

in [1], handling the three infrared divergent t-channel diagrams
in Fig. 3 together and the finite s-channel diagram separately.
In the t-channel part the change of variables Q = P−K
facilitates implementation of the phase space cut q > qcut

to excise the infrared divergence in a manner that perfectly
complements the calculation of the soft contribution in the
preceding subsection [30]. No such cut is needed for the
s-channel diagram.

The details of the calculation are presented in Appendix A.
The final expression for the viscous correction to the photon
production rate is very similar to the corresponding ideal rate
in [1], in the sense that it is a multidimensional integral over
the same variables and with the same kinematic limits, but
with a modified integrand.

One should note that strictly speaking this calculation
is only valid for internal quark momenta q ∼O(T ) � gsT
[29–31] whereas the soft part, Eqs. (35) and (36), is valid only
for q ∼O(gsT ) � T . In Sec. III A we will explore to what
extent there exists a “window of insensitivity” gsT � qcut � T
where both approximations are simultaneously valid and can
be matched to each other without strong dependence on the
cutoff qcut.

C. Kinetic approach

Photon emission rates for 2 → 2 scattering processes can
also be calculated in the kinetic approach sketched in Eq. (5),
involving a sum of terms corresponding to the Compton

FIG. 3. Compton scattering and pair annihilation. Compton scat-
tering can involve gluons scattering off quarks (shown) or antiquarks
(not shown).
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scattering and pair annihilation channels shown in Fig. 3.
In the equilibrated case this was shown to be equivalent to
the diagrammatic approach up to subleading corrections in
gs [20,30,31]. (In fact, the equivalence can be extended to
the full leading-order rate by suitably modifying the structure
of the collision term in the kinetic description [32].) In
Compton scattering and pair annihilation, logarithmic infrared
divergences will be generated in the t and u channels if one
uses scattering matrix elements computed with free fermion
propagators for the internal exchanged quark. This infrared
sensitivity is cut off by using the retarded hard loop resummed
self-energy 
(Q) for the internal quark propagator in these
matrix elements.

The s-channel processes are free from infrared singularities
and do not require HTL resummation. In fact, using HTL
resummed internal quark propagators in the s-channel process
would cause problems because the collision integral integrates
over a kinematic domain where the timelike virtual quark goes
on-shell and becomes a long-lived quasiparticle excitation in
the medium [32]. This is kinematically allowed even with
massless external particles. In [32] such processes are denoted
as “2 → 1 joining,” and the authors of [32] point out that
they are automatically included in an improved treatment
that extends the validity of the calculation from leading
logarithmic to full leading order in gs , by properly including
LPM effects. Including a fraction of these effects separately
in the 2 → 2 s-channel collisions by using HTL resummed

internal propagators is not a consistent procedure and, when
combined with a consistent LPM treatment [1,33], would
amount to double counting. For these reasons we use here in the
kinetic approach matrix elements that include HTL resummed
internal quark propagators in the u and t channels, but not in
the s channel.

We note that in the u and t channels HTL resummation is
required for consistency at leading order in the soft exchange
region but not for hard scatterings where it contributes only
at next-to-leading order in gs . As mentioned earlier, using the
HTL resummed propagators everywhere is not a consistent
approximation scheme, but the inconsistencies are restricted
to subleading order in gs . In the diagrammatic approach
described in the preceding subsection, we use free internal
quark propagators for hard collisions, consistently matched
to matrix elements using resummed internal propagators in
the soft region. In the kinetic approach described in the
present section, we use HTL resummed matrix elements for
the entire kinematic range. The difference amounts to different
prescriptions for a partial resummation of higher order terms
that are subleading in gs . For sufficiently small gs , both
approaches are expected to yield identical results; for moderate
values of gs , the differences between the approaches can be
taken as a (rough) indicator for the theoretical uncertainties
associated with the higher order corrections to our calculation.

The matrix element for Compton scattering in QGP can be
written as

∑
spin

∑
color

|MComp|2eq = e2g2(tata)

{
16

|Q · Q|2 (2Re[(K ′ · Q)(P · Q∗)] − (K ′ · P )(Q · Q∗)) − 64(K ′ · P )Re

[
Q · Q

′∗

(Q · Q)(Q′∗ · Q
′∗)

]

+ 16

|Q′ · Q′|2 (2Re[(K ′ · Q′)(P · Q
′∗)] − (K ′ · P )(Q′ · Q

′∗))

}
, (38)

where Qμ = P μ + P ′μ and Q′μ = P μ − Kμ − 

μ
R(P−K). For pair annihilation we have, similarly,

∑
spin

∑
color

|Mpair|2eq = e2g2(tata)

{
16

|Q′ · Q′|2 (2Re[(P ′ · Q′)(P · Q
′∗)] − (P ′ · P )(Q′ · Q

′∗)) − 64(P ′ · P )Re

[
Q̃ · Q

′∗

(Q̃ · Q̃)(Q′∗ · Q
′∗)

]

+ 16

|Q̃ · Q̃|2 (2Re[(P ′ · Q̃)(P · Q̃∗)] − (P ′ · P )(Q̃ · Q̃∗))
}
, (39)

where Q′μ = P μ − Kμ − 

μ
R(P−K) and Q̃μ = P μ −

K ′μ − 

μ
R(P−K ′). The matrix elements for both channels

involve the retarded quark self-energy 

μ
R calculated in

Eqs. (24)–(29).

III. RESULTS AND DISCUSSIONS

In this section we compute and graph the photon emis-
sion rates calculated with the diagrammatic and the kinetic
approaches and compare the two approaches. By default,
we employ χ ( p

T
) = (p/T )2 for the momentum dependence

of δf in Eq. (1), i.e., we set λ = 2. The λ dependence
of the photon emission rates is studied at the end of this
section.

For completeness we also compare our rates with two other
approaches currently on the market: the 2 → 2 part of the
ideal rate from AMY [1], and the viscous calculation using
the forward-scattering dominance approximation (FSDA) pre-
sented in Ref. [7].

The calculation from AMY is formally equivalent to the
diagrammatic approach described in this paper. Our treatment
differs from theirs, however, in the way we splice together the
soft and hard contributions. As we explain in the following
section, this leads to differences in the total rate when gs is not
small.

The use of the forward-scattering dominance approxima-
tion in Ref. [7] strongly simplifies the photon rate calcula-
tion compared with the full approach used in the present
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FIG. 4. (Color online) Cutoff dependence of the normalized equilibrium rate �̃0 (a) and (c), and viscous correction coefficient �̃1 (b) and
(d) from the diagrammatic approach at k/T = 10, for two values of the strong coupling constant, gs = 0.01 (a) and (b), and gs = 2.0 (c) and
(d). Horizontal dotted lines indicate the value from the AMY parametrization [1] in (a) and (c) and from Ref. [7] in (b) and (d). Vertical dotted
lines indicate the positions of the minima of the numerical curves and of qcut/T = √

gs , respectively. See text for discussion.

paper.1Comparing the results from Ref. [7] with our full
calculation allows one to better understand the region of
validity and accuracy of that approach.

To compare the different approaches we plot the dimen-
sionless equilibrium rates and viscous correction coefficients
�̃0 and �̃1 in Eq. (2), as well as their ratio �̃1/�̃0 = �1/�0,
as functions of k/T for selected values of the parameters
gs [respectively, αs = g2

s /(4π )] and λ, and of the cutoff
momentum qcut/T that separates the hard and soft scattering
domains in the diagrammatic approach.

A. Cutoff dependence in diagrammatic approach

Recall that the cutoff introduced in the diagrammatic
approach is artificial: The hard scattering sector where medium

1The ansatz used in Ref. [7] for the momentum anisotropy differs
slightly from ours, but the formula [Eq. (5) in [7]],

k
dR

d3k
= e2g2

s

(∑
s q2

s

)
π (2π )3

f (K) T 2 ln

[
3.7388 k

g2
s T

]
, (40)

can be straightforwardly adapted to our case by replacing the ansatz
in [7] for f (K) by our Eq. (1). The results of doing so are labeled as
“Ref. [7]” in the figures below.

corrections to the matrix elements are negligible should
match smoothly to the soft scattering region where HTL
resummation of the self-energy is essential to regulate the
infrared logarithmic divergence. Formally the value of the
cutoff qcut should satisfy gsT � qcut � T . Physically, the final
photon emission rates should be completely insensitive to
this artificial cutoff, while in practice this means that there
should be a range of values for qcut between gsT and T for
which the rate is largely insensitive to qcut. On the other hand
it also means that this cutoff independence should quickly
evaporate when gsT � T , i.e., when the soft and hard scales
overlap. Both of these issues are investigated in this subsection.
To this end, we explore the behavior of the thermal photon
rates for two values of gs : gs = 0.01 � 1 (corresponding to
weak coupling αs = g2

s /(4π ) ≈ 8 × 10−6 and well-separated
soft and hard scales) and the more realistic value (for RHIC and
LHC applications) g = 2 (corresponding to moderately strong
coupling αs � 0.3 and overlapping soft and hard scales).

In Fig. 4 we plot the scaled (dimensionless) photon emission
rate �̃0 and the viscous correction coefficient �̃1 from the
diagrammatic approach at k/T = 10, as a function of the
scaled cutoff momentum qcut/T . Figures 4(a) and 4(b) show
that for weak coupling, gs = 0.01, both �̃0 and �̃1 exhibit
a wide plateau that extends roughly from qcut/T = gs to
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qcut/T = 1, with a shallow minimum near qcut/T = √
gs . In

the plateau region, the total rates (soft+hard) are practically
cutoff independent.

For larger coupling this window of insensitivity shrinks,
and for gs = 2 [Figs. 4(c) and 4(d)] it has disappeared. Still,
for both �̃0 and �̃1, the sum of soft and hard scattering
contributions is still minimal near qcut/T = √

gs . In the
following sections, we adopt the sum of the hard and soft
contributions at qcut/T = √

gs as our estimate for �0,1 from
the diagrammatic approach.

This prescription agrees with the one adopted in [11] but
not with the approach taken by AMY in [1]. AMY starts from
the observation that for sufficiently small coupling the qcut/T
dependencies of the soft and hard contributions to the thermal
photon rate must cancel exactly, and that in the asymptotic
regions (qcut/T � 1 for the soft contribution, qcut/T � 1 for
the hard one) the cutoff dependencies of both contributions are
linear in ln(qcut/T ) (with opposite slopes). They then eliminate
the ln(qcut/T ) dependence of the total rate by adding these
two asymptotic logarithmic terms; this leads to the horizontal
dotted lines in Figs. 4(a) and 4(c) and 5(a) and 5(c). We see
in Figs. 4(c) and 5(c), however, that for gs = 2 the cutoff
dependencies of the hard and soft contributions to the rate
are no longer linear in ln(qcut/T ) in the region qcut/T ∼ 1
where the soft and hard contributions should be matched.
For moderately strong coupling, evaluating both contributions

numerically and adding them as we do here therefore gives a
larger result than the one obtained by AMY. These observations
hold for both low (k/T = 1, Fig. 5) and high (k/T = 10, Fig. 4)
photon energies.

Reference [7] does not have a cutoff dependence either: The
qcut/T dependence of the hard contribution, as evaluated with
the forward dominance scattering approximation, is canceled
against the asymptotic cutoff dependence of the soft part. We
note that for the viscous correction, Ref. [7] makes another
approximation that affects the cutoff dependence: Terms that
were found [7] to be subleading in log(gs) are neglected in both
the soft and hard part of the viscous correction. Neglecting
these terms simplifies the evaluation of the viscous correction,
but also have the side effect of removing terms that would have
had a cutoff dependence.

Figure 4(b) shows that, even for weak coupling gs � 1
where our calculations show a wide window of insensitivity
of �̃1 to qcut/T , this approximation leads to somewhat
larger �̃1 values than our estimate. At stronger coupling
[gs = 2, Fig. 4(d)], the various approximations of Ref. [7]
accidentally cancel each other, yielding a result very close
to our diagrammatic calculation. At smaller photon en-
ergy k/T = 1 this cancellation no longer happens at gs = 2
[Fig. 5(d)], instead it has moved to gs � 0.01 [Fig. 5(b)]. A
more detailed comparison of the rates is made in the next
section.

FIG. 5. (Color online) Same as Fig. 4, but for softer photons at k/T = 1.
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FIG. 6. (Color online) The temperature-scaled equilibrium photon emission rate �̃0 as a function of k/T for relatively weak [gs = 0.1, (a)]
and moderately strong coupling [gs = 2, (b)]. Results are shown for the diagrammatic approach, the kinetic approach, AMY’s parametrization [1],
and for Ref. [7] as labeled. In the lower panels we show the ratio between these rates and the one from the diagrammatic approach on a linear
scale. The gray band is a lower bound on the uncertainty of higher order corrections in gs to the diagrammatic and kinetic approaches.

B. Rate comparison

We now compare our results from the diagrammatic
approach with the kinetic approach, along with the results
from Ref. [7] and AMY when relevant. As stated above, we use
qcut = √

gsT for the momentum cutoff in the diagrammatic
approach because this value is generally close to the region of
minimal cutoff dependence.

Figures 6 and 7 show the scaled equilibrium rate �̃0 and
the viscous correction coefficient �̃1 as functions of k/T , for
two values of the coupling constant, gs = 0.1 (a) and gs = 2 (b).
For gs = 0.1 in Fig. 6(a), the equilibrium photon emission rates
from all four approaches are found to agree with each other
very well. The difference between our numerical results and
AMY’s parametrization is within 2%. The result from Ref. [7]
deviates from the others only for k/T < 1.

For gs = 2.0 [Fig. 6(b)], the thermal equilibrium rates
from the four approaches show similar k/T dependencies
for k/T > 5. However the diagrammatic approach shows
a systematically higher normalization than the three other
calculations. In particular, the difference between the kinetic
and diagrammatic approaches, which amounts to about 25%
independent of k/T in the range 1 < k/T < 40 , is a mani-

festation of a different partial resummation of higher order
corrections in the two methods, as discussed at the beginning
of Sec. II C. It can be taken as an indicator (or more precisely,
a lower limit) of the systematic uncertainty of our calculation
when extrapolating the result to moderately large coupling
αs = 0.3. The difference between the AMY parametrization
and our diagrammatic approach is because of the different
treatment to the cutoff dependence.

For k/T > 20, the thermal equilibrium rates from both AMY

and Ref. [7] agree within a few percent with our kinetic theory
results. However, both calculations start to deviate from the
kinetic approach with full matrix elements for k/T < 10 where
higher order corrections presumably become increasingly
important. The result from Ref. [7] actually goes negative for
k/T < 1.

Turning to the viscous correction coefficient �̃1 shown in
Fig. 7, we see in Fig. 7(a) that at weak coupling (gs = 0.1) the
result from the diagrammatic approach agrees well (within 2%)
with the kinetic approach for k/T > 5; significant deviations
occur only when k/T < 2. Reference [7] again reproduces the
correct k/T dependence of �̃1 but overestimates its absolute
value by ∼10%, almost independent of k/T , compared to the
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FIG. 7. (Color online) Similar to Fig. 6 but for the viscous correction coefficient �̃1.
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FIG. 8. (Color online) The viscous correction coefficient �̃1 (a) and its ratio �̃1/�̃0 to the thermal equilibrium emission rate (b) as functions
of k/T at gs = 2.0 for two values λ, λ = 1 and 2 (see text for details). The slope parameters in (b) were obtained by a linear fit of the log-log
plot for k/T > 5.

other two approaches. We verified that this difference does not
vanish in the limit gs → 0, and must thus stem from either the
forward scattering dominance approximation or the beyond-
leading-log terms that were dropped in Ref. [7].

For larger coupling gs = 2.0 one observes a large degree of
similarity between the k/T dependencies of the equilibrium
rate �̃0 [Fig. 6(b)] and of the viscous correction coefficient
�̃1 [Fig. 7(b)] as well as between the mutual relations among
the different methods and approximations. The normalized vis-
cous rate �̃1 from the diagrammatic approach is systematically
about 25% larger than from the kinetic approach. For k/T � 1
these two results begin to deviate significantly from each other.
The rate from Ref. [7] yields about 25% larger values for
�̃1 than the kinetic approach with full matrix elements. Its
good agreement with the diagrammatic approach is, however,
accidental, as discussed at the end of the previous section.

C. Photon energy dependence of the ratio �̃1/�̃0

All results presented up to this point assumed a
quadratic momentum dependence of the scalar function χ ( k

T
)

parametrizing the deviation from local equilibrium in Eq. (1).
Depending on the energy dependence of the scattering cross
section between the medium constituents, the power

λ of this momentum dependence typically spans the
range between linear and quadratic [12]. In this section we
therefore compare the viscous correction coefficient �̃1 to the
thermal equilibrium rate �̃0 for λ = 1 and λ = 2, and explore
the relationship between this power and the photon energy
dependence of the ratio �̃1/�̃0 which parametrizes the relative
importance of the viscous corrections to the thermal photon
emission rate.

Figure 8 compares the viscous correction factors �̃1(k/T )
obtained with χ (p/T ) = p/T and χ (p/T ) = (p/T )2. The
thermal equilibrium rate in Fig. 6(b) and the two different
results for the viscous correction coefficient �1 in Fig. 8(a) for
k/T > 5 all fall roughly exponentially as functions of photon
energy k/T , with very similar slopes. However, their ratio
�̃1/�̃0 is revealed in Fig. 8(b) to be a simple power (k/T )λ

′

of the scaled photon energy, with a power λ′ that reflects
surprisingly closely the power λ characterizing the energy
dependence of the deviations δf . This power dependence is
not trivial, but is in line with the result from Ref. [7], which
predicts the simple ratio �̃1/�̃0 = (1 + fB0(k))χ (k/T ).

IV. CONCLUSIONS

In this work, we computed the photon emission rate
from a quark-gluon plasma with locally anisotropic particle
momentum distributions induced by a nonvanishing shear
stress tensor. We calculated photon production from 2 → 2
scattering processes in the QGP, with off-equilibrium correc-
tions included to leading order in the shear stress. We employed
both the diagrammatic and kinetic approaches to calculating
the photon production rate and showed that the results agree in
the weak coupling limit gs → 0. The Feynman diagram based
viscous rate calculation for processes involving soft scattering
was considerably simplified by a proof of the KMS theorem
for the exchanged quark propagator which was shown to hold,
in the hard loop limit relevant for soft collisions, not only for
the general type of shear viscously deformed local momentum
distributions, but for any local momentum distribution that is
mirror symmetric under momentum reflection in the local rest
frame.

We compared our equilibrium rates and viscous correction
coefficients from both of these approaches with other existing
results, specifically with the AMY parametrization of the
thermal equilibrium photon emission rate [1] and with the
equilibrium rate and viscous correction factor obtained in
Ref. [7] using simplified Compton and pair annihilation
matrix elements evaluated in the forward scattering dominance
approximation. In the diagrammatic approach we investigated
the cutoff dependence of both the equilibrium rate and the
viscous correction factor for both weak and moderately strong
coupling. We found that both cutoff dependencies are mini-
mized by setting the cutoff to qcut/T ≈ √

gs , but that for small
gs � 1 there exists a wide “window of insensitivity” covering
the range gsT � qcut/T � T where both the equilibrium
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emission rate �̃0 and the viscous correction coefficient �̃1 are
approximately cut off independent. Finally, we found that the
photon energy dependence of the relative viscous correction
�̃1/�̃0 to the photon emission rate is very close to the energy
dependence of the off-equilibrium correction to the underlying
quark and gluon distribution functions.

The analysis presented in this work is restricted to 2 → 2
collisions. A complete calculation that includes all contribu-
tions to the (viscously corrected) thermal photon emission
rate at leading order in the strong coupling constant gs

requires the inclusion and resummation of bremsstrahlung
processes induced by soft collinear collisions and of the
Landau-Migdal-Pomeranchuk (LPM) interference effect [1].
In thermal equilibrium these additional channels are known to
boost the photon emission rate by about a factor of two over
the 2 → 2 collision processes discussed here, highlighting
the need for extending viscous corrections to bremsstrahlung
processes. However, difficulties related to plasma instabilities,

also faced by previous work [11], have to be addressed
first.
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APPENDIX A: PHOTON PRODUCTION BY LARGE ANGLE SCATTERING

We first treat the t-channel terms. We define q = p−k and ω = p−k (where p = | p|, etc.) such that an infrared cutoff can be
placed on the exchanged momentum q. Using the energy-momentum δ function to eliminate phase-space integrals is easiest by
first considering the momentum-integrated photon emission rate for a single scattering channel:

R =
∫

p,p′,k,k′
(2π )4δ(4)(P + P ′−K−K ′)|M|2f (P )f (P ′)(1 ± f (K ′)). (A1)

The integrals are most easily evaluated in the local fluid rest frame, using a coordinate system with its z axis aligned with the
photon momentum k and the x-z plane spanned by k and q. In this frame, the integrand in Eq. (A1) is determined by the
momentum magnitudes p, p′, and k and three angles, θkq , θp′q , and φp′ . The remaining angular integrals give trivial factors. We
use δ(3)( p + p′−k−k′) to perform the integration over k′:

R =
∫

p′2dp′q2dq k2dk d cos θkp d cos θp′q dφp′
2(2π )2

(2π )824pp′kk′ δ(p + p′−k−k′).

× |M|2f (p)f (p′)(1±f (p + p′−k)). (A2)

The remaining δ function is split in two by introducing a dummy integration:

δ(p + p′−k−k′) =
∫ +∞

−∞
dω δ(ω + k−p) δ(ω + p′−k′), (A3)

with each factor rewritten to perform one of the polar angle integrations:

δ(ω + k−p′) = p

qk
δ

(
cos θqk − ω2−q2 + 2ωk

2qk

)
θ (ω + k), (A4)

δ(ω + p′−k′) = k′

qp′ δ

(
cos θp′q − ω2−q2 + 2ωp′

2p′q

)
θ (ω + p′). (A5)

Doing so yields

R =
∫

dq dp′ dk dω dφp′
1

8(2π )6
|M|2f (ω + k)f (p′)(1±f (ω + p′))θ (ω + k)θ (ω + p′). (A6)

Now we can return to the differential photon emission rate for the selected channel:

k
dR

d3k
= 1

16(2π )7k

∫
dq dp′ dωdφp′ |M|2f (ω + k)f (p′)(1±f (ω + p′))θ (ω + k)θ (ω + p′). (A7)

The Mandelstam variables in the matrix elements are expressed in terms of these integration variables as

t = ω2 − q2, s = −t − u, (A8)

u = −2p′k(1 − cos θkq cos θp′q + sin θkq sin θp′q cos φp′ ), (A9)

with cos θkq and cos θp′q given by the poles of the δ functions in Eqs. (A4) and (A5).
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With our anisotropic distribution function, Eq. (1), the integral over φp′ can be done analytically. Splitting f = f0 + δf and
ignoring all δf terms we obtain the equilibrium rate �0 in Eq. (2) which, after adding all three t-channel contributions, summing
over quark species s and over quark and antiquark contributions to the Compton channel, reads

�0 = N
16(2π )6k

∫ +∞

qcut

dq

∫ q

max{q−2k,−q}
dω

∫ +∞

(q−ω)/2
dp′

[(
1 − 2p′k

ω2−q2
(1 − cos θkq cos θp′q)

)
fF0(ω + k)fB0(p′)(1 − fF0(p′ + ω))

− 2p′k
ω2−q2

(1 − cos θkq cos θp′q)fF0(ω + k)fF0(p′)(1 + fB0(p′ + ω))

]
, (A10)

where we implemented the infrared cutoff qcut in the q integral, and where

N = 16NCCF e2g2
s

Nf∑
s

q2
s = 28πNCαEM

m2
∞

T 2

Nf∑
s

q2
s . (A11)

In (A10) the first term in the square brackets accounts for Compton scattering, the second for qq̄ annihilation.
Now we add all contributions linear in δf , write the result as in Eq. (6) and read off the coefficient �μν . Contracting with

aμν to obtain the viscous correction coefficient �1 = aμν�
μν in Eq. (2) we get from the − s

t
part of |M|2 the Compton scattering

contribution,

�
(−s/t)
1 = N

16(2π )6k

∫ +∞

qcut

dq

∫ q

max{q−2k,−q}
dω

∫ +∞

(q−ω)/2
dp′ fF0(ω + k) fB0(p′)(1 − fF0(p′ + ω))

×
{(

1 − 2p′k
ω2 − q2

(1 − cos θkq cos θp′q)

)[
(1 − fF0(ω + k))χ

(
ω + k

T

)(
−1

2
+ 3

2

(
q cos θkq + k

ω + k

)2)

− fF0(p′ + ω)χ

(
p′ + ω

T

)(
−1

2
+ 3

2

1

(p′ + ω)2

(
(p′ cos θp′q + q)2 cos2 θkq + 1

2
p′2 sin2 θkq sin2 θp′q

))

+ (1 + fB0(p′))χ
(

p′

T

)(
−1

2
+ 3

2

(
cos2 θkq cos2 θp′q + 1

2
sin2 θkq sin2 θp′q

))]

+ 2p′k
ω2−q2

sin θkq sin θp′q

[(
1 + fB0(p′))χ

(
p′

T

)
3

2
cos θkq cos θp′q sin θkq sin θp′q

− fF0(p′ + ω)χ

(
p′ + ω

T

)
3

2

1

(p′ + ω)2
(p′ sin θkq sin θp′q cos θkq(p′ cos θp′q + q))

]}
, (A12)

while the u
t

part gives the contribution from qq̄ annihilation:

�
(u/t)
1 = N

16(2π )6k

∫ +∞

qcut

dq

∫ q

max{q−2k,−q}
dω

∫ +∞

(q−ω)/2
dp′ fF0(ω + k) fF0(p′)(1 + fB0(p′ + ω))

×
(

− 2p′k
ω2−q2

){
(1 − cos θkq cos θp′q)

[
(1−fF0(ω + k))χ

(
ω + k

T

)(
−1

2
+ 3

2

(
q cos θkq + k

ω + k

)2)

+ (1 − fF0(p′))χ
(

p′

T

)(
−1

2
+ 3

2

(
cos2 θkq cos2 θp′q + 1

2
sin2 θkq sin2 θp′q

))

+ fB0(p′ + ω)χ

(
p′ + ω

T

)(
−1

2
+ 3

2

1

(p′ + ω)2

(
(p′ cos θp′q + q)2 cos2 θkq + 1

2
p′2 sin2 θkq sin2 θp′q

))]

+ sin θkq sin θp′q

[
(1 − fF0(p′))χ

(
p′

T

)
3

2
cos θkq cos θp′q sin θkq sin θp′q

+ fB0(p′ + ω)χ

(
p′ + ω

T

)
3

2

1

(p′ + ω)2
(p′ sin θkq sin θp′q cos θkq(p′ cos θp′q + q))

]}
. (A13)

For the s-channel diagrams we define q = p + p′ and ω = p + p′ and follow the same procedure:

�0 = N
16(2π )6k

∫ +∞

k

dω

∫ ω

|2k−ω|
dq

∫ (ω+q)/2

(ω−q)/2
dp′ 2p′k

ω2−q2
(1− cos θkq cos θp′q) fB0(ω−p′) fF0(p′)(1 − fF0(ω−k)), (A14)
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where now cos θkq = q2−ω2+2ωk
2qk

and cos θp′q = q2−ω2+2ωp′
2qp′ . The s-channel contribution to the viscous correction coefficient is

�1 = N
16(2π )6k

∫ +∞

k

dω

∫ ω

|2k−ω|
dq

∫ (ω+q)/2

(ω−q)/2
dp′ fB0(ω−p′) fF0(p′)(1 + fF0(ω−k))

× 2p′k
ω2−q2

{
(1 − cos θkq cos θp′q)

[
(1 − fF0(p′))χ

(
p′

T

)(
−1

2
+ 3

2

(
cos2 θkq cos2 θp′q + 1

2
sin2 θkq sin2 θp′q

))

− fF0(ω−k)χ

(
ω − k

T

)(
−1

2
+ 3

2

(
q cos θkq − k

ω − k

)2)
+ (1 + fB0(ω − p′))χ

(
ω − p′

T

)

×
(

−1

2
+ 3

2

(q − p′ cos θp′q)2 cos2 θkq + 1
2p′2 sin2 θkq sin2 θp′q

(ω − p′)2

)]
+ sin θkq sin θp′q

×
[
−(1 − fF0(p′)) χ

(
p′

T

)
3

2
cos θkq cos θp′q sin θkq sin θp′q

+ (1 + fB0(ω − p′)) χ

(
ω−p′

T

)
3

2

p′ sin θkq sin θp′q cos θkq(q − p′ cos θp′q)

(ω − p′)2

]}
. (A15)

The remaining three integrals are straightforward to evaluate numerically, using, e.g., Gaussian quadrature.

APPENDIX B: PARAMETRIZATION OF THE IDEAL AND VISCOUS PHOTON RATES

We wrote our final result for the photon emission rate as

k
dR

d3k
= T 2

(
�̃0 + πμνk̂μk̂ν

2(e + P)
�̃1

)
.

We described in Sec. II how to evaluate �̃0 and �̃1. We provide here a parametrization of these two functions as computed in
the diagrammatic approach, described in Sec. II B. We used the prescription qcut/T = √

gs to fix the cutoff, because
√

gs is in
general close to the minimum of the cutoff dependence. The parametrization was made with χ (k/T ) = (k/T )2 (λ = 2) in (1),
corresponding to a quadratic dependence in the energy of the momentum anisotropy ansatz.

We write both �̃0 and �̃1 as

�̃0(k/T ) = B(k/T ) exp {F ( ln(gs), ln(k/T ))} , �̃1(k/T ) = B(k/T ) exp {G( ln(gs), ln(k/T ))} , (B1)

with

B(k/T ) = 2αEMg2
s

(2π )3

⎡
⎣ Nf∑

s

q2
s

⎤
⎦ nf (k/T ), (B2)

and F and G being given by the following parametrizations:

F (x,y) = [0.200 − 0.607x − 0.131x2 + 0.0242x3] + [0.0574 + 0.0359x − 0.219x2 − 0.00280x3]y

+ [0.0978 + 0.00833x + 0.445x2 − 0.106x3]y2 + [0.0167 + 0.0389x − 0.294x2 + 0.112x3]y3

+ [−0.018749 − 0.0196x + 0.0837x2 − 0.0396x3]y4 + [0.00279 + 0.00257x − 0.00873x2 + 0.00464x3]y5,

(B3)

G(x,y) = [−0.314 − 0.967x + 0.0159x2 + 0.250x3] + [2.53 + 1.08x − 2.07x2 + 0.195x3]y

+ [−0.299 − 1.41x + 3.73x2 − 1.10x3]y2 + [0.213 + 0.879x − 2.52x2 + 0.946x3]y3

+ [−0.0678 − 0.244x + 0.733x2 − 0.307x3]y4 + [0.00758 + 0.0247x − 0.077x2 + 0.0343x3]y5. (B4)

The parametrizations are accurate to within 3% in the range 1 < gs < 3.1 and 1 < k/T < 30.
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