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Microscopic positive-energy potential based on the Gogny interaction
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We present a nucleon elastic scattering calculation based on Green’s function formalism in the random-phase
approximation. For the first time, the finite-range Gogny effective interaction is used consistently throughout
the whole calculation to account for the complex, nonlocal, and energy-dependent optical potential. Effects of
intermediate single-particle resonances are included and found to play a crucial role in the account for measured
reaction cross sections. Double counting of the particle-hole second-order contribution is carefully addressed.
The resulting integro-differential Schrödinger equation for the scattering process is solved without localization
procedures. The method is applied to neutron and proton elastic scattering from 40Ca. A successful account
for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to
30 MeV. Discrepancies at higher energies are related to a much-too-high volume integral of the real potential
for large partial waves. This work opens the way to simultaneously assess effective interactions suitable for both
nuclear structure and reactions.
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I. INTRODUCTION

Several elements are required to perform nuclear reaction
cross-section calculations: the optical model potential, the
nuclear level densities, the γ -ray strength functions, and the
fission properties. Those models are gathered into robust
and well-tested nuclear reaction codes, such as TALYS [1] or
EMPIRE [2]. They mostly rely on parameters usually adjusted
to experimental data. On the other hand, a large amount of
nuclear data is needed for assessment and predictions for
rare-isotopes facilities, for r processes, and for advanced
reactor applications. As a result, nuclear reaction cross
sections are unavoidably extrapolated from the domain where
phenomenological models have been tested.

Along this line a coherent theoretical model to describe both
static properties as well as collisions observables becomes the
sole practical means to provide a systematic description of
cross-section data. Nuclear-matter-folding models have led
to reasonable descriptions of nucleon elastic scattering at
incident energies above ∼50 MeV, even up to ∼1.5 GeV [3,4].
Although ab initio methods have made progress [5–11] in
handling light and magic nuclei, they are still not suited for
heavy targets nor for high-incident-energy projectiles.

Among microscopic structure models, methods based on
energy-density functionals emerge as a promising tractable
theoretical tool that can be applied to all the nuclides with
A � 40. Self-consistent mean-field theory and its extensions
beyond mean field have proven to be well suited to describe
open-shell nuclei, where pairing correlations and deforma-
tion effects play an important role. These approaches have
successfully predicted a broad body of nuclear structure data
for medium- to heavy-mass nuclei. Recent works have aimed
to extend this wealth of developments to reaction calcula-
tions through coupled-channel calculations with mean-field
inputs [12], or continuum particle-vibration coupling using
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a Skyrme effective nucleon-nucleon (NN) interaction [13].
Other approaches are in progress, where an optical potential
is approximated as the Hartree–Fock (HF) term plus the
imaginary part of the uncorrelated particle-hole potential
neglecting the collectivity of target excited states [14,15].

In this work we use the so-called nuclear structure method
(NSM) for scattering [16–20] based on the self-consistent HF
and random-phase approximations (RPA) of the microscopic
optical potential. Special attention is given to the issue of the
double counting of the second-order diagram, which has not
been addressed in previous works [12,13]. We show that the
subtraction of the second-order term does not lead to patho-
logical behaviors when positive incident energy is considered,
contrary to what is expected in Ref. [21]. Moreover, we use
the finite-range Gogny effective interaction [22], which is
suitable for the discussions of second-order effects and does
not suffer the need of an ad hoc momentum cutoff as do
Skyrme interactions [23]. This interaction is used consistently
throughout the whole calculation. Careful treatment of these
different aspects allows us to describe scattering observables
at a good level of accuracy which could not be achieved in
previous implementations of NSM. These calculations have
been made possible thanks to modern calculation capabilities.

II. METHOD

In NSM [16], the optical potential V consists of two
components,

V = V HF + �V. (1)

The HF potential, V HF , is the major contribution to the real
part of the optical potential. V HF is calculated in coordinate
space to ensure the correct asymptotic behavior of single-
particle states. It is nonlocal and energy independent due
to the nature of the Gogny interaction, which is of finite
range and energy independent, respectively. Rearrangement
contributions stemming from the density-dependent term of
the interaction are also taken into account.
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The second component of the potential in Eq. (1) is

�V = V PP + V RPA − 2V (2), (2)

which is complex, energy dependent, and nonlocal. Here V PP

and V RPA are contributions from particle-particle and particle-
hole correlations, respectively. The uncorrelated particle-hole
contribution V (2) is accounted for once in V PP and twice
in V RPA. As a matter of fact, if two-body correlations are
neglected in Eq. (2) for V PP and V RPA, then �V reduces to
V (2), as expected [16].

As mentioned in Ref. [19], if one works with a NN effective
interaction with a density-dependent term, such as Gogny
or Skyrme forces, attention must be paid to correlations
already accounted for in the interaction. Indeed, part of the
particle-particle correlations is already contained at the HF
level as far as Re[V PP ] is concerned. We thus use the same
prescription as in Ref. [18], omitting Re[V PP ] while Im[V PP ]
is approximated by Im[V (2)]. Then Eq. (2) becomes

�V = Im[V (2)] + V RPA − 2V (2). (3)

From now on, equations are presented omitting spin for
simplicity. For nucleons with incident energy E, the RPA
potential reads

V RPA(r,r′,E) =
∑
N �=0

∫∑
λ

[
nλ

E − ελ + EN − i�(EN )

+ 1 − nλ

E − ελ − EN + i�(EN )

]

×�N
λ (r)�N

λ (r′), (4)

where ni and εi are the occupation number and energy of the
single-particle state φi in the HF field, respectively. Subscripts
p, h, and λ refer to the quantum number of the particle, hole,
and intermediate single-particle, respectively. EN and �(EN )
represent the energy and the width of the N th excited state of
the target, respectively. Additionally,

�N
λ (r) =

∑
(p,h)

[XN,(p,h)Fphλ(r) + YN,(p,h)Fhpλ(r)], (5)

where X and Y denote the usual RPA amplitudes and

Fijλ(r) =
∫

d3r1φ
∗
i (r1)v(r,r1)[1 − P̂]φλ(r)φj (r1), (6)

where P̂ is a particle-exchange operator and v is the
NN effective interaction. The particle-hole contribution
reads

V (2)(r,r′,E) = 1

2

∑
ij

∫∑
λ

[
ni(1 − nj )nλ

E − ελ + Eij − i�(Eij )

+ nj (1 − ni)(1 − nλ)

E − ελ − Eij + i�(Eij )

]

×Fijλ(r)F ∗
ijλ(r′), (7)

with Eij = εi − εj being the uncorrelated particle-hole energy.
The description of target excitations has been obtained

by solving the RPA/D1S equations in a harmonic oscillator
basis, including fifteen major shells [24] and using the D1S

Gogny interaction [22]. We account for RPA excited states
with spin up to J = 8, including both parities in order to
achieve convergence of the cross section. The first 1− state
given by RPA, containing the translational spurious mode, is
removed. In order to avoid spurious modes in the uncorrelated
particle-hole term, we approximate the 1− contribution in V (2)

by half that of the 1− contribution in V RPA. Coupling to
excited states results in a number of poles in Eqs. (4) and (7).
Moreover, fluctuations appear in the imaginary part of the
potential whenever the energy E − EN matches a resonance
energy of the intermediate single-particle state φλ. Inclusion
of single-particle resonances is made possible thanks to the
HF potential in coordinate space and to the correct treatment
of the continuum. The leading inelastic doorways are those
containing single-particle resonances. These contributions
lead to significant enhancement of the reaction cross section
compared with the calculation where φλ are approximated
with plane waves. Although the RPA/D1S method provides
a good overall description of the spectroscopic properties of
double-closed-shell nuclei, couplings to two or more particle-
hole states and to continuum states are neglected. The impact
of these couplings is a strength redistribution that can be
handled assigning a finite width �(EN ) to each RPA state.
It has the effect of averaging in energy and smoothing the
potential. The resulting potential can then be identified with an
optical model [25]. A microscopic calculation of these widths
is beyond the scope of the present study. We include them
phenomenologically as an interpolation between reasonable
values. �(EN ) takes the value of 2, 5, 15, and 50 MeV for
excitation energies of 20, 50, 100, and 200 MeV, respectively.
The specific choice of the width parametrization does not affect
our predictions. The integro-differential Schrödinger equation
for elastic scattering is solved, retaining the nonlocal structure
of the potential [26]. Moreover, optical potential calculations
yield shape-elastic, reaction, and total cross sections [25]. The
compound-elastic cross section has to be added to the shape-
elastic cross section and subtracted from the reaction cross
section before comparison with data [25]. In a first attempt, we
use the compound-elastic contribution from Hauser–Feshbach
calculations with the TALYS code [1] using the Koning–
Delaroche global potential [27]. These considerations are
particularly relevant for neutron scattering below 10 MeV.

III. RESULTS

In Fig. 1, we present results for the calculated differential
cross sections based on NSM for both neutron and proton
scattering from 40Ca. References to data are given in Ref. [27].
Error bars are smaller than the size of the symbols. NSM
results compare very well to experiment and those based on
the Koning–Delaroche potential up to about 30 MeV incident
energy. Beyond 30 MeV, backward-angle cross sections are
overestimated. Discrepancies at 16.9 MeV (23.5 MeV) for
neutron (proton) scattering are related to resonances in the
intermediate single-particle state when not completely aver-
aged. A detailed treatment of the width might cure this issue.
In Fig. 2 we show calculated analyzing powers for neutron
and proton scattering at several energies, in good agreement
with measurements. Moreover, agreement with the data is
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FIG. 1. (Color online) Differential cross sections for (a) neutron and (b) proton scattering from 40Ca. Comparison is between data (symbols),
V HF + �V results (solid curves), and Koning–Delaroche potential results (dashed curves).

comparable to that obtained from the Koning–Delaroche
potential. These results suggest that the NSM potential retains
the correct spin-orbit behavior. In Fig. 3 we show reaction
cross section for proton scattering [Fig. 3(a)] and total cross
section for neutron scattering [Fig. 3(b)]. Calculated reaction
cross sections are in good agreement with experiments. For
neutrons, however, we underestimate the total cross section

below 10 MeV. Considering that the differential elastic cross
section is well reproduced, this underestimate suggests that
part of the absorption mechanism is not accounted for, such as
target-excited states beyond RPA or double-charge exchange
processes.

To understand the limited energy range of applicability of
the NSM approach, we compare in Fig. 4 the volume integral
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FIG. 2. (Color online) Same as Fig. 1 but for analyzing powers.
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FIG. 3. (Color online) Reaction cross section for (a) proton and (b) total cross section for neutron scattering from 40Ca. Comparison is
between data (symbols), V HF + �V results (solid curve), and Koning–Delaroche potential (dashed curve).

JV of the central HF potential with that obtained from the real
part of the Perey–Buck nonlocal potential [28]. Black segments
denote the strongest partial-wave contributions accounting for
80% of the reaction cross section at the selected incident
energies. Keep in mind that the HF potential is the leading
contribution to the real part of V in Eq. (1). Its contribution
to JV is similar to that from Perey–Buck up to about the
twelfth partial wave (∼17 MeV). Beyond this point, HF
saturates, following the trend of the Hartree potential which is
local and thus partial-wave independent. This departure from
Perey–Buck explains why increasing incident energy (partial
wave) yields much-too-high JV for HF, with the subsequent
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FIG. 4. (Color online) Volume integral as a function of partial
waves for neutron scattering from 40Ca: HF potential (solid curve),
Hartree potential (dash-dotted curve), and Perey–Buck potential
(dotted curve). Horizontal segments denote the partial-wave interval
to sum up 80% of the reaction cross section at selected incident
energies.

overestimate of the differential cross section at backward
angles. It would be interesting to investigate to what extent
the effective interaction has incidence on this behavior at high
partial wave.

We now address the subtraction of the uncorrelated second-
order term in Eq. (2). As pointed out in Ref. [21], this
subtraction can lead to unphysical solutions with spurious
poles and negative occupation numbers. The smooth and av-
eraged potential obtained from Eq. (1) no longer suffers these
pathologies. Indeed, if one approximates V (2) ≈ V RPA/2, then
Eq. (2) reduces to

�V ≈ Im[V RPA/2]. (8)

This approximation has the drawback of neglecting the real
part of �V as well as part of the collectivity of the excited
states. However, it has the advantage of avoiding second-order
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FIG. 5. (Color online) Partial-wave contribution ν of ImV for
neutron scattering from 40Ca scattering at 9.91 MeV as a function
of radius and partial waves: V HF + �V potential (solid curve),
V HF + Im[V RPA/2] potential (dash-dotted curve).
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proton incident on 40Ca. Comparison between data (symbols), V HF +
�V (solid curves), and V HF + Im[V RPA/2] results (dashed curves).

double counting. As seen in Fig. 5, both approximations in
Eqs. (3) and (8) yield very similar shapes for each partial-wave
contribution ν of the diagonal imaginary part of Im[V ] for
neutron scattering from 40Ca at 9.91 MeV. This trend remains
true for higher partial waves and incident energies, confirming
the good behavior of V HF + �V . In Fig. 6 we present the
differential cross section for proton scattering from 40Ca based

on these two approximations. The diffractive minima obtained
with V HF + �V agree better with experiment than those
obtained from V HF + Im[V RPA/2]. This result emphasizes
the important role played by the real part of �V .

IV. CONCLUSION

The work presented here constitutes a promising step
forward aimed to a model keeping at the same footing both
reaction and structure aspects of the many-nucleon system.
Within the optical model potential, NSM is able to account
reasonably well for low-energy-scattering data. An important
feature of the approach is the extraction of the imaginary part
of the potential by means of intermediate excitations of the
system. It has been based on the Gogny effective interaction,
although it can be applied to any interaction of similar nature.
The study has been restricted to a closed-shell target but can
be extended to account for pairing correlations as well as axial
deformation using quasiparticle RPA. Those results also open
the way to new parametrizations of NN effective interactions
including reaction constraints. A comprehensive work on the
formalism and applications shall be presented elsewhere.
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