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We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions
of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact
analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and
the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used
as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma
formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-
analytic solutions with the corresponding numerical solutions obtained using the MUSIC viscous hydrodynamics
simulation code.
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I. INTRODUCTION

Our current understanding of the novel properties displayed
by the quark-gluon plasma (QGP) formed in ultrarelativistic
heavy ion collisions [1] relies heavily on solving relativistic
dissipative fluid dynamics [2,3]. The equations of relativistic
fluid dynamics form a set of complicated nonlinear partial
differential equations, describing the conservation of energy-
momentum and a conserved charge (such as net baryon
number),

∂μT μν = 0, ∂μNμ = 0.

In the presence of dissipation, the above equations are not
closed and have to be supplemented by nine additional
equations of motion, i.e., the time evolution equations for
the the bulk viscous pressure, heat flow, and shear-stress
tensor.

The simplest formulation of relativistic dissipative fluid
dynamics are the Navier-Stokes equations. However, due to
instabilities and acausal signal propagation in these equa-
tions [4], they are not usually used in numerical simulations.
Currently, most fluid-dynamical simulations of the QGP
employ the relaxation-type equations derived by Israel and
Stewart [5] to close the conservation laws. While some analytic
solutions of the non-relativistic Navier-Stokes equations are
widely known [6], very few analytical (or semi-analytical)
solutions of relativistic fluid dynamics [7–10] have been
obtained and most simulations of heavy ion collisions solve
dissipative fluid dynamics numerically. Clearly, it would be
useful to have solutions of Israel-Stewart theory in any
limit, especially in the cases relevant to heavy ion collision
applications.

In Refs. [11,12], Gubser and Yarom derived
SO(3) ⊗ SO(1,1) ⊗ Z2 invariant solutions of ideal relativistic
conformal fluid dynamics and relativistic Navier-Stokes
theory. In this paper we use the same symmetry arguments
to derive solutions of Israel-Stewart theory, which can be
relevant to the description of a conformal QGP. Like the
well known Bjorken solution [7], the fluid dynamic variables

in the dissipative solutions we obtain are invariant under
Lorentz boosts in one direction, which is a symmetry that
seems to be (approximately) satisfied in heavy ion collisions
near mid-rapidity. However, unlike the Bjorken solution, the
solutions discussed here also have nontrivial (transverse)
radial expansion.

Thus, the solutions found in this paper provide the most
rigorous tests to date for the current numerical algorithms
used to solve the viscous relativistic fluid dynamic equations
in heavy ion collisions. We show this explicitly by com-
paring multi-dimensional numerical solutions obtained using
MUSIC, a 3+1-dimensional (3+1D) viscous hydrodynamics
simulation code [13], with the analytical and semi-analytical
solutions of Israel-Stewart-like theories undergoing Gubser
flow. We remark that the version of MUSIC employed in this
work is an updated version currently being maintained at
McGill University.

This paper is organized as follows. In the next section
we briefly introduce the equations of relativistic dissipative
fluid dynamics and describe the solution for the flow velocity
obtained by Gubser. In Sec. III we derive the main results of
this paper and solve the equations of motion of Israel-Stewart
theory undergoing Gubser flow. We show in Sec. IV how
these solutions can be used to test numerical simulations of
relativistic fluid dynamics. We conclude with a summary of
our results.

II. HYDRODYNAMICS FOR HEAVY ION COLLISIONS
AND GUBSER FLOW

In ultra-relativistic heavy ion applications, relativistic fluid
dynamics is more naturally described in hyperbolic coordi-
nates xμ = (τ,r,φ,ξ ) where the line element is ds2 = −dτ 2 +
dr 2 + r2dφ2 + τ 2dξ 2,r =

√
x2 + y2, and φ parametrize the

transverse plane perpendicular to the beam direction, while
τ = √

t2 − z2 and the rapidity ξ = 1/2 × ln[(t + z)/(t − z)]
are given in terms of usual coordinates t and the beam
direction z.
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The minimum set of relaxation-type equations for a viscous
conformal fluid is [14]

DτT

T
+ 1

3
∇αuα + πμνσ

μν

3sT
= 0 , (1)


μ
α∇αT

T
+ Dτu

μ + 
μ
ν ∇απαν

sT
= 0 , (2)

τR

sT

(

μ

α
ν
β Dτπ

αβ + 4

3
πμν∇αuα

)
+ πμν

sT
= −2η

s

σμν

T
,

(3)

where ∇μ is the space-time covariant derivative, T is the local
temperature, uμ is the four-velocity of the fluid (uμuμ = −1),
and πμν is the shear-stress tensor. We use natural units
� = c = kB = 1. The metric tensor in flat space-time is
gμν = diag (−, + , + ,+). We further introduced the entropy
density s ∼ T 3, the shear viscosity coefficient η, the shear
relaxation time τR , the spatial projector 
μν ≡ gμν + uμuν ,
the comoving derivative Dτ ≡ uλ∇λ, and the shear tensor
σμν ≡ 
μναβ∇αuβ , with 
μναβ ≡ (
μα
νβ + 
μβ
να)/2 −

μν
αβ/3 being the double, symmetric, traceless projection
operator. Even though other terms can be included in the
dynamical equation for the shear-stress tensor [14,15], for
simplicity in this paper we consider only the terms present
in (3).

Equation (3) contains two transport coefficients, η and
τR . In a conformal fluid, the shear viscosity coefficient is
always proportional to the entropy density, η ∼ s, while the
shear relaxation time must be proportional to the inverse of
the temperature, τR ∼ 1/T . Without loss of generality, the
relaxation time is parametrized as

τR = c
η

T s
, (4)

where c is a constant.
We shall consider here the case in which the dynamics

is boost invariant and the flow is radially symmetric, i.e.,
T = T (τ,r) and πμν = πμν(τ,r). These conditions are ap-
proximately met near mid-rapidity in ultracentral collisions
at the Large Hadron Collider (LHC), recently measured by
the ATLAS and CMS Collaborations [16,17]. In order to
obtain analytical solutions, we will follow [11] and further
assume that the conformal fluid flow is actually invariant
under SO(3) ⊗ SO(1,1) ⊗ Z2. The SO(3) piece is a subgroup
of the SO(4,2) conformal group which describes the symmetry
of the solution under rotations around the beam axis and
two operations constructed using special conformal transfor-
mations that replace translation invariance in the transverse
plane. For more details regarding the generators of the SO(3)
symmetry group of this solution, see Ref. [11]. The Z2 piece
stands for invariance under ξ → −ξ , while SO(1,1) denotes
invariance under boosts along the beam axis. In this case,
the dynamical variables depend on τ and r through the
dimensionless combination [11,12]

ρ = sinh−1

(
− 1 − τ̃ 2 + r̃2

2τ̃

)
, (5)

where τ̃ ≡ qτ and r̃ = qr , with q being an arbitrary inverse-
length scale. Without loss of generality, we set q = 1 fm−1

when solving the fluid-dynamical equations. Furthermore, the
flow is completely determined by symmetry constraints to
be [11,12]

uτ = − cosh

[
tanh−1

(
2τ̃ r̃

1 + τ̃ 2 + r̃2

)]
,

ur = sinh

[
tanh−1

(
2τ̃ r̃

1 + τ̃ 2 + r̃2

)]
, (6)

uφ = uξ = 0 .

In the following, this solution will be referred to as Gubser flow.
Since the flow is known, the relativistic Euler equation (2)
is automatically satisfied and, thus, only the equations for
the temperature (1) and the shear-stress tensor (3) need to
be solved.

In order to solve the remaining equations, it is convenient
to go to a different coordinate system in which the flow
velocity is zero. For this purpose, one must first perform a
Weyl rescaling of the metric, ds2 → dŝ2 ≡ ds2/τ 2, which
is the metric in dS3 ⊗ R, with dS3 corresponding to the
three-dimensional de Sitter space. Then one can implement
the coordinate transformation introduced in [12],

sinh ρ = −1 − τ̃ 2 + r̃2

2τ̃
, tan θ = 2r̃

1 + τ̃ 2 − r̃2
, (7)

which takes dŝ2 to dŝ2 = −dρ2 + cosh2 ρ dθ2 +
cosh2 ρ sin2 θ dφ2 + dξ 2. In this coordinate system the
fluid is at rest and, consequently, the equations of motion
for ε and πμν considerably simplify, making it possible to
find analytical and semi-analytical solutions of Israel-Stewart
theory.

In the following, we denote all fluid-dynamical variables
in this new coordinate system with a hat (circumflex). As
mentioned, such generalized de Sitter coordinate is extremely
convenient since it leads to a static velocity profile, i.e.,
ûμ = (−1,0,0,0), and considerably simplifies the calculations.
As already mentioned, the fields are only functions of ρ, i.e,
T̂ = T̂ (ρ) and π̂μν = π̂μν(ρ). Because of the metric rescal-
ing and the coordinate transformation xμ = (τ,r,φ,ξ ) →
x̂μ(ρ,θ,φ,ξ ), the dimensionless dynamical variables in dS3 ⊗
R are related to those in hyperbolic coordinates as follows:

uμ(τ,r) = τ
∂x̂ν

∂xμ
ûν , (8)

T (τ,r) = T̂

τ
, (9)

πμν(τ,r) = 1

τ 2

∂x̂α

∂xμ

∂x̂β

∂xν
π̂αβ . (10)

The factors of τ in the transformation rules above come from
the known properties of these fields under Weyl transfor-
mations [12]. For instance, since πμν → �2πμν under Weyl
rescaling gμν → �−2 gμν with � = τ , there is a factor of
1/τ 2 in (10). Given the dictionary between the fields in the
different spaces shown above, one can solve the Eqs. (1)
and (3) in dS3 ⊗ R where the fluid is static and the fields
are homogeneous (i.e., they only depend on the de Sitter time
coordinate ρ) and plug in the solutions to find the fields in the
standard flat space-time. This is the general strategy that we
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shall follow below to find solutions for the viscous relativistic
fluid defined above.

We emphasize that the Gubser flow solution described so
far does assume symmetries that are not strictly present in
realistic ultracentral heavy ion collisions, such as conformal
symmetry. Despite this fact, it can still be useful to understand
the solutions of relativistic fluid dynamics on a qualitative
level and also, as will be shown in this paper, to test numerical
simulations of relativistic fluid dynamics in a setting similar
to that created in a heavy ion collision.

III. ISRAEL-STEWART THEORY

In this section we derive for the first time the solutions
of Israel-Stewart theory in the Gubser flow regime. These
solutions shall be later compared to numerical simulations
of fluid dynamics. It is straightforward to work out the
equations of motion for T̂ (ρ) and π̂μ

ν (ρ) in the generalized
de Sitter coordinates. First, note that orthogonality to the flow
gives π̂μ

ρ = 0 (where μ = ρ,θ,φ,ξ ) while the tracelessness

condition imposes π̂
ξ
ξ = −π̂ θ

θ − π̂
φ
φ . Since the only nonzero

components of the shear tensor are σ̂
ξ
ξ = −2 tanh ρ/3,σ̂ θ

θ =
σ̂

φ
φ = tanh ρ/3, each one of the of-diagonal terms of the π̂μ

ν

tensor follows an independent, first-order linear homogeneous
equation and we set their initial conditions to zero (thus,
they do not contribute to the dynamics). One can show
that π̂ θ

θ and π̂
φ
φ obey the same differential equations and,

since we impose the same initial conditions for these fields,
π̂

ξ
ξ = −2π̂ θ

θ = −2π̂
φ
φ . We then find that the only nontrivial

nonlinear equations of motion are

1

T̂

dT̂

dρ
+ 2

3
tanh ρ = 1

3
π̄

ξ
ξ (ρ) tanh ρ , (11)

c

T̂

η

s

[
dπ̄

ξ
ξ

dρ
+ 4

3

(
π̄

ξ
ξ

)2
tanh ρ

]
+ π̄

ξ
ξ = 4

3

η

sT̂
tanh ρ , (12)

where π̄
ξ
ξ ≡ π̂

ξ
ξ /(T̂ ŝ). This variable is convenient since it is

invariant under Weyl transformations. In order to derive the
equations above we used that ∇̂αûα = 2 tanh ρ.

Note that for any nonzero τ , the value of ρ decreases with
r , while for a fixed r the value of ρ increases with τ . Thus,
when ρ � 0 one probes regions in which r 	 1, and when
ρ 	 1 one has τ 	 1. In this sense, we expect that physically
meaningful solutions behave as limρ→±∞ T̂ (ρ) = 0, i.e., at an
infinite radius or time the temperature should go to zero. On
the other hand, given the definition of π̄

ξ
ξ , it is consistent to

have limρ→±∞ π̄
ξ
ξ (ρ) finite and nonzero (π̄ ξ

ξ is a ratio between
two quantities that should vanish when ρ → ±∞).

In the ideal fluid limit π̄
ξ
ξ = 0 and we have only a single

equation left over for the temperature. The analytical solution
is the one found in [11,12],

T̂ideal(ρ) = T̂0

cosh2/3 ρ
, (13)

where T̂0 ≡ T̂ideal(0) is a positive constant (so then T̂ideal is
positive-definite). Using the dictionary in (9), we see that the

temperature in the original hyperbolic coordinates is given by

Tideal(τ,r) = T̂0(2qτ )2/3

τ [1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2]1/3
, (14)

and, at the time τ0 = 1/q, one finds Tideal(τ0,0) = T̂0 q.
The relativistic Navier-Stokes approximation to our set

of equations consists in setting the relaxation time to zero,
i.e., τR = 0, while keeping η/s nonzero in (12). In this case,
π̄

ξ
ξ (ρ) = 4/(3T̂ ) × (η/s) tanh ρ and the equation of motion for

T̂ becomes

d

dρ
T̂ + 2

3
T̂ tanh ρ = 4

9

η

s
(tanh ρ)2.

The analytical solution, previously found in [11,12], is

T̂NS(ρ) = T̂0

cosh2/3 ρ
+ 4

27

η

s

sinh3 ρ

cosh2/3 ρ

× 2F1

(
3

2
;

7

6
;

5

2
; − sinh2 ρ

)
, (15)

where 2F1 is a hypergeometric function. From the equation
of motion, the condition limρ→±∞ T̂ ′

NS(ρ) = 0 shows that
limρ→±∞ T̂NS(ρ) = ±2η/3s [11,12]. In this case, once η/s �=
0, for any given τ there is always a value of r beyond which
the temperature switches sign and becomes negative (which is
very different than the ideal case in which limρ→±∞ T̂ideal = 0).
This effect may be connected with the well known causality
issue (see, for instance, [18,19]) of the relativistic Navier-
Stokes equations. We shall see below that once the relaxation
time coefficient is taken into account one can find a solution
where T̂ is positive-definite and limρ→−∞ T̂ (ρ) = 0.

Obtaining solutions of Israel-Stewart theory is more
evolved, since the relaxation time in Eq. (12) cannot be set
to zero, i.e., τR �= 0. In this case π̄

ξ
ξ obeys a differential

equation (which requires an independent initial condition)
and the set of equations becomes nonlinear. At the very
least, it is possible to find one qualitative difference between
the asymptotic solutions (limρ→±∞) of Navier-Stokes and
Israel-Stewart theories. If one imposes that limρ→±∞ T̂ (ρ) =
0 and, simultaneously, limρ→±∞ dπ̄

ξ
ξ (ρ)/dρ = 0, one can find

the asymptotic solution for π̄
ξ
ξ (ρ), limρ→±∞ |π̄ ξ

ξ (ρ)| = √
1/c

[note that the parameter c appeared in the definition of
the relaxation time; see Eq. (4)]. Therefore, in contrast to
Navier-Stokes theory, solutions in which limρ→±∞ T̂ (ρ) = 0
are possible in Israel-Stewart theory and do happen in practice
as long as τR is nonzero.

There is a limit in which one can find analytical solutions for
T̂ and π̄

ξ
ξ . This becomes possible when the fluid is very viscous

or when the temperature is very small, i.e., when η/(sT̂ ) 	 1.
In this case, called here the cold plasma limit, the term π̄

ξ
ξ

becomes negligible in comparison to all the other terms in
Eq. (12), which are all linear in η/(sT̂ ). In this limit, one can
directly solve the equation for π̄

ξ
ξ to find

π̄
ξ
ξ (ρ) =

√
1

c
tanh

[√
1

c

(
4

3
ln cosh ρ − π̄0c

)]
, (16)
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(a) (b)

FIG. 1. (Color online) Comparison between the solutions for T̂ (left panel) and π̄
ξ
ξ (right panel) for η/s = 0.2,c = 5, and T̂ (0) = 1.2

found using different versions of the relativistic fluid equations. The solid black lines denote solutions of Israel-Stewart theory, results from
relativistic Navier-Stokes theory are in dashed blue, while the dashed-dotted red curves correspond to the ideal fluid case.

where π̄0 is a constant and, substituting this into Eq. (11), we
obtain

T̂ (ρ) = T̂1
exp(cπ̄0/2)

(cosh ρ)2/3
cosh1/4

[√
1

c

(
4

3
ln cosh ρ − π̄0c

)]
.

(17)

where T̂1 is a constant. These analytical solutions are even
in ρ,T̂ is positive-definite, and limρ→±∞ T̂ (ρ) = 0 if 4c > 1.
Moreover, note that as long as c > 1,π̄

ξ
ξ is always smaller

than 1 for any value of ρ, i.e, the dissipative correction to
the energy-momentum tensor is always smaller than the ideal
fluid contribution. In the next section, the analytical solutions
in Eqs. (16) and (17) will be compared to numerical solutions
of fluid dynamics obtained with MUSIC.

We show in Fig. 1 a comparison between T̂ and π̄
ξ
ξ

computed for an ideal fluid, Navier-Stokes theory, and Israel-
Stewart theory for η/s = 0.2, which is a value in the ballpark
of that normally used in hydrodynamic simulations of the
QGP in heavy ion collisions [20], and c = 5, which is the
typical value obtained from approximations of the Boltzmann
equation [21–23]. The equation of state employed is that of an
ideal gas of massless quarks and gluons,

ε = 3

[
2
(
N2

C − 1
) + 7

2
NCNF

]
π2

90
T 4 ,

where NC = 3 and NF = 2.5. We have chosen the initial
conditions for the equations such that T̂ (0) = 1.2, for all
the cases, and, for the Israel-Stewart case, π̄

ξ
ξ (0) = 0. We

solve Eqs. (11) and (12) numerically using MATHEMATICA’s
NDSolve subroutine. The Israel-Stewart theory results are
shown in solid black, the Navier-Stokes results in dashed blue,
and the ideal fluid result in the dashed-dotted red curve. One
can see that the Israel-Stewart solution for T̂ is positive-definite
and limρ→±∞ T̂ (ρ) = 0. Moreover, viscous effects break the
parity of the solutions with respect to ρ → −ρ. Note that,
as mentioned before, π̄

ξ
ξ goes to

√
1/c when ρ → ±∞ in

Israel-Stewart theory while for the Navier-Stokes solution this
quantity diverges at ρ ≈ −4.19, which is the value of ρ at
which T̂NS = 0. We also checked that the analytical limit
in Eqs. (16) and (17) matches the numerical solution for
η/s = 1/(4π ) [24] and c = 5 when T̂ (0) � 0.001, i.e., when
the temperature is extremely small.

In order to study the space-time dependence of the
Israel-Stewart solutions we define q = 1 fm−1 so that ρ = 0
corresponds to τ = 1 fm and r = 0. Therefore, in standard
hyperbolic coordinates, T (r = 0,τ 0 = 1 fm) = 1.2 fm−1 and
π̄

ξ
ξ (r = 0,τ 0 = 1 fm) = 0. In Fig. 2 we show a comparison

between the temperature profiles for Israel-Stewart theory at
the times τ = 1.2,1.5,2 fm, with η/s = 0.2,c = 5. Also, in
the same figure we show τ 2πξξ as a function of the radius
for the same times. The other components of the shear-stress
tensor can be obtained using the dictionary in Eq. (10).

Note that the system is expanding in the transverse plane. It
appears to be imploding because of the energy flowing out in
the longitudinal direction. A larger viscosity might change this
effect quantitatively, but the qualitatively features will remain
the same.

A. Entropy production in Israel-Stewart theory
under Gubser flow

It is useful to discuss the entropy production in Israel-
Stewart theory when the conformal fluid described is in the
Gubser flow regime. First of all, it is important to note that
in Israel-Stewart theory the thermodynamic entropy, obtained
from the equation of state, i.e., s(T ) = (ε + P )/T , does not
satisfy the second law of thermodynamics. As a matter of
fact, Israel-Stewart theory is (phenomenologically) derived by
generalizing the thermodynamic entropy so that the second
law of thermodynamics is satisfied and, simultaneously, fluid-
dynamical equations of motion that are causal and stable are
obtained. In this approach, the entropy density and current can
only be obtained approximately, up to a certain order in powers
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(a) (b)

FIG. 2. (Color online) Temperature and τ 2πξξ profiles in Israel-Stewart theory for τ = 1.2 fm (solid black curves), τ = 1.5 fm (dashed
blue curves), and τ = 2 fm (dashed-dotted red curves) with q = 1 fm−1,η/s = 0.2,c = 5, and T̂ (0) = 1.2.

of the shear-stress tensor (and other dissipative currents, if they
are present). Up to second order in πμν , the generalized entropy
current reads [5]

Sμ = suμ − τπ

4ηT
uμπαβπαβ + O(3) , (18)

where O(3) denotes terms of third order in the dissipative
currents. The nonequilibrium entropy density is obtained from
Sμ as usual:

sneq = −uμSμ = s − τπ

4ηT
παβπαβ + O(3) . (19)

Note that here we did not consider contributions that arise from
bulk viscous pressure and heat flow. The complete expansion
can be found in, e.g., Ref. [5]. Also, a complete expression for
the entropy current up to third order in gradients was derived
in Ref. [25]. Note that, in contrast to Navier-Stokes theory,
the entropy production in Israel-Stewart theory is not linearly
proportional to the shear viscosity coefficient.

Using the fluid-dynamical equations described in the
previous sections, Eqs. (1), (2), and (3), one can show that,
up to fourth order in powers of the shear-stress tensor, the
entropy production is a positive-definite quadratic function of
the dissipative currents,

∂μSμ = 1

2ηT
πμνπ

μν − 25

12T (ε + P )2
παβπαβπμνσ

μν

= 1

2ηT
πμνπ

μν + O(4). (20)

Obviously this is only true since the temperature and shear
viscosity are positive-definite quantities (as already discussed,
negative temperatures do not appear in solutions of Israel-
Stewart theory). When Israel-Stewart theory breaks down,
the O(4) term in the equation above is not necessarily
negligible and the entropy production is no longer guaranteed
to be positive. We will see later that this can happen in the
Israel-Stewart theory solutions presented in this paper when
the value of ρ becomes very negative, i.e., at early times
and/or large radius. In these regions, one should not trust the

fluid-dynamical solutions, even though they can still be used
for other purposes, such as testing codes.

In Fig. 3(a) we plot the generalized entropy current
multiplied by τruτ as a function of the radius, r . We multiply
the entropy density by the relevant phase space factors r × τ
and by the gamma factor uτ (the factor τ is taken out from
the integration in the longitudinal direction, which should be
made in τξ and not just ξ ). Due to the symmetries assumed
when deriving the Gubser flow solution, s and uτ are constant
in φ and ξ and, hence, the integration in these variables is
trivial. Thus, the total entropy is proportional to the area under
the curves in Fig. 3(a).

In Fig. 3(b), we further show the entropy production, Q =
πμνπ

μν/(2ηT ), as a function of the radius, for several time
steps. One can see that the entropy production in Gubser flow
solutions is not very large, even though the system is far away
from the Navier-Stokes regime. In Fig. 3(c), we show the total
entropy production of the theory Qtotal = πμνπ

μν/(2ηT ) −
25παβπαβπμνσ

μν/[12T (ε + P )2], which does not neglect the
term of order 4, as is usually done in Israel-Stewart theory.
We see that the order-4 term is not necessarily small and does
affect the entropy production significantly. At late times and
small values of radius, it appears as just a correction. However,
at early times and large radius, the O(4) term is large and can
even drive the entropy production term to negative values. For
example, when τ = 1 fm, the entropy production becomes
negative when r � 3.5. On the other hand, at τ = 2 fm, the
entropy production is always positive between r = 0 and 5 fm.
We note that, at any time, there will always be a value of the
radius for which the entropy production becomes negative.
The larger the time, the larger this value of radius will be.

Note that, even though 1 fm of time evolution might
appear to be small, in Gubser flow solutions it is enough
time for the energy density in the center of the system to
decrease by a factor 16 (and for the temperature to decrease
by a factor 2). So we consider that the time interval chosen,
even though apparently small when compared to evolution
times in heavy ion collisions, is more than enough for the
purposes of the paper. Note that such rapid expansion is a
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(a) (b)

(c)

FIG. 3. (Color online) τruτ sneq, entropy production up to second order, Q, and total entropy production, Qtotal, profiles as a function of the
radius in Israel-Stewart theory for τ = 1 fm (solid black curves), τ = 1.5 fm (dashed blue curves), and τ = 2 fm (dashed-dotted red curves).

feature of conformal symmetry and may not be present in
realistic simulations of heavy ion collisions. For this reason,
we do not think that additional time steps are needed. For the
comparison with numerical simulations, performed in the next
sections, running additional time steps would be numerically
(extremely) expensive and the addition of such plots would
not change the conclusions of this paper.

IV. TESTING FLUID DYNAMICS

While there are analytical and semi-analytical solutions
of relativistic ideal fluid dynamics [7–10], the same is not
the case for Israel-Stewart theory. This makes testing numer-
ical algorithms that solve the equations of relativistic fluid
dynamics rather problematic. Procedures such as fixing the
numerical viscosity, choosing appropriate parameters for flux
limiters, etc., which strongly rely on trial and error, become
then highly nontrivial. Furthermore, most algorithms used to
numerically solve the equations of Israel-Stewart theory were
not developed for this purpose: they were developed to solve
conservation laws or even Navier-Stokes theory, usually in the

nonrelativistic limit. In practice, most simulation codes used
in heavy ion collisions have to adapt such algorithms to also
solve Israel-Stewart theory. In this sense, the set of parameters
that were found optimal to solve certain problems in the
nonrelativistic regime, such as the Riemann problem [26],
might not be optimal to solve Israel-Stewart theory in the
conditions produced in heavy ion collisions.

In this section, we compare numerical solutions of dis-
sipative fluid dynamics obtained via the Kurganov-Tadmor
(KT) algorithm [27] using MUSIC [13], with semi-analytical
solutions of (conformal) Israel-Stewart theory in the Gubser
flow scenario. We show how this can be used to probe not
only the quality and accuracy of the dynamical simulation
but also to find the optimal value for some of the (numerical)
parameters that exist in the algorithm.

In the standard version of MUSIC, the evolution equations
that are solved are already those listed in Eqs. (1), (2),
and (3). Therefore, the solutions calculated with MUSIC can
already be compared with those of Gubser flow obtained in
the previous section. For a meaningful comparison, one must
initialize the numerical simulation with an initial condition
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(a) (b)

FIG. 4. (Color online) Comparison between the solutions for temperature (left panel) and the x component of the four-velocity (right panel)
from Gubser flow and MUSIC (numerical), as a function of x. In this plot η/s = 0.2 and τRT = 5η/s. The solid lines denote the semi-analytic
solution while the points denote solutions obtained from MUSIC.

constructed from the solutions of Eqs. (11) and (12) for a
given initial time. In this work, we fix the initial time to be
τ0 = 1 fm. The temperature at ρ = 0, which determines the
temperature at τ = τ0 and r = 0, is fixed to be T = T0 =
1.2 fm−1. The shear-stress tensor at ρ = 0 is initialized to be
πμν = 0. The viscosity in MUSIC is set to η/s = 0.2 while the
relaxation time is fixed to τR = 5η/(ε + P ), i.e., c = 5. This
parametrization for the relaxation time guarantees that the fluid
dynamical evolution is causal [19]. The time step and grid
spacing used in the numerical simulation are δτ = 0.005 fm
and δx = δy = 0.05 fm, respectively (δτ,δx, and δy are small
enough to achieve the continuum limit). We remark that in
Gubser flow the values of the transport coefficients actually
affect the initial condition of the fluid, since in this scheme
the initial condition in hyperbolic coordinates must also be
constructed by actually solving the fluid-dynamical equations
in the generalized de Sitter space.

Note that MUSIC was originally designed to solve Israel-
Stewart theory in 3+1 dimensions, while the Gubser flow
solution assumes boost invariance (and radial symmetry in
the transverse plane). In a numerical simulation in 3+1
dimensions, boost invariance can be trivially obtained by
providing an initial condition that is also boost invariant. In
this situation, the solutions of fluid dynamics should maintain
exact boost invariance, remaining trivial in the longitudinal
direction. We checked that this does occur in the solutions
obtained with MUSIC: the temperature and πμν profiles remain
(exactly) constant in the ξ direction (e.g., πξx,πxξ ,πξy,πyξ are
exactly zero) while the longitudinal component of the velocity
field is exactly zero. This is only not the case at the boundary
of the grid where boost invariance is not exactly maintained
due to finite size effects.

A. Comparison to semi-analytical solution

In the following we compare the numerical solutions of
MUSIC with the semi-analytical solutions of Israel-Stewart

theory. Figures 4 and 5 show the spatial profiles of temperature
T , velocity ux , and the ξξ,yy, and xy components of the
shear-stress tensor, πξξ ,πyy , and πxy , respectively. Without
loss of generality, T ,ux,πξξ ,πyy are shown as a function of x
in the y = 0 axis, while the πxy profile is shown as a function
of x in the x = y direction. The component πxy vanishes on
the x,y axis, which we verified also happens in MUSIC. Note
that all the other components of πμν can be obtained from the
three components displayed, i.e., πξξ ,πyy , and πxy .

One can see that the agreement between the numerical
simulation and the semi-analytical solutions is very good.
Only the xy component of the shear-stress tensor displayed
some oscillation at late times. However, since this component
is small, this oscillation is not enough to spoil the overall
agreement.

We remark that such good agreement could only be obtained
by adjusting the flux limiter used in the KT algorithm. Flux
limiters are employed in MUSCL scheme algorithms, such
as the KT algorithm, to control artificial oscillations that
usually occur when using higher order discretization schemes
for spatial derivatives. Such spurious oscillations are known
to appear when resolving shock problems, solutions with
discontinuities in density profiles or velocity field, or even
when describing systems which display high gradients, such
as the system created in relativistic heavy ion collisions. Since
dissipative effects originate mainly from spacelike gradients
of the velocity field, flux limiters are essential in order
to obtain a precise numerical solution of dissipative fluid
dynamics.

Currently, there are several flux limiter algorithms available
and many others still being developed. In MUSIC, the van Leer
minmod filter is used [13]. In this case, the gradients of currents
and fluxes are controlled according to a free parameter χ ,
which may vary from χ = 1 (most dissipative) to χ = 2 (least
dissipative). The optimal value of χ can vary case by case and
is usually fixed by trial and error; in previous work, MUSIC

was run with χ = 1.1. However, the agreement displayed in
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(a) (b)

(c)

FIG. 5. (Color online) Comparison between the solutions for the ξξ (left panel), yy (right panel), and xy (lower panel) components of the
shear-stress tensor from Gubser flow and MUSIC (numerical), as a function of x. In this plot η/s = 0.2 and τRT = 5η/s. The solid lines denote
the semi-analytic solution while the points denote solutions obtained from MUSIC.

Figs. 4 and 5 is only obtained by choosing a larger value,
χ = 1.8, corresponding to the less diffusive case. The solutions
of the temperature and velocity fields are not very sensitive to
changes in the flux limiter scheme. On the other hand, the
solutions of the shear-stress tensor do depend on the choice
of this numerical parameter. In Fig. 6 we show the numerical
solutions of MUSIC obtained with χ = 1.1 (open circles) for
the xx and yy components of the shear-stress tensor, which
are the components most sensitive to this parameter. These
solutions are compared with those of χ = 1.8 (full circles)
and the semi-analytical solutions (solid line). One can see that
when χ = 1.1 the agreement becomes worse, demonstrating
the usefulness of the semi-analytic solution found in this paper
in testing the algorithm. It should be noted that, if a flux limiter
is not employed at all, it is not possible to properly describe
the Gubser flow solutions of Israel-Stewart theory.

Figures 7(a) and 7(b) show the total equilibrium and
nonequilibrium entropy (integrated from r = 0 to r = 5 fm) as
a function of time. The entropy is normalized so that its value
at τ = 1 fm is equal to 1. The solid (red) line corresponds
to the total entropy of the semi-analytical solution, while

the circles correspond to the total entropy obtained from our
numerical solution. We also included the dashed (blue) and
dash-dotted (green) lines in Fig. 7(b), which correspond to the
total nonequilibrium entropy integrated over larger volumes,
r = 0 to r = 7.5 fm, and r = 0 to r = 12 fm, respectively. As
one can see, the agreement between the total entropy obtained
from the numerical solution and the semi-analytic solution
is very good, indicating a negligible amount of numerical
entropy production in the simulation. As already mentioned,
the equilibrium entropy does not satisfy the second law of
thermodynamics, so it does not have to increase with time.
On the other hand, the nonequilibrium entropy is expected
to increase with time as long as the O(4) term in Eq. (20)
remains small. As shown in the previous section, the overall
entropy produced in the range r = 0 − 5 fm is positive in
the semi-analytical solution, at least for times larger than
τ = 1 fm. Note that we do not integrate the nonequilibrium
entropy density over an infinite volume so, at some point, the
integrated nonequilibrium entropy will start to decrease due to
the amount of entropy that is leaving the box. This happens for
both numerical and semi-analytical solutions around τ = 2 fm.
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(a) (b)

FIG. 6. (Color online) Numerical solutions of MUSIC obtained with χ = 1.1 (open circles) for the xx (left panel) and yy (right panel)
components of the shear-stress tensor. The full circles correspond to the solutions obtained with χ = 1.8 and the solid lines correspond to the
semi-analytic solution.

Nevertheless, the agreement between the numerical simulation
and the semi-analytical solution remains very good even at
these stages.

B. Comparison to analytical solution

In the previous section, we showed that an analytical
solution for Israel-Stewart theory can be found in the limit of
extremely large viscosity or, equivalently, of extremely small
temperatures (cold plasma limit). Note that this analytical
solution is no longer an approximation if the term πμν is
removed from Israel-Stewart theory; that is, if one solves the

equation

τR

sT

(

μ

α
ν
β Dτπ

αβ + 4

3
πμν∇αuα

)
= −2η

s

σμν

T
(21)

instead of Eq. (3).
The solution of this equation no longer relaxes to Navies-

Stokes theory. However, it can still be used to test algorithms
that solve relativistic fluid dynamics. The same algorithm
that solves Israel-Stewart theory should also be able to solve
the above equation of motion and this can be used as an
independent and powerful test of a given numerical approach.

(a) (b)

FIG. 7. (Color online) Comparison between the solutions for the total equilibrium entropy (left panel) and total nonequilibrium entropy
(right panel) from Gubser flow and MUSIC (numerical), as a function of τ . In both plots the total entropy is obtained by integrating corresponding
entropy density from r = 0 to r = 5 fm. The solid lines denote the semi-analytic solution while the points denote solutions obtained from
MUSIC. On the right panel, we also show the total nonequilibrium entropy obtained by integrating from r = 0 to r = 7.5 fm (dashed line) and
r = 0 to r = 12 fm (dashed-dotted line).
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(a) (b)

FIG. 8. (Color online) Comparison between the solutions for temperature (left panel) and the x component of the four-velocity (right panel)
from Gubser flow and MUSIC (numerical), as a function of x. In this plot η/s = 0.2 and τRT = 5η/s. The solid lines denote the analytic solution
while the points denote solutions obtained from MUSIC.

(a) (b)

(c)

FIG. 9. (Color online) Comparison between the solutions for the ξξ (left panel), yy (right panel), and xy (lower panel) components of the
shear-stress tensor from Gubser flow and MUSIC (numerical), as a function of x. In this plot η/s = 0.2 and τRT = 5η/s. The solid lines denote
the analytic solution while the points denote solutions obtained from MUSIC.
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Furthermore, the term πμν is rather simple and does not
demand much work to be removed.

As already mentioned, in this case the solution of the
theory in de Sitter space can be found analytically; see
Eqs. (17) and (16). We numerically solved Eqs. (1), (2),
and (21) using MUSIC by subtracting the aforementioned
term, using the same initial condition described before.
The comparison is showed in Figs. 8 and 9, which show
the spatial profiles of T ,ux,πξξ ,πyy , and πxy . The solid
lines correspond to the analytical solutions while the points
correspond to the numerical solutions of Eq. (21) obtained with
MUSIC.

Note that the level of agreement is the same as before.
The solutions in hyperbolic coordinate even appear to be
qualitatively the same, containing the same general structures
as the full solutions. However, from a practical point of view,
the above solutions are very convenient to test a code since they
are already cast in the form of functions and can be written
directly into the code.

V. CONCLUSIONS

We have presented the first analytical and semi-analytical
solutions of a radially expanding viscous conformal fluid that
follows relaxation-type equations such as the Israel-Stewart
equations. The SO(3) ⊗ SO(1,1) ⊗ Z2 invariant solutions for
the temperature, shear stress tensor, and flow discussed here
can be used to test the existing numerical algorithms used
to solve the equations of motion of viscous relativistic fluid
dynamics in ultrarelativistic heavy ion collision applications.

We further demonstrated how the solutions derived in this
paper can be used to optimize the numerical algorithm of a well
known hydrodynamical code, fixing numerical parameters
that can only be determined by trial and error. The MUSIC

simulation code was shown to produce results that are in good
agreement with the analytic and semi-analytic solutions of
Israel-Stewart theory undergoing Gubser flow.

Also, once the temperature and shear-stress tensor profiles
are known, one can use this information for instance to study
the energy loss of hard probes in a radially expanding and
viscous QGP scenario [28,29]. Another interesting aspect
that could be studied would be the propagation of small
disturbances [12,30] on the expanding Israel-Stewart fluid
background found here in which the temperature is positive
definite throughout the whole dynamical evolution (which is
not the case in the Navier-Stokes solution). Moreover, it would
be interesting to see if the solutions found here for the confor-
mal Israel-Stewart equations correspond to a black hole config-
uration in an asymptotically AdS5 geometry, as it is the case for
the Navier-Stokes equations at zero chemical potential [31].

It is important to emphasize that the solutions found in this
paper assume boost invariance and, consequently, can only
test a limited part of the algorithms employed in 3 + 1D fluid-
dynamical simulation codes. In order to test the discretization
in the longitudinal direction, one would require analytical
or semi-analytical solutions of Israel-Stewart theory that are
not boost invariant. Recently, the first full 3 + 1D analytical
solutions of second-order conformal hydrodynamics have been
obtained in [32,33] and one may use them in the future to check
the accuracy of 3 + 1D viscous hydrodynamic codes.
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Estado de São Paulo (FAPESP), in part by Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico (CNPq), and
in part by the Natural Sciences and Engineering Research
Council of Canada. G.S.D. acknowledges the support of a
Banting fellowship provided by the Natural Sciences and
Engineering Research Council of Canada.

[1] M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30
(2005).

[2] U. W. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63,
123 (2013).

[3] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[4] W. A. Hiscock and L. Lindblom, Ann. Phys. (NY) 151, 466
(1983); ,Phys. Rev. D 31, 725 (1985); ,35, 3723 (1987); ,Phys.
Lett. A 131, 509 (1988).

[5] W. Israel, Ann. Phys. (NY) 100, 310 (1976); W. Israel and
J. M. Stewart, ibid. 118, 341 (1979).

[6] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.,
Course of Theoretical Physics Vol. 6 (Butterworth-Heinemann,
Oxford, 1987).

[7] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[8] T. Csorgo, F. Grassi, Y. Hama, and T. Kodama, Phys. Lett. B

565, 107 (2003).
[9] T. Csorgo, L. P. Csernai, Y. Hama, and T. Kodama, Heavy Ion

Phys. A 21, 73 (2004).

[10] T. Csorgo, M. I. Nagy, and M. Csanad, Phys. Lett. B 663, 306
(2008).

[11] S. S. Gubser, Phys. Rev. D 82, 085027 (2010).
[12] S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469

(2011).
[13] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 82, 014903

(2010); ,Phys. Rev. Lett. 106, 042301 (2011); ,Phys. Rev. C 85,
024901 (2012).

[14] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A.
Stephanov, J. High Energy Phys. 04 (2008) 100.

[15] J. Noronha and G. S. Denicol, arXiv:1104.2415.
[16] G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 86, 014907

(2012).
[17] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys.

02 (2014) 088.
[18] G. S. Denicol, T. Kodama, T. Koide, and P. Mota, J. Phys. G 35,

115102 (2008).
[19] S. Pu, T. Koide, and D. H. Rischke, Phys. Rev. D 81, 114039

(2010).

014903-11

http://dx.doi.org/10.1016/j.nuclphysa.2004.10.034
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.034
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.034
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.034
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1142/S0217751X13400113
http://dx.doi.org/10.1016/0003-4916(83)90288-9
http://dx.doi.org/10.1016/0003-4916(83)90288-9
http://dx.doi.org/10.1016/0003-4916(83)90288-9
http://dx.doi.org/10.1016/0003-4916(83)90288-9
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.35.3723
http://dx.doi.org/10.1103/PhysRevD.35.3723
http://dx.doi.org/10.1103/PhysRevD.35.3723
http://dx.doi.org/10.1016/0375-9601(88)90679-2
http://dx.doi.org/10.1016/0375-9601(88)90679-2
http://dx.doi.org/10.1016/0375-9601(88)90679-2
http://dx.doi.org/10.1016/0375-9601(88)90679-2
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1016/S0370-2693(03)00747-0
http://dx.doi.org/10.1016/S0370-2693(03)00747-0
http://dx.doi.org/10.1016/S0370-2693(03)00747-0
http://dx.doi.org/10.1016/S0370-2693(03)00747-0
http://dx.doi.org/10.1556/APH.21.2004.1.8
http://dx.doi.org/10.1556/APH.21.2004.1.8
http://dx.doi.org/10.1556/APH.21.2004.1.8
http://dx.doi.org/10.1556/APH.21.2004.1.8
http://dx.doi.org/10.1016/j.physletb.2008.04.038
http://dx.doi.org/10.1016/j.physletb.2008.04.038
http://dx.doi.org/10.1016/j.physletb.2008.04.038
http://dx.doi.org/10.1016/j.physletb.2008.04.038
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.012
http://dx.doi.org/10.1103/PhysRevC.82.014903
http://dx.doi.org/10.1103/PhysRevC.82.014903
http://dx.doi.org/10.1103/PhysRevC.82.014903
http://dx.doi.org/10.1103/PhysRevC.82.014903
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevC.85.024901
http://dx.doi.org/10.1103/PhysRevC.85.024901
http://dx.doi.org/10.1103/PhysRevC.85.024901
http://dx.doi.org/10.1103/PhysRevC.85.024901
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://arxiv.org/abs/arXiv:1104.2415
http://dx.doi.org/10.1103/PhysRevC.86.014907
http://dx.doi.org/10.1103/PhysRevC.86.014907
http://dx.doi.org/10.1103/PhysRevC.86.014907
http://dx.doi.org/10.1103/PhysRevC.86.014907
http://dx.doi.org/10.1007/JHEP02(2014)088
http://dx.doi.org/10.1007/JHEP02(2014)088
http://dx.doi.org/10.1007/JHEP02(2014)088
http://dx.doi.org/10.1007/JHEP02(2014)088
http://dx.doi.org/10.1088/0954-3899/35/11/115102
http://dx.doi.org/10.1088/0954-3899/35/11/115102
http://dx.doi.org/10.1088/0954-3899/35/11/115102
http://dx.doi.org/10.1088/0954-3899/35/11/115102
http://dx.doi.org/10.1103/PhysRevD.81.114039
http://dx.doi.org/10.1103/PhysRevD.81.114039
http://dx.doi.org/10.1103/PhysRevD.81.114039
http://dx.doi.org/10.1103/PhysRevD.81.114039


MARROCHIO, NORONHA, DENICOL, LUZUM, JEON, AND GALE PHYSICAL REVIEW C 91, 014903 (2015)

[20] M. Luzum and J.-Y. Ollitrault, Nucl. Phys. A 904–905, 377c
(2013).

[21] G. S. Denicol, T. Koide, and D. H. Rischke, Phys. Rev. Lett.
105, 162501 (2010).

[22] G. S. Denicol, J. Noronha, H. Niemi, and D. H. Rischke, Phys.
Rev. D 83, 074019 (2011).

[23] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, Phys.
Rev. D 85, 114047 (2012).

[24] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[25] P. Romatschke, Class. Quantum Grav. 27, 025006 (2010).
[26] D. H. Rischke, Y. Pursun, and J. A. Maruhn, Nucl. Phys. A 595,

383 (1995); ,596, 717(E) (1996); D. H. Rischke, Lect. Notes
Phys. 516, 21 (1999); E. Molnar, H. Niemi, and D. H. Rischke,
Eur. Phys. J. C 65, 615 (2010); Y. Akamatsu, S.-i. Inutsuka, C.
Nonaka, and M. Takamoto, J. Comput. Phys. 256, 34 (2014);

I. Bouras, E. Molnar, H. Niemi, Z. Xu, A. El, O. Fochler, C.
Greiner, and D. H. Rischke, Phys. Rev. C 82, 024910 (2010);
L. Del Zanna et al., Eur. Phys. J. C 73, 2524 (2013).

[27] A. Kurganov and E. Tadmor, J. Comput. Phys. 160, 241 (2000);
R. Naidoo and S. Baboolal, Future Generat. Comput. Syst. 20,
465 (2004).

[28] B. Betz and M. Gyulassy, arXiv:1305.6458.
[29] B. Schenke, C. Gale, and S. Jeon, Phys. Rev. C 80, 054913

(2009).
[30] P. Staig and E. Shuryak, Phys. Rev. C 84, 044912 (2011).
[31] S. Bhattacharyya, S. Minwalla, V. E. Hubeny, and M.

Rangamani, J. High Energy Phys. 02 (2008) 045.
[32] Y. Hatta, J. Noronha, and B.-W. Xiao, Phys. Rev. D 89, 051702

(2014).
[33] Y. Hatta, J. Noronha, and B.-W. Xiao, Phys. Rev. D 89, 114011

(2014).

014903-12

http://dx.doi.org/10.1016/j.nuclphysa.2013.02.028
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.028
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.028
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.028
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1103/PhysRevD.83.074019
http://dx.doi.org/10.1103/PhysRevD.83.074019
http://dx.doi.org/10.1103/PhysRevD.83.074019
http://dx.doi.org/10.1103/PhysRevD.83.074019
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1088/0264-9381/27/2/025006
http://dx.doi.org/10.1088/0264-9381/27/2/025006
http://dx.doi.org/10.1088/0264-9381/27/2/025006
http://dx.doi.org/10.1088/0264-9381/27/2/025006
http://dx.doi.org/10.1016/0375-9474(95)00356-3
http://dx.doi.org/10.1016/0375-9474(95)00356-3
http://dx.doi.org/10.1016/0375-9474(95)00356-3
http://dx.doi.org/10.1016/0375-9474(95)00356-3
http://dx.doi.org/10.1016/0375-9474(96)89543-1
http://dx.doi.org/10.1016/0375-9474(96)89543-1
http://dx.doi.org/10.1016/0375-9474(96)89543-1
http://dx.doi.org/10.1007/BFb0107310
http://dx.doi.org/10.1007/BFb0107310
http://dx.doi.org/10.1007/BFb0107310
http://dx.doi.org/10.1007/BFb0107310
http://dx.doi.org/10.1140/epjc/s10052-009-1194-9
http://dx.doi.org/10.1140/epjc/s10052-009-1194-9
http://dx.doi.org/10.1140/epjc/s10052-009-1194-9
http://dx.doi.org/10.1140/epjc/s10052-009-1194-9
http://dx.doi.org/10.1016/j.jcp.2013.08.047
http://dx.doi.org/10.1016/j.jcp.2013.08.047
http://dx.doi.org/10.1016/j.jcp.2013.08.047
http://dx.doi.org/10.1016/j.jcp.2013.08.047
http://dx.doi.org/10.1103/PhysRevC.82.024910
http://dx.doi.org/10.1103/PhysRevC.82.024910
http://dx.doi.org/10.1103/PhysRevC.82.024910
http://dx.doi.org/10.1103/PhysRevC.82.024910
http://dx.doi.org/10.1140/epjc/s10052-013-2524-5
http://dx.doi.org/10.1140/epjc/s10052-013-2524-5
http://dx.doi.org/10.1140/epjc/s10052-013-2524-5
http://dx.doi.org/10.1140/epjc/s10052-013-2524-5
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1016/j.future.2003.07.010
http://dx.doi.org/10.1016/j.future.2003.07.010
http://dx.doi.org/10.1016/j.future.2003.07.010
http://dx.doi.org/10.1016/j.future.2003.07.010
http://arxiv.org/abs/arXiv:1305.6458
http://dx.doi.org/10.1103/PhysRevC.80.054913
http://dx.doi.org/10.1103/PhysRevC.80.054913
http://dx.doi.org/10.1103/PhysRevC.80.054913
http://dx.doi.org/10.1103/PhysRevC.80.054913
http://dx.doi.org/10.1103/PhysRevC.84.044912
http://dx.doi.org/10.1103/PhysRevC.84.044912
http://dx.doi.org/10.1103/PhysRevC.84.044912
http://dx.doi.org/10.1103/PhysRevC.84.044912
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1103/PhysRevD.89.051702
http://dx.doi.org/10.1103/PhysRevD.89.051702
http://dx.doi.org/10.1103/PhysRevD.89.051702
http://dx.doi.org/10.1103/PhysRevD.89.051702
http://dx.doi.org/10.1103/PhysRevD.89.114011
http://dx.doi.org/10.1103/PhysRevD.89.114011
http://dx.doi.org/10.1103/PhysRevD.89.114011
http://dx.doi.org/10.1103/PhysRevD.89.114011



