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A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions,
an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper
we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of
the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at
the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial
states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy
density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to
the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy
density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that
the numerical code based on the energy-momentum transport model is capable of providing both averaged and
fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
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I. INTRODUCTION

Hydrodynamics is considered now as an integral part of
a future “standard model” for the evolution of the “little
bang” fireballs created in relativistic heavy ion collisions at
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) (for up-to-date reviews, see Ref. [1]).
To complete the development of the standard model, a
hydrodynamical approach must be supplied with initialization
and breakup conditions: The former ones should describe
transition from a dense nonequilibrated state to a near local
equilibrium one, and the latter ones form a prescription for
particle production during the breakup of the continuous
medium at the final stage of hydrodynamical expansion.

Until now the main progress was reached in understanding
and modeling the breakup conditions at the later dilute stage
of matter expansion when the hydrodynamical approximation
is no longer valid. Namely, it is widely accepted that a
quark-gluon fluid is followed by the hadronic gas that is highly
dissipative and evolves away from equilibrium. The transition
between the quark-gluon fluid and hadronic gas is described
by means of the so-called hybrid models where conversion
of the fluid to particles is typically realized at a hypersurface
of hadronization or chemical freeze-out1 by a Monte Carlo
event generator (for recent discussions of the particlization

1It has been well known for a long time that such a matching
prescription has problems with the energy-momentum conservation
laws when fluid is converted to particles at a hypersurface which
contains non-space-like parts. These problems can be avoided by
using the hydrokinetic approach that was proposed in Ref. [2] and
further developed in Ref. [3] (see also Ref. [4]), which accounts
for continuous particle emissions during the whole period of
hydrodynamic evolution and is based not on the distribution function
but on the escape one.

procedure see, e.g., Refs. [4,5]), and subsequent hadronic stage
of evolution is modeled by a hadronic cascade model like
UrQMD [6].

As for initialization of the hydrodynamical evolution, one
needs to note that presently there is no commonly accepted
model of the pre-equilibrium dynamics and subsequent ther-
malization (for the discussions of possible mechanisms of ther-
malization see, e.g., Ref. [7]). There is, however, theoretical ev-
idence [8] that the state which emerges in relativistic heavy ion
collisions possesses large momentum-space anisotropies in the
local rest frames. Such an initial state is far from equilibrium
and cannot be utilized as an input for hydrodynamics. Because
initial state fluctuates on an event-by-event basis, Monte Carlo
event generators are widely used for the generation of the initial
states in relativistic A + A collisions. The models of initial
state most commonly used now are MC-Glauber (Monte Carlo
Glauber) [9], MC-KLN (Monte Carlo Kharzeev-Levin-Nardi)
[10], and IP-glasma (impact-parameter-dependent glasma)
[11]. The latter model also includes some nonequilibrium
dynamics of the gluon fields, which, however, does not lead
to a proper equilibration. To apply these models for data
description, some thermalization process has to be assumed.
Evidently, in order to reduce uncertainties of results obtained
by means of hydrodynamical models, one needs to evolve
far-from-equilibrium initial state of matter in nucleus-nucleus
collision to a close to locally equilibrated one by means of a
reasonable pre-equilibrium dynamics.

It is well known that for far-from-equilibrium systems
one cannot use the Gibbs thermodynamic relations to get the
equations expressing the conservation laws in the system in the
closed form as is done in hydrodynamics. The latter is, in fact,
an effective theory which describes long wavelength dynamics
of systems that are close to (local) equilibrium (see, e.g.,
Ref. [12] and references therein). As for far-from-equilibrium
systems, the underlying kinetics has to be used in direct form to
enclose the energy-momentum balance equations. Typically,
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even if underlying kinetic equations are known, the (approxi-
mate) solution of these equations is known only in the vicinity
of the (local) equilibrium state of a system. For example,
kinetic derivation of the viscous hydrodynamical equations
for dilute gases is based on approximate solutions of the
Boltzmann equations near the local equilibrium distribution
(see, e.g., Ref. [13]). Sometimes, if proper kinetics is unknown
or too complicated, the relaxation time approximation of the
collision term is utilized (see Ref. [14] for the relativistic case).
Depending on a value of the time-scale relaxation parameter, a
solution of such a kinetic equation interpolates between the two
trivial limiting cases: free streaming and locally equilibrated
evolutions. Although the relaxation time approximation has
been known for a long time, it is used relatively rarely for prac-
tical calculations of far-from-equilibrium dynamics because
the corresponding kinetic equation has to be accompanied
by the conservation law constraints for the collision term
(e.g., Landau matching conditions), which result in nonlinear
equations. This is the reason why finding solutions of kinetic
equations in the relaxation time approximation typically
requires time-consuming numerical calculations (especially
for three-dimensional dynamics).

Recently, an approach called “anisotropic hydrodynamics”
was developed to account for large early-time deviations
from local equilibrium in relativistic heavy ion collisions
in a hydrodynamic-like manner (for review, see Ref. [15]
and references therein). The zeroth and the first moments
of the 0 + 1 kinetic equation in the relaxation time approx-
imation were used to find the evolutionary equations for
the parameters of the boost-invariant Romatschke-Strickland
form [16] of the one-particle distribution function with the
help of the Landau matching conditions and exponential
Romatschke-Strickland ansatz [17]. Then, utilization of the
Romatschke-Strickland distribution function allows one to
calculate the nonequilibrium energy-momentum tensor and
express thermodynamic-like quantities (which do not have
standard thermodynamic interpretation) as functions of some
parameters in an equation-of-state manner, closing in such
a way the system of the energy-momentum conservation
equations. Despite the fact that the Romatschke-Strickland
distribution function does not satisfy the kinetic equation but
some moments only, it was demonstrated that the energy-
momentum tensor of anisotropic hydrodynamics approximates
well the far-from-equilibrium energy-momentum tensor that
is calculated from exact numerical solution of 0 + 1 kinetic
equation in the relaxation time approximation for a system,
which is transversely homogeneous and undergoing boost-
invariant longitudinal expansion [18].

Very recently, various attempts were performed to gener-
alize the anisotropic hydrodynamics framework to describe
far-from-equilibrium dynamics beyond the 0 + 1 dimensions;
see, e.g., Ref. [19]. Unlike 0 + 1 dimensional case, such gen-
eralizations were not compared with exact kinetics, and their
relevance for description of far-from-equilibrium dynamics
remains questionable. In particular, to justify utilization of the
generalized “equations of state” based on the Romatschke-
Strickland ansatz beyond the 0 + 1 dimensions, the con-
cept of the “anisotropic equilibrium” has been introduced.
The problem is that the far-from-equilibrium Romatschke-

Strickland ansatz of the distribution function does not solve
the corresponding kinetic equation, even approximately, and
utilization of such an ansatz as “leading order” approximation
does not have solid ground. It is different from the standard
second-order (Israel-Stewart) viscous hydrodynamics, where
expansion around local equilibrium distribution is justified in
the vicinity of a high-entropy local equilibrium state. As we
noted above, this ansatz and the corresponding “equations of
state” are grounded, in fact, on the boost-invariant transversely
homogeneous kinetics and therefore can hardly provide an
adequate approximation of nontrivial transverse dynamics. It
especially concerns calculations on an event-by-event basis,
where a typical initial state is highly inhomogeneous in
the transverse plane and produces locally large transverse
velocities. On the other hand, utilization of transversely
homogeneous initial conditions with very specific type of the
initial anisotropy seriously restricts the scope of applicability
of the anisotropic hydrodynamics.

In this article we use another phenomenological approach,
proposed in Ref. [20]. This approach allows pre-equilibrium
dynamics to be matched to a hydrodynamic description.
The method is based on the energy-momentum conservation
equations that are associated with the relaxation transport dy-
namics, expressed for energy-momentum tensor that evolves
towards its hydrodynamical form. It allows one, using the
relaxation time parameter, to assess the hydrodynamic energy-
momentum tensor at the assumed time of thermalization start-
ing from any initial one. The key feature of the method is that
there are no additional assumptions (such as, e.g., the Landau
matching conditions or “anisotropic equilibrium” concept)
needed to describe the transition from the far-from-equilibrium
regime to the near-local-equilibrium one. Then this model
can continuously interpolate between a far-from-equilibrium
initial state, with arbitrary type of anisotropy, and the regime
described by the hydrodynamics. Moreover, the method allows
one to account for large initial state inhomogeneities that
lead to nontrivial transverse dynamics. Therefore the method
may be used to model the very early stages of relativistic
heavy ion collisions on an event-by-event basis. Here we
develop a numerical realization of this method, aiming to
study the connection between initial locally isotropic or
anisotropic momentum space distributions and the equilibrium
initial conditions for subsequent hydrodynamical evolution
in relativistic nuclear collisions. In this article we restrict
ourselves to the central rapidity region, where the longitudinal
boost invariance seems to be a good enough approximation to
the longitudinal dynamics.

II. ENERGY-MOMENTUM RELAXATION DYNAMICS
FOR A FAR-FROM-EQUILIBRIUM INITIAL STATE

It was proposed in Ref. [20] to simulate the approach to local
equilibrium of the matter produced in ultrarelativistic heavy
ion collisions by means of the relaxation dynamics of the
energy-momentum tensor which is motivated by Boltzmann
kinetics in the relaxation-time approximation,

pμ∂f (x,p)

p0∂xμ
= −f (x,p) − fl eq(x,p)

τrel
, (1)
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where τrel is the relaxation time parameter in the center-
of-mass reference frame [in general, it can be some func-
tion of (x,p)], f (x,p) and fl eq(x,p) are actual and local-
equilibrium phase-space distribution functions, respectively,
and the energy-momentum tensor is defined as

T μν(x) =
∫

d3p
pμpν

p0
f (x,p). (2)

As one can see from Eq. (1), the target (local-equilibrium)
state is reached in a finite time interval at t = tth only if
the relaxation time parameter in Eq. (1) vanishes at t → tth:
τrel(t → tth,r,p) → 0.

In the relaxation-time approximation of kinetics, the actual
distribution function, f (x,p), is functional of the (target)
local equilibrium distribution function, fl eq(x,p). The formal
solution of Eq. (1) reads

f (t,r,p)=f

(
t0,r − p

p0
(t − t0),p

)
P (t0,t,r,p)

+
∫ t

t0

fl eq

(
t ′,r − p

p0
(t − t ′),p

)
d

dt ′
P (t ′,t,r,p)dt ′,

(3)

where

P (t ′,t,r,p) = exp

{
−

∫ t

t ′
τ−1

rel

(
s,r − p

p0
(t − s),p

)
ds

}
(4)

is the probability for the particle with momentum p to
propagate freely from point (t ′,r − p

p0
(t − t ′)) to point (t,r)

and f (t0,r − p
p0

(t − t0),p) ≡ ffree(t,r,p) is free streaming
initial distribution, pμ∂μf (t0,r − p

p0
(t − t0),p) = 0.

Computational complexity of finding the local equilibrium
state parameters makes an utilization of Eq. (1) or its
formal solution (3) difficult for a matching of a far-from-
equilibrium initial state with perfect or viscous hydrodynamics
in relativistic heavy ion collisions. To make the problem
tractable, it was proposed in Ref. [20] to utilize the relaxation
dynamics of the energy-momentum tensor that approximates
the most important properties of the formal solution (3) of the
relaxation-time kinetics (1) and, simultaneously, allows one to
avoid computational problems related to nonlinear equations
for the parameters of the local equilibrium distribution.

For the reader’s convenience, in this section we briefly
summarize the main features of the relaxation dynamics of
the energy-momentum tensor relevant to our work, referring
the reader to Ref. [20] for more details. First, note that
the boost-invariant scenario in central rapidity region with
Bjorken longitudinal proper time τ = √

t2 − z2 is used in
this model, and particle probability to fly freely from the
initial time τ0 to time τ is taken in the form P (τ0,τ,r,p) ≈
P (τ0,τ ) ≡ P (τ ). Then the phase-space distribution function
ffreeP + fl eq(1 − P ) is a formal solution of Eq. (1) if the term
(1 − P (τ ))pμ∂μf l eq(x,p) is neglected. Correspondingly, the
nonequilibrium energy-momentum tensor reads

T μν(x) = T
μν

free(x)P(τ ) + T
μν

hyd(x)(1 − P(τ )), (5)

where T
μν

free(x) and T
μν

hyd(x) are the energy-momentum tensors
of the free streaming and hydrodynamical (local equilibrium)

components, respectively. We use in Eq. (5) the substitution
P (τ ) → P(τ ) because further we consider 0 � P(τ ) � 1 just
as an interpolating function, and approximation (5) will be
applied for any kind of systems, not only for Boltzmann
gas, with target energy-momentum tensor corresponding to
relativistic ideal as well as viscous fluids. One can see from
Eq. (5) that the following equalities have to be satisfied:

P(τ0) = 1, P(τth) = 0, ∂μP(τ )|τ=τth = 0. (6)

For interpolation function, P(τ ), we use an ansatz proposed in
Ref. [20]:

P(τ ) =
(

τth − τ

τth − τ0

) τth−τ0
τrel

. (7)

Here τ0 is the time when relaxation dynamics is started,
and it can be chosen as close as possible to the time when
the nuclear overlap is completed and initial nonequilibrated
superdense state of matter is formed. The time-scale parameter
τrel regulates steepness of the transition to hydrodynamics,
and self-consistency of the model, Eq. (6), requires τth−τ0

τrel
> 1

[20], that is a constraint on the model parameters. We choose
τ0 = 0.1 fm/c and keep this parameter to be fixed throughout
all the model calculations, as well as τth = 1 fm/c, which is
assumed to be the time when transition to hydrodynamics is
fulfilled.2

To specify the energy-momentum tensor of the free stream-
ing component in Eq. (5), notice that initially T

μν
free(x) coincides

with T μν(x); see Eqs. (5) and (6). Then the initial conditions for
the former are the same as for the latter and thus are defined
by an initial state of matter in a nucleus-nucleus collision.
Further evolution of T

μν
free(x) depends on the type of the system

and its evolution with almost no interactions. In the further
calculations we assume that such a dynamics is governed by the
one-particle distribution function for scalar massless particles
(partons), f (x,p), which satisfies the free evolution equation

pμ∂μf (x,p) = 0. (8)

The corresponding energy-momentum tensor, T
μν

free(x), is then
evaluated from Eq. (2).

The energy-momentum tensor of the hydrodynamical com-
ponent, T

μν
hyd(x), is taken in its familiar form,

T
μν

hyd(x) = (εhyd(x) + phyd(x) + �)uμ
hyd(x)uν

hyd(x)

− (phyd(x) + �)gμν + πμν. (9)

Here, uμ is the four-vector energy flow field, εhyd is energy
density in the fluid rest frame, phyd is equilibrium pressure,
πμν is the shear stress tensor, and � is the bulk pressure. In

2In hydrodynamic models which ignore the pre-equilibrium dynam-
ics a very early initial time around 0.4–0.6 fm/c is typically utilized to
develop fairly strong transverse flows and so describe the data in heavy
ion collisions at RHIC and LHC energies. Such a fast isotropization
and thermalization of the system is rather questionable. On the other
hand, the pre-equilibrium dynamics of the system generates flow at
early times and allows one to start hydrodynamics with initial flows
at later times; see Ref. [21].
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the present paper we neglect bulk pressure, and for the shear
stress tensor use the equation of motion as in Ref. [22],

〈uγ ∂;γ πμν〉 = −πμν − π
μν
NS

τπ

− 4

3
πμν∂;γ uγ , (10)

where ∂;μ denotes a covariant derivative (see, e.g., Ref. [22]),
brackets in Eq. (10) are defined as 〈Aμν〉 = ( 1

2	μ
α	ν

β +
1
2	ν

α	
μ
β − 1

3	μν	αβ)Aαβ , 	μν = gμν − uμuν , and π
μν
NS is the

values of shear stress tensor in limiting Navier-Stokes case,

π
μν
NS = η(	μλ∂;λu

ν + 	νλ∂;λu
μ) − 2

3η	μν∂;λu
λ. (11)

The evolutionary equations for T
μν

hyd(x) follow from the
energy-momentum conservation laws, ∂;μT μν(x) = 0. They
are

∂;μ
[
(1 − P(τ ))T μν

hyd(x)
] = −∂;μ

[
T

μν
free(x)P(τ )

]
. (12)

Now, let us take into account that T μν
free(x) is subjected to the free

streaming dynamics and ∂;μT
μν

free(x) = 0. Also, let us introduce
the tensor T̃

μν
hyd(x) that is the rescaled hydrodynamic tensor,

T̃
μν

hyd(x) = (1 − P(τ ))T μν
hyd(x), with initial conditions T̃

μν
hyd(x) =

0 at τ = τ0 everywhere in space. Then Eq. (12) takes its final
form, the form of the hydrodynamical equation with the source
term on the right-hand side:

∂;μT̃
μν

hyd(x) = −T
μν

free(x)∂;μP(τ ). (13)

By multiplying Eq. (10) by (1 − P) and substituting πμν =
π̃μν/(1 − P), we get the equation for the rescaled shear stress
tensor π̃μν :

(1 − P(τ ))
〈
uγ ∂;γ

π̃μν

(1 − P(τ ))

〉
= − π̃μν − (1 − P(τ ))πμν

NS

τπ

− 4

3
π̃μν∂;γ uγ . (14)

In what follows, we take into account that the net baryon
density is small at the top RHIC and the LHC energies and
therefore neglect its influence on the equation of state (EoS),
etc.

To close the set of evolutionary equations (13) one needs
to specify EoS phyd = phyd(εhyd) in the hydrodynamic com-
ponent. If it is done, then Eq. (13) allows one to deduce the
initial conditions for subsequent hydrodynamical evolution by
evolving T̃

μν
hyd(x). It is so because the source term in Eq. (13)

finally (at τ = τth) disappears, and T̃
μν

hyd(x) → T
μν

hyd(x) →
T μν(x) when τ → τth; see Eq. (6). In the next section we
present and discuss the results of numerical implementation of
the early-stage relaxation model for initialization of hydrody-
namics.

III. RESULTS AND DISCUSSION

To perform simulations of the pre-equilibrium dynamics
within the model, we modify the code described in Ref. [22]
to solve hydrodynamical equations with extra source terms. To
make calculations less time-consuming, we reduce the original
3 + 1 dimensional viscous hydrodynamic code to a 2 + 1
dimensional case assuming longitudinal boost invariance.
Also, because it is known that the viscosity-to-entropy ratio

of the quark-gluon fluid is near its minimal value at RHIC
and LHC energies, we perform some of the simulations in the
limit of zero viscosity, aiming to reveal principal features of
the relaxation dynamics. We perform numerical calculations
for the EoS in its simplest form, phyd = const · εhyd. We set
τrel = 0.5 fm/c as a default value.

To initialize the simulations, one needs to specify the initial
conditions. Because T̃

μν
hyd(x) is equal to zero initially, the

corresponding initial conditions are determined by the explicit
form of the source term in the right-hand side of Eq. (13).
Inasmuch as P(τ ) is explicitly defined, see Eq. (7), it remains
to define the initial value of the energy-momentum tensor of the
free streaming component. We define it by means of Eq. (2)
through initial value of the phase space density f (x,p). In
what follows, for aim of comparisons of our calculations, we
normalize all initial distributions in such a way that the energy
density in the center of the system (which coincides with the
center of coordinates) is equal to 1000 GeV fm−3. It is a typical
value for the simulations of Pb+Pb collisions in hydrokinetic
model with initial time 0.1 fm/c [3].

We employ here the analytical parametrization of the initial
phase-space density taken from Ref. [23]. This longitudinally
boost-invariant parametrization allows one to account for
anisotropy in momentum space. We assume no transverse flow
at the initial time τ0 = 0.1 fm/c; thereby the initial phase-space
density does not have x − p correlations in the transverse
plane. Also, we supplement the momentum distribution from
Ref. [23] with the Gaussian spatial distribution, ρ(rT ):

ρ(rT ) = exp
(−r2

x

/
R2

x − r2
y

/
R2

y

)
. (15)

Then at the initial time τ0 = 0.1 fm/c

f (x,p) = g exp

(
−

√
(p · U )2−(p · V )2

λ2
⊥

+ (p · V )2

λ2
‖

)
ρ(rT ).

(16)

Here η = tanh−1 z/t is the space-time rapidity, g depends on
centrality and defines the multiplicities of produced hadrons,
Uμ = (cosh η,0,0, sinh η), V μ = (sinh η,0,0, cosh η). One
can see that p · U and p · V depend on θ = η − y, where
y = tanh−1 pL/p0, and thus f (x,p) is longitudinally boost
invariant distribution. The anisotropy of the f (x,p) in mo-
mentum plane is explicitly seen if Eq. (16) is rewritten in the
local rest frame, η = 0, where it is

f (x,p) = g exp

(
−

√
p2

T

λ2
⊥

+ p2
L

λ2
‖

)
ρ(rT ). (17)

First we use the hydrodynamical code [22] in its ideal
fluid form (i.e., with zero viscosity coefficients), and perform
calculations with initial conditions defined by Eq. (16). To
make a comparison between isotropic and anisotropic in
momentum space initial distributions, we use different values
of λ ≡ λ⊥/λ‖: 1, 0.01, and 100 respectively. As for the
λ⊥, we utilize the fixed value 1.4 GeV for all calculations.
Therefore, λ = 0.01 corresponds to the large longitudinal
pressure, as compared to the transverse one; λ = 100 means
very small longitudinal pressure, similar as in original color
glass condensate (CGC) initial conditions (IC) [23]. The value
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of λ ≈ 1 is used, in fact, in Ref. [24]. This value of λ
corresponds to CGC-like IC with smeared δ(η − y) in the
gluon CGC Wigner function; the smearing was provided to
escape contradiction with the quantum uncertainty principle.
Also, we utilize Rx = Ry = R = 5.33 fm in Eq. (15), which
corresponds to the Gaussian approximation of the initial
energy density transverse profile in central heavy ion collisions
[24]. The results for energy densities and velocities are
demonstrated for the time of thermalization τ = τth = 1 fm/c,
when transition to hydrodynamics is assumed to be fulfilled.

Let us compare the results for the energy densities and
transverse velocities at τ = τth from the relaxation model
(RM), hydrodynamic model (HM), and free streaming (FS)
one. Energy densities and four-vector energy flow field are
calculated from energy-momentum tensor:

uμ = T μνuν

T μνuμuν

= T μνuν

ε
. (18)

We apply HM and FS models in the following way. For HM
we utilize Eq. (18) at τ = τ0 with T μν = T

μν
free to calculate

the initial energy density and four-velocities, then incorporate
them in the energy-momentum tensor in the hydrodynamical
form and perform a pure hydrodynamical evolution until τ =
τth, whereas for FS model initial energy-momentum tensor at
τ = τ0 fully coincides with one in RM, and we apply Eq. (18)
to calculate the energy density and four-velocities in FS model
at τ = τth.

Before discussing the results of numerical calculations, let
us perform analytical estimate and comparison of the energy
density evolution in HM and FS models. Since there is no initial
transverse flow, one can calculate energy density ε(rT ,τ ), at
least in the central part, r/R � 1, using approximation of
transversely homogeneous system within the times τ such
that τ/R � 1. Then in the hydrodynamic model with EoS of
massless ideal gas, p = ε/3, one gets the known result:

εHM(τ ) ∝
(τ0

τ

)4/3
. (19)

The direct calculation based on Eq. (2) for free streaming
regime with the boost-invariant initial distribution f (rT ,pT ,θ )
(16), in which the evolution is described by the substi-
tution θ → θ (τ ) = arcsinh( τ

τ0
sinh(θ )), rT → rT (τ ) = rT −

pT

mT
(τ cosh(θ ) −

√
τ 2

0 + τ 2 sinh2(θ )) [21], gives

εFS(τ ) ∝ τ0

λτ

arccos
(

τ0
λτ

)√
1 − τ 2

0
λ2τ 2

+ τ 2
0

λ2τ 2
. (20)

Note that in Eq. (20) we use the equality arccos(x) =
iarccosh(x). It is easy to find that in the nonrelativistic analog
of boost-invariant free streaming the first term in Eq. (20)
∝ τ0

λτ
is associated with a decrease with time of the transverse

energy due to a reduction of particle number density because
of the collective longitudinal expansion (then a gain of the
particle number in some longitudinally small region is less
than a loss of it). The second term is related to a decrease
of the longitudinal contribution to the energy density due to
similar reasons. In the relativistic situation, when one cannot
split the particle energy into the sum of the longitudinal and
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FIG. 1. (Color online) The energy density distribution along axis
x (y = 0) in transverse plane for central rapidity slice at τ = τth =
1.0 fm/c for the following conditions of the relaxation evolution:
τ0 = 0.1 fm/c, the Gaussian initial transverse energy density pro-
file, λ = 1, EoS p = ε/3, τrel = 0.5 fm/c, and the target energy-
momentum tensor corresponds to ideal hydrodynamics.

transverse parts, such an interpretation of Eq. (20) is not so
exact.

It is easy to see that in the limited interval of τ , (τ0,τth),
the different terms in Eq. (20) can dominate depending on the
anisotropy parameter λ. At large λ the first term dominates, and
then at the same initial energy densities, εHM(τ0) = εFS(τ0),
the final energy density will be larger in the FS case [cf.
Eqs. (19) and (20)], while at fairly small λ the result will
be the opposite: εHM(τth) > εFS(τth). The simple calculation
with our parameters τ0 = 0.1 fm/c, τth = 1 fm/c shows that
εHM(τth) ≈ εFS(τth) for λ ≈ 1/3.

In Fig. 1 we present the energy densities for the relaxation
model in comparison with the hydrodynamic model and the
free streaming evolution for isotropic initial state, λ = 1, with
the equation of state p = ε/3. As one can see from Fig. 1,
the final (at the thermalization time τ = τth = 1 fm/c) energy
density in RM is in between the corresponding results for
HM (minimal values) and FS model (maximal values) cases.
These results are expected because the relaxation evolution
incorporates both HM and FS regimes, and the anisotropy
parameter is chosen to be λ = 1 > 1/3. Note that in any
anisotropic case, i.e., λ = 1, which we start to discuss, the
initial conditions for hydrodynamics at τ = τ0 = 0.1 fm/c are
taken in our analysis with the same initial energy density as at
the anisotropic distribution, εhyd = ε, but with symmetric pres-
sure phyd = c2

0ε, where c2
0 = 1/3 everywhere in our analysis

except for the specially defined cases. Figure 2 corresponds
to the anisotropic case with λ = 0.01, when the longitudinal
“effective temperature” λ‖ is much larger than the transverse
one, λ‖ > λ⊥. Again, the final energy densities at RM regime
reach intermediate values between the corresponding results
for HM and FS cases. However, since now λ < 1/3, the
smallest values of the energy are reached at FS regime and
the maximal ones at HM expansion. The detailed analysis of
the RM, HM, and FS regimes in the vicinity of the point λ =
1/3: λ = (0.25,0.45) demonstrates the changing of sequence
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FIG. 2. (Color online) The energy density distribution at τ =
τth = 1.0 fm/c under the same conditions as in Fig. 1, but with large
initial anisotropy, λ = 0.01.

for different regimes at τth; at the same time RM energy density
never coincides simultaneously with both HM and FS energy
densities. Also, a coincidence of the RM final energy density
with either the HM or the FS model one is accompanied
by different prethermal flows in the corresponding pair. In
Fig. 3 we compare the results of the relaxation model for the
initial distributions, which are isotropic, λ = 1, and strongly
anisotropic, λ = 0.01 and λ = 100, in momentum space. The
last case is associated typically with color glass condensate
(CGC) initial conditions [23]. One can see that at the same
initial densities at τ = 0.1 fm/c, the maximal energy density
at the thermalization time τ = 1 fm/c is reached for the case
with the smallest longitudinal pressure.

The situation with the transverse collective velocities
(Fig. 4) is not trivial even in the isotropic case, where the energy
density value in RM is in between the ones in the FS model
and HM. The reason is that there are two oppositely directed
factors which act simultaneously to the transverse gradient of
the hydrodynamic pressure that contributes to formation of
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FIG. 3. (Color online) The comparison of the results of the relax-
ation model for energy density distributions at τ = τth = 1.0 fm/c for
momentum isotropic, λ = 1, and very anisotropic, λ = 0.01, λ = 100
initial states under the same other conditions as in Fig. 1.
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FIG. 4. (Color online) The transverse velocity distribution at τ =
τth = 1.0 fm/c and λ = 1 under the same conditions as in Fig. 1.

the velocity field in the RM regime. On the one hand, harder
equation of state increases the gradient, but on the other hand,
the hard equation of state could reduce it since more energy
loss happens due to the fact that more work is done in the
longitudinal direction by the system contained in some rapidity
interval. We demonstrate such an interplay in Figs. 4, 5, and 6;
the maximal final velocities are reached at phyd = ε/3 in RM,
at phyd = 0.15ε in FS, and at phyd = 0.7ε in HM.

In Fig. 7 the transverse velocities for initially very
anisotropic states, λ = 0.01, are presented. As opposed to
the λ = 1 regime, at small λ < 1/3 the minimal prethermal
flow develops in the case of the FS regime and a maximal
flow in the HM one. The RM regime leads to an intermediate
result. One can see the influence of the anisotropy on the
RM results from Figs. 3 and 8, where it is found that the
energy densities and prethermal collective flows grow when
the anisotropy parameter λ increases. The reason is that the
increase of λ results in the decrease of the energy density loss
rate for the FS component during the boost-invariant expansion
[see Eq. (20) and discussion there]. As a result, the maximal
energy densities and transverse gradient of the FS component
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FIG. 5. (Color online) The transverse velocity distribution at τ =
τth = 1.0 fm/c under the same conditions as in Figs. 1 and 4 but softer
EoS: p = 0.15ε.
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FIG. 6. (Color online) The transverse velocity distribution at τ =
τth = 1.0 fm/c under the same conditions as in Figs. 1 and 4 but harder
EoS: p = 0.7ε.

are larger during the relaxation process when λ is larger. In its
turn the transverse gradient of particle or/and energy densities
define the transverse flow at free streaming process [21,25]: It
grows when the gradient increases.

To study how the rate of transition to hydrodynamics affects
the energy densities and transverse velocities at the starting
time of the hydrodynamic stage, we perform the simulations
for different values of τrel. The results are demonstrated in
Figs. 9 and 10 for λ = 1 where one can see that the final
transverse velocities are almost the same despite the different
slopes of the transition, whereas the energy densities are larger
if the rate of transition to hydrodynamics is smaller (τrel is
larger). Such a behavior in the initially symmetric case is due
to the free streaming regime, which dominates for longer time
at larger τrel. This also means that at λ = 1 > 1/3 the energy
density will be larger; cf. Eqs. (19) and (20). At the same time,
by comparing the energy densities and transverse velocities,
calculated in RM with τrel = 0.8 fm/c, that corresponds to
rather abrupt transition to hydrodynamics near the end of the
pre-equilibrium stage, with the ones calculated in FS (see
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FIG. 7. (Color online) The transverse velocity distribution at τ =
τth = 1.0 fm/c under the same conditions as in Figs. 1 and 4, but with
large initial anisotropy, λ = 0.01.
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FIG. 8. (Color online) The comparison of the results of the
relaxation model for transverse velocity distributions at τ = τth =
1.0 fm/c for isotropic, λ = 1, and very anisotropic, λ = 0.01,
λ = 100 initial states under the same other conditions as in Fig. 1.

Figs. 1 and 4), one can find noticeable differences in the
resulting energy density, which is smaller in RM than at the
free streaming regime with λ = 1. As a matter of fact, one
cannot get the free streaming regime in the relaxation model.

It is important to emphasize now that both FS and
HM regimes of expansions are not real limiting cases for
the system evolution from an initial nonequilibrated (NEQ)
state to a final equilibrated (EQ) one. At the same initial
energy density profile, for any allowed parameters (τ0,τth,
and τrel), such “limiting” energy-momentum tensors cannot
be reached. Formally, basic boundary equalities (6) prevent
such a possibility. The physical reason is that the structures of
the energy-momentum tensor are different for EQ and NEQ
states. As we have discussed above, both the final energy
density and transverse velocity profile in relaxation model do
not coincide simultaneously with analogous values reached at
FS or HM regimes, for any value of the anisotropy parameter
λ. In the particular case of isotropic initial state (λ = 1),
the energy-momentum tensor in the free streaming evolution
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FIG. 9. (Color online) The comparison of the energy density
distributions at different τrel = 0.2,0.5,0.8 fm/c under the same other
conditions as in Fig. 1.
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FIG. 10. (Color online) The comparison of the transverse veloc-
ity distributions at different τrel = 0.2,0.5,0.8 fm/c under the same
other conditions as in Figs. 1 and 4.

acquires specific (nonviscous) nonequilibrium structure with
the energy density higher than in the case of any continuous
transition to hydrodynamics demonstrated at Fig. 9. The reason
is that one cannot simply ignore the nondiagonal terms in the
energy-momentum tensor that are developing at free streaming
evolution [25] and diagonalize the tensor “suddenly” at,
say, τ = τth = 1 fm/c by using Landau matching conditions,
because then the energy-momentum conservation is violated.
Thereby, the continuous interpolation between arbitrarily
anisotropic initial state and hydrodynamical regime at some
later time, provided by the relaxation model, does not imply
“continuous interpolation” between the two “limiting” types
of the matter evolutions: free streaming and hydrodynamical.

Another important point, which we outline here, is the
initialization of viscous hydrodynamics by means of the relax-
ation model. The relaxation model equations (13) include
the Israel-Stewart viscous hydrodynamical formalism, and the
corresponding viscous hydrodynamic code [22] is modified to
solve the relaxation model equations. We keep bulk pressure
� = 0 everywhere during the evolution, by default use zero
initial values for the shear stress tensor, πμν(τ0) = 0, and
use anzatz for the relaxation time of the shear stress tensor,
τπ = 5η/(sT ). In the viscous case one also needs to specify
the temperature and entropy density from the equation of
state (EoS). Therefore, for the viscous case we always use
the EoS for a relativistic massless gas of quarks and gluons,
p = ε/3, which results in the following relation for energy
density:

ε =
(

7

4
glnf + gq

)
π2

30
T 4, (21)

where gl = 6 ang gq = 16 are quark and gluon degeneracy
factors, respectively, and we set the effective number of
quark degrees of freedom nf = 2.5. Equation (21) as well
assumes that the chemical potentials are zero. The entropy
density is then extracted using the thermodynamical relation
ε + p = T s. In the limiting Navier-Stokes case the fixed ratio
of shear viscosity to entropy density η/s = 0.1 is used. Also,
in this case we perform calculations with initially isotropic

FIG. 11. (Color online) The energy density distribution along
axis x (y = 0) in transverse plane for central rapidity slice at
τ = τth = 1.0 fm/c for the following conditions of the relaxation
evolution: τ0 = 0.1 fm/c, the Gaussian initial transverse energy
density profile, λ = 1, EoS p = ε/3, τrel = 0.5 fm/c, and the target
energy-momentum tensor corresponds to viscous hydrodynamics
with η/s = 0.1.

momentum space distribution, λ = 1. The results of RM are
compared with the results of HM with initial shear viscous
tensor πμν(τ0) = 0 and with results of HM with initial shear
viscous tensor equal to its limiting Navier-Stokes (NS) form,
πμν(τ0) = π

μν
NS . The results are shown in Figs. 11 and 12,

where the free streaming model calculations are added for
comparison. The results of the relaxation model with zero
viscous initial conditions are qualitatively similar to the results
obtained in the relaxation model with the ideal fluid; for
example, one can see from these figures that the relaxation
model results in lower energy density in the center of the
system and in higher transverse velocities as compared to the
free streaming model. In the case of nonzero initial viscosity
contribution at τ = τ0 (NS limit), the final energy density in
such a model is larger than in the relaxation model.

Finally we demonstrate that the viscous relaxation model,
unlike “anisotropic hydrodynamics,” can be used not only

FIG. 12. (Color online) The transverse velocity distribution at
τ = τth = 1.0 fm/c under the same conditions as in Fig. 11.
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for smooth initial energy density profiles but also for bumpy
anisotropic initial distributions at τ = τ0. The set of such
bumpy individual samples is used in event-by-event hydro-
dynamic analysis. To avoid misunderstanding, note that our
aim here is not analysis which of the models (MC-Glauber,
MC-KLN, or IP-Glasma) is more realistic for a data description
(for this aim one needs to utilize a large number of individual
samples and describe hadron momentum spectra and their
vn coefficients), but only the demonstration of capabilities of
the relaxation model. Thus, we pick randomly one particular
(fluctuating) event corresponding to 20–30% central Pb+Pb
collision at LHC energy generated with the GLISSANDO
generator [26]. The generator calculates the spatial distribution
of sources, which fluctuates according to the statistical nature
of the distributions of nucleons in the colliding nuclei,
according to the Monte Carlo Glauber model. The transverse
coordinates of the sources correspond to either the centers of
the wounded nucleons or the centers of the binary collisions
of nucleons in colliding nuclei. The corresponding relative
deposited strength (RDS) of each source is (1 − α)/2 if the
source comes from a wounded nucleon or α if it comes from
a binary collision. We use the default value α = 0.14.

One needs initial conditions, which are averaged within
each cell, as a numerical input for the hydrodynamic or
relaxation model. In order to get them, one can use one of
standard outputs of GLISSANDO, which is a 2D histogram
filled with RDS of all sources in the transverse plane. The
default value of the bin size of the histogram is sGL = 0.4 fm.
Formally it is similar to the coarse-graining procedure which is
the basis of any macroscopic description (say, hydrodynamic)
of a microscopic system. In fact, each hydrodynamic initial
condition corresponds to many microscopic initial states
with almost the same densities associated with the selected
scale.3 So, if one wants to associate the single GLISSANDO
event with further hydrodynamic evolution, the corresponding
energy density distribution cannot be very inhomogeneous.
Also, it is known that the viscosity parameters are related
directly to the coarse-grained scale [27]. At too small scales,
the inhomogeneity of the medium can be so large (tends to the
pointlike one in the limiting case) that viscous hydrodynamics
loses its applicability. To address this question we compare
the results obtained for the (nonsmeared) initial distribution
described above with the results calculated for a smeared
initial distribution. For the latter, we increase the bin size of the
histogram from the default one, sGL = 0.4 fm, to sGL = 0.7 fm.
To get the smeared initial distribution, we also distribute
the energy from every individual cell to the transverse area
centered around it, according to a Gaussian profile with a
radius σ = 0.5 fm. The nonsmeared energy density profile,
produced by GLISSANDO generator in the randomly selected
single event, is demonstrated in Fig. 13 in comparison with
the smeared one. Note that both bumpy initial distributions,
original and smeared ones, are normalized to the same mean

3In fact, one has to deal with subensembles of GLISSANDO
events having close initial density distributions. Then hydrodynamics
describes the behavior of the mean (macroscopic) quantities in such
a subensemble.
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FIG. 13. (Color online) The initial transverse distribution at τ =
τ0 = 0.1 fm/c of the energy density along the x axis (y = 0) for the
random single event produced by the GLISSANDO generator within
Monte Carlo Glauber model. Smoothed distribution is shown by the
dashed line.

value ε̄0 = 1000 GeV/fm3 of the energy density averaged in
transverse plane within the central square with side 4 fm.
We use both nonsmeared and smeared profiles instead of the
Gaussian one (15) in Eq. (16). Then, using the original and
smeared rT profiles, the corresponding initial phase-space
densities f (x,p), as well as the initial energy-momentum
tensors, can be defined on an event-by-event basis. The results
of the relaxation model for the randomly selected single
event with corresponding initial energy density distributions
in Fig. 13 are presented in Figs. 14 and 15 for the case of
relatively large viscosity parameter, η/s = 0.25, and λ = 1.
One can see the different level of inhomogeneity of initial
conditions for hydrodynamics at τth = 1 fm/c with smeared
and nonsmeared initial states at τ = τ0.
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FIG. 14. (Color online) The final energy density distribution
along axis x (y = 0) in transverse plane for central rapidity slice
at τ = τth = 1.0 fm/c for GLISSANDO original and smeared initial
energy density profiles shown in Fig. 13. The following conditions of
the relaxation evolution are used: τ0 = 0.1 fm/c, λ = 1, EoS p = ε/3,
τrel = 0.5 fm/c, and the target energy-momentum tensor corresponds
to viscous hydrodynamics with η/s = 0.25.
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FIG. 15. (Color online) The transverse velocity distribution for
GLISSANDO original and smeared initial energy density profiles at
τ = τth = 1.0 fm/c under the same conditions as in Fig. 14.

Simulations of A + A collisions require initialization of the
relaxation transport model for many such fluctuating initial
states. The statistically relevant number of such events is
of the order of event number N that saturates the average
value of initial conditions at τ0. It is worth noting that for the
GLISSANDO event generator N ≈ 1000. Calculation in the
relaxation transport model of a single event, that includes also
evaluation of the source term T

μν
free(x)∂;μP(τ ) in Eq. (13), takes

about 4 h at one processor core. So, with parallel calculations
(100 processors) the total time for event-by-event analysis of
relativistic heavy ion collisions takes about one or two days.

The dependence of the hadron spectra and vn on the coarse-
graining scale as well as connection between the scale and
viscous parameters is the separate important topic which is
beyond the scope of the present paper.

IV. SUMMARY

A reliable analysis of the properties of quark-gluon plasma
and initial state of matter formed in relativistic heavy ion
collisions requires the knowledge of the prethermal dynamics
of the collisions that leads to thermalization of the system and
its further hydrodynamic evolution. However, until now there
has been no fully satisfactory framework to address dynamical
aspects of isotropization and thermalization in nucleus-nucleus
collisions. Hence a consistent match of a nonequilibrium initial
state of matter with hydrodynamic approximation in such
collisions remains an open question.

We have presented the results for hydrodynamical initial
conditions obtained with the simulations of pre-equilibrium
relaxation dynamics in the energy-momentum transport phe-
nomenological model that was proposed in Ref. [20]. Unlike
the anisotropic hydrodynamics approach [15], where the
artificial concept of “anisotropic equilibrium” based on 0 + 1
dimensional kinetics for specific class of anisotropy is utilized
instead of Gibbs relations to close the system of evolutionary
equations, this model does not have any additional assumptions
and therefore can be applied for systems which are arbitrary
anisotropic in momentum space as well as inhomogeneous
in transverse plane. The latter is particularly important for

the event-by-event hydrodynamical modeling of relativistic
heavy ion collisions. We have calculated the initial conditions
for the hydrodynamical evolution using initial states which
can be initially isotropic or anisotropic in momentum space.
The dependence of the target thermal state on the rates of
conversion to hydrodynamical regime and different equations
of state is presented as well. It allows us to study the
influence of peculiarities of early initial state as well as pre-
equilibrium dynamics on the energy densities and collective
transverse velocities at the starting time of the hydrodynamical
evolution.

In particular it is found that, with the same initial energy
density, both final energy densities and prethermal transverse
collective flows increase when the anisotropy parameter, the
ratio of transverse pressure to longitudinal one, increases.
Therefore, the highest hydrodynamical energy densities and
transverse velocities at thermalization time are reached at
initial zero longitudinal pressure, that corresponds the CGC-
like initial state. Also, we found that for any relaxation time
and initial momentum anisotropy, both the final energy density
and transverse velocity profile in the relaxation model never
coincide simultaneously with analogous values reached in
the hydrodynamic model or at the free streaming regime.
Therefore, continuous relaxation dynamics from an initially
nonequilibrium state to an (almost) equilibrium one cannot be
properly approximated by the free streaming or hydrodynamic
regime. The commonly used prescription of sudden thermal-
ization of the free streaming prethermal evolution results in
discontinuity in the energy-momentum tensor, which for free
streaming has specific (nonviscous) nonequilibrium structure.
This results in a breakdown of the energy and momentum
conservation laws.

The peculiarities of the prethermal evolution also depend on
the equation of state for the hydrodynamic component of the
system. The two oppositely directed factors act simultaneously
to the transverse gradient of the hydrodynamic pressure that
contributes to formation of the transverse velocity field at
relaxation evolution. On the one hand, harder equation of state
increases the gradient, but on the other hand, the hard equation
of state could reduce it since more energy loss happens due
to more work is done in longitudinal direction by the system
contained in some rapidity interval. As a result, the maximal
transverse velocities are reached for isotropic initial state in
the following cases: for a soft equation of state (EoS) at the
free streaming evolution, for an ultrahard EoS at the pure
hydrodynamic expansion, and for an intermediate EoS for the
relaxation evolution.

The developed relaxation model is also applied for the
situations when the prethermal system relaxes to a close-to-
equilibrium state described by viscous hydrodynamics. It is
demonstrated that the viscous relaxation model can be utilized
even with rather bumpy initial states, which allows one to use
the model as a component of hydrodynamical event-by-event
analysis.

The physically clear explanations of the results allow one
to conjecture that although the presented results are model
dependent, it is plausible to assume that they reproduce general
properties of the pre-equilibrium dynamics for anisotropic
initial momentum distributions.
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