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Thermal properties of asymmetric nuclear matter, including the temperature dependence of the symmetry
energy, single-particle properties, and differential isospin fractionation, are investigated with different neutron-
proton effective mass splittings by using an improved isospin- and momentum-dependent interaction. In this
improved interaction, the momentum dependence of the isoscalar single-particle potential at saturation density is
well fit to that extracted from optical-model analyses of proton-nucleus scattering data up to the nucleon kinetic
energy of 1 GeV, and the isovector properties, i.e., the slope of the nuclear symmetry energy, the momentum
dependence of the symmetry potential, and the symmetry energy at saturation density, can be flexibly adjusted
via three parameters: x, y, and z, respectively. Our results indicate that the nucleon phase-space distribution in
equilibrium, the temperature dependence of the symmetry energy, and the differential isospin fractionation can
be significantly affected by the isospin splitting of the nucleon effective mass.
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I. INTRODUCTION

Understanding the in-medium nucleon-nucleon (NN) in-
teraction is one of the main tasks of nuclear physics. The
single-particle potential of a nucleon in the nuclear medium
is closely related to the NN interaction as well as to the
properties of nuclear matter. Based on the Brueckner theory,
the potential of a nucleon depends not only on the properties of
the medium but also on the momentum of the nucleon, and the
momentum dependence comes from the exchange contribution
of the finite-range NN interaction within the Hartree–Fock
framework. More than twenty years ago, for studying heavy-
ion collisions, the momentum-dependent mean-field potential
was gradually improved from the Gale–Bertsch–Das Gupta
(GBD) interaction [1] to a momentum-dependent Yukawa
interaction (MDYI) [2,3]. Later, the isospin dependence was
further introduced to the momentum-dependent potential and
the newly developed interaction was named MDI [4]. It was
found that the momentum dependence of the nucleon potential
affects not only the dynamics of heavy-ion collisions (see
Ref. [5] for a review), but also the thermodynamic properties
of nuclear matter as well [6,7]. This interaction has further been
used to study the core-crust transition density of neutron stars
[8–10] and to study the properties of hybrid stars after it was
extended to include hyperon interactions [11]. Moreover, the
MDI together with an isospin-dependent Boltzmann–Uehing–
Uhlenbeck transport model was used to study the symmetry
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energy at both subsaturation [12] and suprasaturation densities
[13]. For the latest review of the MDI interaction, we refer the
reader to Ref. [14].

The above MDI interaction was further improved in 2010
[15], and the new interaction, dubbed ImMDI, mainly includes
the following three improvements: First, the single-particle
potential in symmetric nuclear matter at ρ0 was refit to
reproduce the empirical optical potential [16,17] up to nucleon
kinetic energy of 1 GeV, while that in the previous MDI
interaction becomes more attractive than that extracted from
the proton-nucleus scattering data at nucleon momenta larger
than about 550 MeV/c (i.e., the nucleon kinetic energy of
about 160 MeV), as can be seen from Fig. 2 of Ref. [11].
Second, a parameter y was introduced to mimic the momen-
tum dependence of the symmetry potential or, equivalently,
the isospin splitting of the nucleon effective mass. Third,
considering that the isospin tracers are sensitive to both the
slope parameter L of the symmetry energy (mimicked by
the parameter x in the MDI interaction) and the symmetry
energy Esym(ρ0) at the saturation density and the constraints
of the nuclear symmetry energy are usually mapped in the
L ∼ Esym(ρ0) plane (see, e.g., Fig. 1 of Ref. [18] and Fig. 2
of Ref. [19]), a parameter z is introduced to vary the value
of Esym(ρ0). The ImMDI can thus describe more reliably
the dynamics of heavy-ion collisions at beam energies up
to 1 GeV and provide possibilities to study simultaneously
more detailed isovector properties of nuclear matter, such as
the slope parameter of the symmetry energy, the momentum
dependence of the symmetry potential, and the symmetry
energy at saturation density.

The neutron-proton effective-mass splitting has been stud-
ied for a long time [20–24] and has recently become again a
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hot topic [25–34]. It is noteworthy that, in relativistic models,
one needs to calculate the Lorentz mass so that it can be
compared with that from the nonrelativistic interactions. For
Lorentz effective mass, the microscopic Brueckner–Hartree–
Fock or Dirac–Brueckner–Hartree–Fock approach and most
Skyrme–Hartree–Fock calculations lead to a larger neutron
effective mass than proton effective mass in neutron-rich
nuclear matter, while most relativistic mean-field models
and a few Skyrme–Hartree–Fock calculations give opposite
predictions. The larger neutron effective mass than proton
effective mass requires that the nuclear symmetry potential
decreases with increasing nucleon momentum or energy,
which is more consistent with the Lane potential in trend [22].
In addition, the neutron clearly has a larger effective mass
than the proton in neutron-rich matter based on optical-model
analyses for nucleon-nucleus elastic scattering [31,32,35]. On
the other hand, the recent experimental data of the double
neutron/proton ratio from the National Superconducting Cy-
clotron Laboratory seems to favor a smaller neutron effective
mass than proton effective mass based on the calculation
using an improved quantum molecular dynamics model [36],
although short-range correlations might be another alternative
explanation [37]. Since the possibility of a smaller neutron
effective mass than proton effective mass in neutron-rich
matter has not been absolutely ruled out yet and is currently
hotly debated, it is of great interest to study in more detail
the possible effects from different neutron-proton effective-
mass splittings. It was found that the dynamic properties in
heavy-ion collisions can be affected by the isospin splitting
of nucleon effective mass and the latter has considerable
effect on the single and double neutron/proton ratio, t/3He
ratio, and isospin-dependent collective flows and particle
productions [23–26,28,29,33,34]. In the present paper, we
study the effects on thermodynamical properties of nuclear
matter from different isospin splittings of nucleon effective
mass based on the ImMDI.

II. IMPROVED ISOSPIN- AND MOMENTUM-DEPENDENT
INTERACTION

The functional form of potential energy density of nuclear
matter for the ImMDI is the same as the MDI [4,12], i.e.,
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In the mean-field approximation, Eq. (1) leads to the following
single-particle potential [4,12]:
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In the above, ρn and ρp are number densities of neutrons and
protons, respectively, and the isospin asymmetry δ is defined
as δ = (ρn − ρp)/ρ, with ρ = ρn + ρp being the total number
density. fτ (�r, �p ) is the phase-space distribution function, with
τ = 1 (−1) for neutrons (protons) being the isospin index.

The seven parameters (Al,Au, B,Cl = Cτ,τ , Cu =
Cτ,−τ ,�, σ ) can be fit by seven empirical constraints.
Typically, five isoscalar constraints of the saturation density
ρ0, the binding energy E0, the incompressibility K0, the
isoscalar effective mass m�

s , and the single-particle potential
U0,∞ at infinitely large nucleon momentum at saturation
density in symmetric nuclear matter can be determined by
Al + Au,B,Cl + Cu,�, and σ . In addition, two isovector
constraints of the symmetry energy Esym(ρ0) and the symmetry
potential Usym,∞ at infinitely large nucleon momentum (or
equivalently the neutron-proton effective-mass splitting)
at saturation density can be determined by Al − Au and
Cl − Cu. In addition to the x parameter in the previous MDI,
which can be used to adjust the slope parameter L of the
symmetry energy at saturation density, we introduce two
additional parameters y and z to adjust respectively Usym,∞
and Esym(ρ0), and Al , Au, Cl , and Cu can then be expressed as
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, (3)

Au(x,y) = Au0 − y − x
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where pf 0 is the nucleon Fermi momentum in symmetric
nuclear matter at saturation density. For x = 0, y = 0, and z =
0, we choose the following empirical values: ρ0 = 0.16 fm−3,
E0(ρ0) = −16 MeV, K0 = 230 MeV, m�

s = 0.7m, Esym(ρ0) =
32.5 MeV, and U0,∞ = 75 MeV, which lead to Al0 = Au0 =
−66.963 MeV, B = 141.963 MeV, Cl0 = −60.4860 MeV,
Cu0 = −99.7017 MeV, � = 2.42401pf 0, and σ = 1.26521.
Again, the values of x, y, and z only affect the isovector
properties of nuclear matter but do not lead to the variation of
the empirical isoscalar constraints.

The potential-energy density functional of Eq. (1) can be
obtained from the following effective NN interaction within
the Hartree–Fock approach [4,38]:

v(�r1,�r2) = 1

6
t3(1 + x3Pσ )ργ

( �r1 + �r2

2

)
δ(�r1 − �r2)
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|�r1 − �r2| ; (7)
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FIG. 1. (Color online) The ImMDI prediction for the single-
particle potential in symmetric nuclear matter at ρ0 as a function
of nucleon total energy with its rest mass subtracted. The results of
the MDI and the optical potential by Hama et al. [16,17] are also
shown for comparison.

namely, a density-dependent zero-range interaction and a
finite-range Yukawa-type two-body interaction, with �r1 and
�r2 being the spatial coordinates of the two nucleons and
Pσ and Pτ being the spin and isospin exchange operators,
respectively. The values of the parameters t3, γ,W,G,H,M ,
and μ can be uniquely determined from Al,Au, B,Cl, Cu,�,
and σ [38]. The x parameter is related to the value of x3,
i.e., the relative contribution of the isospin-singlet and the
isospin-triplet channel of the density-dependent interaction,
while the values of y and z are related to those of W,G,H ,
and M and are thus determined by the different spin-isospin
channels of the finite-range interaction.

In the ImMDI, U0,∞ = (Al + Au)/2 + B = 75 MeV is
selected to fit the empirical optical potential of Hama et al., and
this can be seen from Fig. 1 where the single-particle potential
(i.e., the real part of the optical potential) in symmetric
nuclear matter at ρ0 is plotted as a function of nucleon
total energy with its rest mass subtracted, i.e., E − m. The
results of the MDI and the optical potential by Hama et al.
[16,17] are also shown for comparison. One can see that
the MDI, whose momentum dependence of the mean-field
potential is fit to reproduce that of the Gogny interaction,
significantly underpredicts the empirical optical potential by
Hama et al. when E − m is larger than about 160 MeV. We
note that the wrong asymptotic value of the isoscalar potential
at high momentum is actually a longstanding problem of the
Gogny effective interaction. On the other hand, the energy
and momentum dependence of the single-particle potential
in symmetric nuclear matter at ρ0 predicted by the ImMDI
is in good agreement with the empirical optical potential by
Hama et al. in the whole energy region up to about E − m =
1000 MeV. Therefore, the ImMDI provides a reasonable
choice for the transport-model simulations for heavy-ion
collisions at low and intermediate energies (up to at least about
1 GeV/nucleon).

FIG. 2. (Color online) The symmetry energy from the ImMDI
by (a) adjusting the value of parameter x at y = −115 MeV and
z = 0 MeV or (b) parameter z at x = 0 and y = −115 MeV.

In the ImMDI, one can vary flexibly three parameters, i.e.,
x, y, and z to change the isovector properties of nuclear
matter. Similar to the previous MDI interaction, the density
dependence of the symmetry energy (e.g., the slope parameter
L) changes with the parameters x while Esym(ρ0) remains
unchanged, as can be seen from the left panel of Fig. 2. On the
other hand, the value of the symmetry energy at saturation
density changes from Esym(ρ0) to Esym(ρ0) + z when z is
adjusted, as can be seen from the right panel of Fig. 2. In
this way one can easily study the sensitivity of the isospin
tracers to the values of L and Esym(ρ0) simultaneously. In
addition, one can vary the y parameter, which is equivalent to
Usym,∞, to modify the momentum dependence of the symmetry
potential Usym(ρ,p) at ρ0 (and also other densities), while in
the MDI interaction, the momentum dependence of Usym(ρ,p)
is fixed although the magnitude of Usym(ρ,p) at nonsaturation
densities can be varied by using different x values. It is clearly
seen from the left panel of Fig. 3 that one can flexibly vary
the y parameter to mimic different momentum or energy
dependencies of Usym(ρ,p) (and thus the isospin splitting
of the nucleon effective mass), providing a convenient way

FIG. 3. (Color online) (a) The symmetry potential at saturation
density and (b) symmetry energy from the ImMDI by adjusting the
value of parameter y at x = 1 and z = 0 MeV.
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to explore the consequent effects in heavy-ion collisions. In
addition, one can see Usym(ρ0,p) at p = pf 0 (corresponding
to a nucleon kinetic energy of 36.8 MeV) is independent of
the y parameter by construction. On the other hand, it is seen
from the right panel of Fig. 3 that the density dependence of
the symmetry energy changes with y as well, with the values
of Esym(ρ0) fixed. This can be understood because the slope
parameter L depends not only on the magnitude of symmetry
potential, which is related to the x parameter, but also on the
momentum dependence of the symmetry potential [35,39].

III. EFFECTS OF NEUTRON-PROTON
EFFECTIVE-MASS SPLITTING

The ImMDI described in the previous section provides
possibilities of flexibly studying more detailed isovector prop-
erties of nuclear matter. In the following, we study the effects
of neutron-proton effective-mass splitting on thermodynamic
properties of neutron-rich nuclear matter. One can see from
Figs. 2 and 3 that [(x = 0), (y = −115 MeV)] and [(x = 1),
(y = 115 MeV)] give almost the same density dependence
of the symmetry energy at z = 0, whereas the two parameter
sets lead to two extreme momentum dependencies of the sym-
metry potential, with Usym from [(x = 0), (y = −115 MeV)]
decreasing with increasing nucleon momentum and thus m�

n >
m�

p and that from [(x = 1), (y = 115 MeV)] increasing with
increasing nucleon momentum and thus m�

n < m�
p. We will

carry out our study based on the two parameter sets in the
following.

A. Temperature dependence of symmetry energy

Because from Eq. (2) the single-particle potential depends
on the phase-space distribution function, and from the single-
particle approximation this Fermi–Dirac phase-space distri-
bution function in equilibrium depends on the single-particle
potential, an iteration method is needed to calculate the mean-
field potential and the equation of state at finite temperature
[40]. From such a self-consistent calculation, the equilibrated
phase-space distribution functions of neutrons and protons for
[(x = 0), (y = −115 MeV)] and [(x = 1), (y = 115 MeV)] in
neutron-rich nuclear matter of isospin asymmetry δ = 0.5 at
saturation density and temperature T = 30 MeV are displayed
in Fig. 4. It is seen that [(x = 0), (y = −115 MeV)], giving
a larger neutron effective mass than proton effective mass,
has a more diffusive distribution for neutrons and a less
diffusive distribution for protons compared with [(x = 1),
(y = 115 MeV)]. This is understandable because the self-
consistent calculation balances the energy of the system at
fixed isospin asymmetry, so for a larger neutron (proton) effec-
tive mass than proton (neutron) effective mass ) with [(x = 0),
(y = −115 MeV)]([(x = 1), (y = 115 MeV)]) more neutrons
(protons) are allowed to occupy the high-momentum states.

As a key quantity of isospin physics, the density dependence
of the symmetry energy for [(x = 0), (y = −115 MeV)]
and [(x = 1), (y = 115 MeV)] at different temperatures is
shown in Fig. 5. At finite temperatures the symmetry energy
is calculated numerically by taking the difference in the
binding energy between δ = 0 and δ = 0.2. One can see for

FIG. 4. (Color online) The equilibrated phase-space distribution
functions (normalized by the spin degeneracy) of (a) neutrons
and (b) protons from the ImMDI for [(x = 0), (y = −115 MeV)]
and [(x = 1), (y = 115 MeV)] in neutron-rich nuclear matter of
isospin asymmetry δ = 0.5 at saturation density and temperature
T = 30 MeV.

[(x = 0), (y = −115 MeV)] that the symmetry energy de-
creases with increasing temperature at lower densities but
slightly increases with increasing temperature at higher densi-
ties, while for [(x = 1), (y = 115 MeV)] the symmetry energy
decreases with increasing temperature at all the densities.
Similar behavior was observed in Ref. [26] based on the
Skyrme–Hartree–Fock functional. To understand the different
temperature dependence of the symmetry energy with different
isospin splitting of nucleon effective mass, we further show in
Figs. 6 and 7 the kinetic and potential contribution to the
symmetry energy, respectively. It is interesting to see that
the kinetic contribution to the symmetry energy increases
with increasing temperature for [(x = 0), (y = −115 MeV)]
but decreases with increasing temperature for [(x = 1), (y =
115 MeV)]. This is because there are more neutrons and less
protons in the high-energy states with increasing temperature

FIG. 5. (Color online) The nuclear symmetry energy from the
ImMDI for (a) [(x = 0), (y = −115 MeV)] and (b) [(x = 1), (y =
115 MeV)] at temperatures of 0, 10, 30, and 50 MeV.
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FIG. 6. (Color online) Same as Fig. 5 but only for the kinetic
contribution of the symmetry energy.

for [(x = 0), (y = −115 MeV)] but it is opposite for [(x = 1),
(y = 115 MeV)], as can be seen from Fig. 4. For the potential
contribution to the symmetry energy, it somehow decreases
with increasing temperature for [(x = 0), (y = −115 MeV)]
but has a weak temperature dependence for [(x = 1), (y =
115 MeV)]. The combination of Figs. 6 and 7 leads to the tem-
perature dependence of the total symmetry energy in Fig. 5.

B. Isovector single-particle properties

We now move to the isovector single-particle properties
of nuclear matter including the symmetry potential and
the neutron-proton effective-mass splitting. The momentum
dependence of the symmetry potential for [(x = 0), (y =
−115 MeV)] and [(x = 1), (y = 115 MeV)] at different
densities and temperatures is shown in Fig. 8, and the results
are calculated by taking the potential difference of neutrons
and protons at δ = 0.2. One can see that the symmetry
potential decreases with increasing momentum for [(x = 0),

FIG. 7. (Color online) Same as Fig. 5 but only for the potential
contribution of the symmetry energy.

FIG. 8. (Color online) The momentum dependence of the sym-
metry potential from the ImMDI for (a) [(x = 0), (y = −115 MeV)]
and (b) [(x = 1), (y = 115 MeV)] at different densities and
temperatures.

(y = −115 MeV)] but increases with increasing momentum
for [(x = 1), (y = 115 MeV)], and the slope is larger at
higher densities. The symmetry potential becomes negative
at high nucleon momenta for [(x = 0), (y = −115 MeV)]
while it is always positive for [(x = 1), (y = 115 MeV)].
With increasing temperature, only the low-momentum part of
the symmetry potential is affected while the high-momentum
part remains almost unchanged. It is interesting to see that
symmetry potential decreases with increasing temperature for
[(x = 0), (y = −115 MeV)] while it increases with increasing
temperature for [(x = 1), (y = 115 MeV)].

A positive symmetry potential gives repulsive force to
neutrons and attractive force to protons, while the velocity
of the nucleon depends not only on the force but also on the
in-medium effective mass. The nucleon effective mass, which
is defined as

m∗
τ

m
=

(
1 + m

p

dUτ

dp

)−1

, (8)

is a function of nucleon momentum but is mostly represented
by the value at Fermi momentum. The relative neutron-proton
effective-mass splitting for [(x = 0), (y = −115 MeV)] and
[(x = 1), (y = 115 MeV)] in neutron-rich nuclear matter of
isospin asymmetry δ = 0.5 at different densities and temper-
atures is shown in Fig. 9. Indeed, the neutron effective mass
is larger than that for protons for [(x = 0), (y = −115 MeV)]
and smaller than that for protons for [(x = 1), (y = 115 MeV)]
at all the densities and temperatures. Generally, the relative
effective-mass splitting is smaller at higher nucleon momenta
and stronger at higher densities, and the splitting becomes
weaker at higher temperatures for [(x = 0), (y = −115 MeV)]
but the temperature dependence is somehow complicated for
[(x = 1), (y = 115 MeV)], especially at higher densities.

C. Differential isospin fractionation

The two phases of nuclear matter can coexist if the Gibbs
condition is satisfied, i.e., they have the same temperature,
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FIG. 9. (Color online) The relative neutron-proton effective mass
splitting from the ImMDI for (a) [(x = 0), (y = −115 MeV)] and
(b) [(x = 1), (y = 115 MeV)] in neutron-rich nuclear matter of
isospin asymmetry δ = 0.5 at different densities and temperatures.

pressure, and chemical potential. The dense phase with smaller
isospin asymmetry is called the liquid phase, while the dilute
phase with larger isospin asymmetry is called the gas phase.
As the symmetry energy generally increases with increasing
density, at least at subsaturation densities, the high-density
phase should have a smaller isospin asymmetry while the
low-density phase can have a larger isospin asymmetry, so
in this way the total energy can be well distributed in the
two phases and reach a minimum value. This is the so-called
isospin fractionation.

Numerically, the binodal surface of the nuclear liquid-gas
phase transition can be constructed by drawing rectangles
in the chemical potential isobars of neutrons and protons as
functions of isospin asymmetry at a given temperature [41,42].
The two phases obtained thus satisfy the Gibbs condition,
with the one of larger isospin asymmetry corresponding to
the gas phase and that of the smaller isospin asymmetry
corresponding to the liquid phase. Collecting all such pairs
at each pressure forms the binodal surface of the nuclear
liquid-gas phase transition, as shown in the left panel of Fig. 10
at the temperature T = 10 MeV. The binodal surface is useful
in calculating the volume fraction of each phase and studying
the properties of nuclear liquid-gas phase transition at fixed
isospin asymmetry, as shown in Ref. [7], and the liquid phase
(L), the gas phase (G), and the mixed phase (M) are denoted
in the figure. One can see that the binodal surface is similar for
[(x = 0), (y = −115 MeV)] and [(x = 1), (y = 115 MeV)].
This is not surprising because both the chemical potential
and the pressure are determined from the equation of state,
which is almost the same for the two parameter sets. The slight
difference is expected to be due to the different temperature
dependence of the symmetry energy.

Similar to Ref. [43], we study the differential isospin
fractionation at pressure P = 0.1 MeV/fm3. As can be seen
from the left panel of Fig. 10, the nuclear matter in the mixed-
phase region at P = 0.1 MeV/fm3 comprises the liquid phase
and the gas phase at two edges of the binodal surface with the
same pressure. For [(x = 0), (y = −115 MeV)], the densities
and isospin asymmetries of the liquid and gas phases are

FIG. 10. (Color online) Left panel shows the section of binodal
surface from the ImMDI for [(x = 0), (y = −115 MeV)] and
[(x = 1), (y = 115 MeV)] at a temperature T = 10 MeV. L, G,
and M represent the liquid phase, the gas phase, and the mixed phase,
respectively. Right panel shows the double neutron/proton ratio in gas
and liquid phases (n/p)G/(n/p)L at the pressure of 0.10 MeV/fm3

as a function of nucleon momentum.

ρL = 0.757ρ0, δL = 0.273, ρG = 0.087ρ0, and δG = 0.766,
respectively. For [(x = 1), (y = 115 MeV)], the densities
and isospin asymmetries of the liquid and gas phases are
ρL = 0.752ρ0, δL = 0.285, ρG = 0.083ρ0, and δG = 0.758,
respectively. Thus, the ratios of neutron to proton in the gas
phase to that in the liquid phase, i.e., (n/p)G/(n/p)L, are 4.31
for [(x = 0), (y = −115 MeV)] and 4.04 for [(x = 1), (y =
115 MeV)]. Although the total ratios are similar for the two
parameter sets, the differential behaviors, i.e., the momentum
dependence, are quite different, as can be seen from the right
panel of Fig. 10. Similar to the findings in Ref. [43], the ratio
(n/p)G/(n/p)L becomes less than unity when the nucleon
momentum is larger than about 500 MeV/c. This can be
understood by checking with the symmetry potential in Fig. 8
that Usym becomes negative when the nucleon momentum is
larger than about 500 MeV/c. For [(x = 1), (y = 115 MeV)],
since the symmetry potential is always positive and is larger at
higher nucleon momenta, the ratio (n/p)G/(n/p)L is always
greater than unity and increases with increasing momentum
at higher nucleon energies. In intermediate-energy heavy-ion
collisions, the gas phase is formed by free nucleons while the
liquid phase is formed by those in heavy clusters. Consistent
with the finding here, it was shown in Refs. [23,24,29,33] that
the neutron-to-proton ratio of energetic nucleons is sensitive
to the neutron-proton effective-mass splitting.

IV. SUMMARY

Based on an improved isospin- and momentum-dependent
interaction, with the isoscalar single-nucleon potential refit to
that extracted by optical-model analyses of proton-nucleus
scattering data up to the nucleon kinetic energy of about
1 GeV/c, and three parameters included for studying the
detailed isovector properties of nuclear matter, i.e., the slope
parameter of the symmetry energy, the momentum dependence
of the symmetry potential, and the symmetry energy at
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saturation density, we studied the thermodynamical properties
of neutron-rich nuclear matter with the same equation of
state but different neutron-proton effective-mass splittings.
We find that the phase-space distribution in equilibrium, the
temperature dependence of the symmetry energy, and the
differential isospin fractionation can be affected by the isospin
splitting of nucleon effective mass.
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