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Role of magnetic field in photon excess in heavy ion collisions
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The synchrotron photon spectrum in heavy ion collisions is computed taking into account the spatial and
temporal structure of the magnetic field. It is found that a significant fraction of photon excess in heavy ion
collisions in the region k⊥ = 1–3 GeV can be attributed to the synchrotron radiation. Azimuthal anisotropy of
the synchrotron photon spectrum is characterized by the Fourier coefficients v2 = 4/7 and v4 = 1/10 that are
independent of photon momentum and centrality.
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I. INTRODUCTION

One of the outstanding puzzles in the phenomenology of
heavy ion collisions is excess of photons at low transverse
momenta above the photon spectrum in pp collisions scaled
in proportion to the number of binary nucleon collisions [1].
Another related problem is large azimuthal asymmetry of
the photon spectrum [2]. The traditional phenomenological
approaches [3–13] have recently improved their agreement
with the data, although the discrepancy is not completely elim-
inated [9,14–17]. A novel mechanism of photon production
was proposed in [18]. In [19,20] synchrotron photon radiation
by the quark-gluon plasma was investigated and found to give
an important contribution to the total photon spectrum. In this
paper I go beyond the constant field approximation, employed
in [19,20], and compute the synchrotron photon spectrum
taking into account the realistic space-time structure of the
electromagnetic field.

The electromagnetic field is initially generated by the
valance charges of the colliding ions, but at very early times
gives way to the induced field generated by the electric currents
in the produced matter and travels along with the expanding
system [21,22]. The proof of its existence relies only upon
the applicability of the effective hydrodynamic description
of the final state. Important features of this field are the
following: (i) Its strength at time t is determined only by the
collision impact parameter b and the electrical conductivity σ .
It does not explicitly depend on the collision energy. Rather,
energy dependence comes through the variation of σ with the
temperature T . (ii) Its dominant component is the magnetic
field perpendicular to the event plane [23].

The motion of charged particles of energy ε and charge e
in magnetic field B is quantized, with the distance between
the nearby Landau levels being on the order of ωB = eB/ε.
However, if eB � ε2, the quantization effect is small. In a
thermal medium of temperature T this condition becomes
eB � T 2. The peak strength of the magnetic field at the
collision energy

√
sNN = 200 GeV is estimated to be eB =

m2
π , implying that one can treat the synchrotron emission in

the quasiclassical approximation. This argument is supported
by an explicit calculation in [19], where I showed that the
number of Landau levels contributing to the synchrotron
radiation at the field strength eB = m2

π is on the order of a
hundred.

It is well known that the synchrotron radiation is emitted
over a short time �t ∼ ω−1

B (m/ε)3 [24], which is much shorter
than the characteristic time of the magnetic field variation
tB ∼ |B/Ḃ|. This allows me to treat the synchrotron radiation
as an adiabatic process, viz., to substitute the expression for
the time-dependent field (A3) into the emission rate with a
constant B, Eq. (1), which is well known in the literature.

The results of my calculation indicate that, although
the synchrotron radiation cannot be responsible for all the
observed photon excess, it gives a significant contribution
at photon energies k⊥ = 1–3 GeV in the central rapidity
region. Since radiation in the direction of the magnetic field
vanishes, the synchrotron spectrum exhibits strong azimuthal
asymmetry with the following Fourier coefficients: v2 = 4/7,
v4 = 1/10. This may explain the strong elliptic flow of prompt
photons observed in the data [2].

The paper is structured as follows: In Sec. II an analytic ex-
pression for the synchrotron spectrum emitted by a relativistic
charge is presented. In Sec. III I compute the photon spectrum
radiated by the quark-gluon plasma during its entire lifetime
using the explicit space-time dependence of magnetic field
discussed in the Appendix. The results are shown in Figs. 1, 2,
and 3. In Sec. IV the summary is presented.

II. PHOTON RADIATION BY A RELATIVISTIC QUARK

Consider a relativistic quark or antiquark of energy ε0,
velocity v0, and electric charge qf e moving in a plane per-
pendicular to magnetic field B0. I will call the corresponding
reference frame K0. The emission rate of a photon of energy
ω0 and momentum k0 = ω0n0 is given by [25]

dẇ0 = αq2
f

(2π )2

d3k0

ω0

∫ +∞

−∞
dτ exp

{
− iε0

ε′
0

ω0τ

×
[

1 − n0 · v0 +
(

qf eB0

ε0

)2
τ 2

24

]}

×
[
−ε′2

0 + ε2
0

4ε′2
0

(
qf eB0

ε0

)2

τ 2 − m2

ε0ε
′
0

]
, (1)

where ε′
0 = ε0 − ω0.

Consider now another reference frame K where quarks have
an arbitrary direction of momentum. Let the y axis be in the

0556-2813/2015/91(1)/014902(5) 014902-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.014902


KIRILL TUCHIN PHYSICAL REVIEW C 91, 014902 (2015)

FIG. 1. Spectrum of synchrotron photons averaged over the
azimuthal angle versus photon transverse momentum k⊥ at rapidity
y = 0 and centrality 0%–20% (b = 4.3 fm [27]). Solid line: T =
400 MeV; dashed line: T = 200 MeV. Data are from [1]; they
represent the direct photon kT spectra after subtraction of the Ncoll
scaled p + p contribution (Fig. 8 there).

magnetic field direction B = B ŷ and V = V ŷ be the velocity
of K with respect to K0. Then the Lorentz transformation reads

px0 = px , 0 = py0 = γ (py + V ε),
(2)

pz0 = pz , ε0 = γ (ε + Vpy),

kx0 = kx , ky0 = γ (ky + V ω),
(3)

kz0 = kz , ω0 = γ (ω + V ky),

B0 = B, (4)

where γ = 1/
√

1 − V 2. It follows from the second equation
in (2) that

V = −py

ε
(5)

and

ε0 =
√

ε2 − p2
y, ω0 = ωε − pyky√

ε2 − p2
y

. (6)

Using the boost invariance of k · p we get

1 − n0 · v0 = ωε

ω0ε0
(1 − n · v), (7)

FIG. 2. Spectrum of synchrotron photons averaged over the
azimuthal angle versus photon transverse momentum k⊥ at rapidity
y = 0 and centrality 40%–60% (b = 10.2 fm [27]). Solid line:
T = 400 MeV; dashed line: T = 200 MeV. Data are from [1]; they
represent the direct photon kT spectra after subtraction of the Ncoll
scaled p + p contribution (Fig. 8 there).

FIG. 3. Time evolution of the photon spectrum (emitted by u and
ū quarks) from t = 1 fm (the lowest line) to t = 10 fm (the highest
line) in time increments of 1 fm. T = 400 MeV, 0%–20% centrality,
y = 0.

accurate up to the terms of the order m2/ε2. Transformation
of the photon emission rate reads [26]

dẇ

d
dω
= 1

γ 2(1 + V cos θ )

dẇ0

d
0dω0
= ωε0

εω0

dẇ0

d
0dω0
, (8)

where θ is the angle between the photon momentum k and the
magnetic field, i.e., cos θ = ny , and 
 is the corresponding
solid angle. In the last step I used (5) and (6). dẇ0 in the
right-hand side of (8) is given by (1).

III. ELECTROMAGNETIC RADIATION BY PLASMA

A. Photon rate per unit volume

A quark-gluon plasma in magnetic field radiates photons
into a solid angle d
 in the frequency interval (ω,ω + dω)
with the following rate

dN

dt d
dω
= 2Nc

∑
f

∫
dVd3p

(2π )3
f (ε)[1 − f (ε′)]

dẇ

d
dω
,

(9)

whereV stands for the volume, the sum runs over the quark and
antiquark flavors and the quark/antiquark distribution function
in plasma at temperature T reads

f (ε) = 1

eε/T + 1
. (10)

I introduce now a Cartesian reference frame spanned by
three unit vectors e1,e2,n, such that vector B lies in the plane
spanned by e1 and n. In terms of the polar and azimuthal angles
χ and ψ we can write

v = v(cos χ n + sin χ cos ψ e1 + sin χ sin ψ e2), (11)

B = B(cos θ n1 + sin θ e1). (12)

Then,

py = p · B
B

= εv(cos χ cos θ + sin χ cos ψ sin θ ), (13)

ky = k · B
B

= ω cos θ, (14)

n · v = v cos χ. (15)
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Quarks moving in plasma parallel to the magnetic field
direction do not radiate due to the vanishing Lorentz force.
Bearing in mind that at high energies quarks radiate mostly into
a narrow cone with the opening angle χ ∼ m/ε, we conclude
that photon radiation at angles θ � m/ε can be neglected.
Thus, expanding at small χ we obtain from (6) and (13)

ε0 ≈ ε sin θ , ω0 ≈ ω sin θ, θ >
m

ε
. (16)

Omission of terms of order m/ε is consistent with the accuracy
of (1). In view of (16), dependence of the integrand of (9) on
angle χ comes about only in (7), viz.,

1 − n0 · v0 = 1

sin2 θ

(
1 − cos χ + m2

2ε2

)
, (17)

while it is ψ independent.
To integrate over the quark/antiquark momentum directions

do = d cos χ dψ we write (9) as

dN

dt d
dω
= 2Nc

(2π )3

∑
f

∫
dV

∫ ∞

ω

dε ε2f (ε)[1 − f (ε′)]

×
∫

do
dẇ

d
dω
, (18)

substitute (8) and (1), and integrate first over do and then over
τ with the following result (see details in [25]):∫

do
dẇT

d
dω

= −αq2
f m2

ε2
sin2 θ

{∫ ∞

zθ

Ai(z′)dz′ + (sin θ )2/3

(
ε

ε′

)1/3

×
(

ωB

ω

)2/3
ε2 + ε′2

m2
Ai′(zθ )

}
, (19)

where ωB = qf eB/ε and

zθ =
(

ε

ε′

)2/3(
ω

ωB

)2/3
m2

ε2 sin8/3 θ
. (20)

B. Photon spectrum

Spatial and temporal dependence of the photon production
rate (18) comes about from the corresponding dependence
of the background magnetic field. The explicit form of the
magnetic field is given in the Appendix. Neglecting small
variations of magnetic field strength in the transverse plane,
integration over the time and volume of plasma yields the total
photon multiplicity spectrum radiated into a unit solid angle,

dN

d
dω
= 2Nc

(2π )3
S

∑
f

∫ tf

0
dt

∫ t

−t

dz

∫ ∞

ω

dε ε2f (ε)[1 − f (ε′)]

×
∫

do
dẇ

d
dω
, (21)

with (A3) substituted into (19) and (20), and the overlap area
S of two spherical nuclei of radius RA given by

S = R2
A [2 arccos(b/2RA) − sin (2 arccos(b/2RA))]. (22)

The experimental observable is the photon multiplicity at
a given transverse momentum k⊥, azimuthal angle φ, and
rapidity y with respect to the collisions axis. It reads

dN(k⊥,φ,y)

k⊥dk⊥dφ dy
= dN(ω,θ )

ω dω d

, (23)

where ω = k⊥ cosh y and cos θ = sin φ/ cosh y. It is usually
represented as the cosine Fourier series

dN(k⊥,φ,y)

k⊥dk⊥dφ dy
=

〈
dN

d2k⊥dy

〉
φ

(
1 +

∞∑
n=1

2vn cos(nφ)

)
, (24)

where the azimuthally averaged multiplicity is given by

〈
dN

d2k⊥dy

〉
φ

= 1

2π

∫ 2π

0

dN

d2k⊥dy
dφ, (25)

and the “flow” coefficients by

vn = 1

2π

∫ 2π

0

dN

d2k⊥dy
cos(nφ)dφ

〈
dN

d2k⊥dy

〉−1

φ

. (26)

In Figs. 1 and 2 I display the spectrum of synchrotron plasma
radiation over time t � tf = 10 fm at different temperatures
and centralities. The values of temperature are chosen as two
extremes for which the synchrotron spectrum is still consistent
with the data and physics of the QGP. One can see that at low
k⊥ synchrotron photons cannot account for the bulk of the
photon excess. However, they contribute a substantial fraction
of photons at k⊥ = 2–3 GeV. We also conclude that the data
favors temperatures below T = 400 MeV.

Figure 3 shows the time evolution of the photon spectrum.
It is interesting to note that although the spectrum grows fastest
at early times it is still increasing even near the freeze-out time
tf . This is because the photon spectrum is proportional to B2/3

[see (27)] while the magnetic field decreases as B ∼ 1/t2, so
that the spectrum is proportional to 1/t

1/3
f . It seems to me that

taking into account the time dependence of plasma temperature
and conductivity will lead to a faster decrease of the photon
emission rate with time, as can be inferred from (27).

Concerning the Fourier coefficients (26), the ones with odd
indexes vanish, v2k+1 = 0, k = 0,1,2, . . . , while the ones with
even indexes v2k rapidly decrease with increase of k. Two
largest coefficients are v2 = 0.57 and v4 = 0.10. They turned
out to be independent of k⊥ and centrality. I will explain this
behavior in the next subsection. Here I would like to note that,
in view of the results shown in Figs. 1 and 2, a large elliptic
flow of photons observed in [2] seems to be at least partially
due to the strong azimuthal asymmetry of the synchrotron
radiation, which is in turn a consequence of the v × B form of
the Lorentz force. The above values of v2 and v4 that indicate
large anisotropy of synchrotron protons should not be directly
compared to experiment, but rather should be included in an
average over many different sources of azimuthal anisotropy
in the photon spectrum.
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C. Photon spectrum at high k⊥

Analytical expressions for the photon spectrum can be
found for photons with k⊥ 	 T , which in fact applies to most
of the phenomenologically relevant photons. In this limit we
approximate f (ε) ≈ e−ε/T and zθ � 1. Keeping in (21) only
the leading terms in zθ and neglecting m compared to T we
obtain

dN

d2k⊥dy
= α

2Nc

(2π )3

�(2/3)

31/3�(1/3)
(sin θ )8/3e−k⊥/T T 2/3

×
∑
f

∫
dV

∫ tf

0
dt (qf eB)2/3. (27)

Substituting into (25) we derive for the average photon
multiplicity〈

dN

d2k⊥dy

〉
φ

= α
2Nc

(2π )3

�(11/6)

3 × 61/3�(7/6)�(7/3)
e−k⊥/T T 2/3

×
∑
f

∫
dV

∫ tf

0
dt (qf eB)2/3, (28)

while the Fourier coefficients follow from (26)

v2 =
∫ π/2

−π/2
cos(2φ)(cos φ)8/3dφ

/ ∫ π/2

−π/2
(cos φ)8/3dφ = 4

7
,

(29)

v4 =
∫ π/2

−π/2
cos(4φ)(cos φ)8/3dφ

/ ∫ π/2

−π/2
(cos φ)8/3dφ = 1

10
.

(30)

Equation (28) gives a reasonable approximation for the high-
k⊥ tail of the photon spectrum. Especially striking is the
agreement between (29) and (30) and the values of v2 and
v4 cited in the previous subsection. Apparently, the dominant
contribution to the azimuthal angle integration arises at high
k⊥. This fact then explains independence of the Fourier
coefficients on k⊥, T , B, and other parameters.

IV. CONCLUSIONS

In this paper I computed the synchrotron photon spectrum
in heavy ion collisions taking into account the spatial and
temporal structure of the magnetic field. Results obtained
in this paper indicate that a significant fraction of photon
excess in heavy ion collisions in the region k⊥ = 1–3 GeV
can be attributed to the synchrotron radiation. Azimuthal
anisotropy is characterized by the “flow” coefficients v2 = 4/7
and v4 = 1/10 that are independent of photon momentum and
centrality. Although synchrotron photons alone cannot account
neither for the total photon spectrum, nor for its azimuthal
asymmetry, they nevertheless give an important contribution to
both. In my opinion, any comprehensive description of photons
produced in heavy-ion collisions must include a contribution
of synchrotron radiation.

Throughout the paper I assumed that plasma temperature
and electrical conductivity are time independent, which

allowed me to use the the analytical expressions for the
magnetic field, (A1)–(A3). This approach should give a
rather accurate estimate of the photon spectrum because time
variation of temperature and electrical conductivity is rather
mild. For example, in the Bjorken scenario σ,T ∝ t−1/3 [28].
Nevertheless, a more accurate approach should incorporate a
realistic flow of plasma; see, e.g., [29,30].
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APPENDIX: MODEL FOR MAGNETIC FIELD IN HEAVY
ION COLLISIONS

An analytic expression for the electromagnetic field created
in heavy ion collisions is found in [21,22]. It is a sum over Z
point charges moving in the positive z direction and Z point
charges moving in the opposite direction. Equations simplify
in the relativistic limit γ σb 	 1. In this case the magnetic
field created at the origin by a point charge e moving along the
positive z axis at transverse distance b reads

B = e

2π
φ̂

(
γ b

2(b2 + γ 2t2)3/2
+ bσ

4t2
e− b2σ

4t

)
. (A1)

The first term in the bracket is the boosted Coulomb field
in vacuum, while the second term is the field induced in
the medium. The quark-gluon system is released from the
nuclear wave functions by t ∼ 1/Qs ∼ 0.2 fm, where Qs is
the saturation momentum. By that time the Coulomb term is
negligible so that the field in the medium is determined only
by b and σ . Therefore, the total magnetic field is given by

B = e

2π

[
θ (t − z)

Z∑
a=1

σ (b/2 − ba)

4(t − z)2
e− σ (b/2−ba )2

4(t−z)

+ θ (t + z)
Z∑

a=1

σ (b/2 − ba)

4(t + z)2
e− σ (b/2−ba )2

4(t+z)

]
, (A2)

where ba’s are the proton transverse coordinates, b is the
impact parameter, z is the longitudinal position, θ is a step
function, and α = e2/4π is the fine structure constant. At large
Z the magnetic field (A2) is approximately isotropic in the xy
plane (i.e., in the plane transverse to the collision axis) and can
be well described by the following model:

B = eZ

2π
ŷ
[
θ (t − z)

σ (Rp + b/2)

4(t − z)2
e− (Rp+b/2)2σ

4(t−z)

+ θ (t + z)
σ (Rp + b/2)

4(t + z)2
e− (Rp+b/2)2σ

4(t+z)

]
. (A3)

Quantum uncertainty of a proton position is accounted for by
a finite parameter Rp = 1 fm [31].
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