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Effect of 6Li resonances on near-barrier elastic scattering involving 28Si and 58Ni target nuclei
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Calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with
targets 28Si and 58Ni at energies just above the Coulomb barrier are performed with the continuum-discretized
coupled-channel calculation method. Ground, resonant, and nonresonant continuum states of 6Li are included
in the convergent calculations. The effect of the resonances on elastic scattering angular distributions is studied,
in an original procedure, by excluding from the continuum space those states corresponding to the resonances.
When the resonances of 6Li are considered, the calculated elastic scattering angular distributions are in good
agreement with the measurements. The exclusion of the resonances, unexpectedly, has a very small effect at the
energies studied. Calculation of the polarization potentials associated with the resonances show that they have
a repulsive character at the long range region, where scattering occurs. It is also confirmed that couplings to
continuum states of 6Li are essential to achieve agreement with the data.
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I. INTRODUCTION

In the last years, reaction mechanisms involving weakly
bound nuclei, both stable and radioactive, have been a
subject of strong research from experimental and theoretical
viewpoints [1–3]. Since weakly bound nuclei can easily
fragment into different components, the effects of breakup
on elastic scattering and on fusion reaction mechanisms have
been a central subject of study. Moreover, it is now known that
couplings to continuum states of the weakly bound projectile
have a strong effect not only on elastic scattering but on other
reaction processes such as fusion. At energies close to the
barrier, it has been found [4–8] that couplings to continuum
states give rise to repulsive polarization potentials that decrease
fusion absorption.

Among the most experimentally and theoretically studied
weakly bound nuclei is 6Li. Elastic, fusion, and breakup
cross section measurements are available in a wide range
of energies for the reaction of 6Li with a large variety of
target masses, such as 4He, 12C, 27Al, 28Si, 58Ni, 59Co, 144Sm,
and 208Pb [9–19] . In the cluster model, the weakly bound
stable nucleus 6Li is portrayed with a α-d structure [10,20]
with a ground state energy of −1.47 MeV and resonant states
with l = 2, jπ = 3+,2+, and 1+. These states are identified
to have energies ε3+ = 0.71, ε2+ = 2.83, ε1+ = 4.18 MeV
(above threshold) and widths �3+ = 0.024, �2+ = 1.7, and
�1+ = 1.5 MeV, respectively.

Since breakup processes involve unbound states of the
projectile’s fragments, an adequate theoretical tool to inves-
tigate the effect of breakup continuum states on elastic and
fusion processes is the continuum-discretized coupled-channel
model (CDCC) [12,21]. In this model, the continuum space is
discretized in a finite number of states up to a maximum energy
where the calculations converge. The purpose of the present
work is to calculate the effect on elastic scattering angular
distributions, of the resonant continuum states of the weakly
bound nucleus 6Li → d + α, in reactions with the 28Si and

58Ni targets, at energies around the Coulomb barrier. The usual
CDCC calculations (see, for example, [4,12,16,20,22,23])
include these resonances in the whole continuum spectrum. In
some works where CDCC calculations are not performed, as
for example, those by Dasgupta et al. [24], the effect of breakup
on the fusion cross section is approximately simulated by
performing standard coupled channel calculations including
the resonant states as excited bound states, in the case that the
widths of the resonances are not so large and the resonances
live a longer time than the reaction time.

In the present work we perform two kinds of calculations.
The first is the usual one, with several energy bins, including
the resonances. In the second, we exclude from the whole
discretized energy states those around the resonances, in order
to compare both results and have information concerning the
role played by those resonances in the elastic scattering of 6Li.
In this way, we can disentangle the importance of couplings
to resonance states in the CDCC calculations. On the same
footing, the polarization potentials associated with couplings
to resonance states are calculated and the effect of resonance
couplings on elastic scattering may be explained in terms of
these potentials.

The CDCC method is used with global d-target and α-target
interactions which depend on the target mass A and incident
collision energy Elab. The global Woods-Saxon potentials
of Ref. [25] are used for the d-target interaction VdT . The
parametrization of these potentials has been obtained by a large
analysis of experimental elastic and inelastic cross sections
for reactions of deuteron with a large variety of nuclear
target masses (12 < A < 238) and range of incident energies
(Elab < 183 MeV). This interaction is an improvement on
other widely used systematic parametrizations [26–28]. The
present calculations also test this improved parametrization
of the VdT interaction, when used to describe continuum
states of the deuteron after the breakup of 6Li in reaction
with different targets. The density dependent double-folding
Sao Paulo potential (SPP) [29], with adequate α-particle mass
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densities, is used to describe the α-target interaction VαT . The
SPP has been widely used with success to describe elastic and
inelastic scattering, as well as nucleon transfer cross sections
for a number of nuclear systems (see, for example [30–34]. An
extensive systematics of nuclear densities has been performed
in Ref. [30] to produce a parameter-free interaction. In our
calculations, the α-target interaction depends only on the target
mass A and kinetic energy of the α particle in respect to the
initial incident energy of 6Li. As for the α-d cluster structure
of 6Li, we use the Woods-Saxon parameterization given in
Ref. [20]. Ground, unbound resonant, and nonresonant contin-
uum scattering states of 6Li are generated with this interaction.

The paper is organized as follows. In Sec. II, a brief
description of the CDCC formalism is given. Section III
addresses the CDCC calculations for elastic scattering angular
distributions, polarization potentials, and how the effect of
resonant continuum states of 6Li is calculated. Finally, a
summary is given in Sec. IV.

II. CDCC FORMALISM FOR A THREE-BODY SYSTEM

The 6Li projectile is considered as a two-body nucleus,
made of an α particle and a deuteron, which together with the
target nucleus considered inert, form a three-body system. The
6Li wave function reads as

ψP
lsj (r,k) = {

Ylml
(r̂) ⊗ χIμsσ

}
lj

ϕl(r,k)

r
, (1)

where χIμsσ stands for the total internal wave function of
both the α particle and deuteron (since the clusters are
considered inert, I = 0, while s = 1 due to the deuteron spin);
ϕl(r,k) describes the α-d radial motion with asymptotic wave
number k, orbital angular momentum l, and total angular
momentum j . Equation (1) represents eigenstates of the
projectile Hamiltonian, ĥαd = T̂r + V̂αd , with eigenvalues εβ ,
where β ≡ {lsjk}. β = 0 refers to the 6Li ground state (g.s.).
The remaining states are unbound (scattering and resonant)
states. The continuum states ϕl(r,k) in Eq. (1) are not square
integrable, but the CDCC framework [12,21] provides a recipe
for constructing square-integrable wave functions that are
called bin states.

A bin state u
(i)
β (r) is made of scattering wave functions

within a given interval of continuum k values, ki−1 < k < ki ,

u
(i)
β (r) =

√
2

πηl

∫ ki

ki−1

wi(k,l)e−iδk (l)ϕlsj (r,k)dk, (2)

where δk(l) are scattering phase shifts of ϕβ . The weight
functions wi(k,l) are usually unity, but for resonant bins
wi(k,l) = sin[δk(l)], they satisfy,

ηl =
∫ ki

ki−1

|wi(k,l)|2dk. (3)

The energy εβ = �
2

2μαd
(ki−1 + ki)2/4 is associated with

the bin state of Eq. (2). These bin states along with the
g.s. wave function are used as a discrete basis for expand-
ing the total three-body wave function. That is, (R,r) =∑

β Fβ(R)ψP
β (r)�T

0 , where �T
0 and Fβ(R) describe the inert

target and the projectile-target relative motion in the β channel,

respectively. This three-body wave function obeys the station-
ary Schrödinger equation with the asymptotic, Coulomb-wave
boundary condition and the three-body Hamiltonian,

Ĥ = T̂R,K + ĥαd (r,k) + V̂αT

(
R + 2

6 r) + V̂dT (R − 4
6 r

)
,

(4)

where T̂R,K is the kinetic energy operator for the projectile-
target relative motion, and V̂αT and V̂dT denote the α
particle and deuteron interactions with the target, respectively.
Projecting this Schrödinger equation onto the ψP

β (r)�T
0 states,

the following coupled equations are obtained,[
T̂R + U

(J )
ββ (R) − E − εβ

]
F

(J )
β (R) = −

∑
β ′

U
(J )
ββ ′ (R)F (J )

β ′ (R),

(5)

where F
(J )
β (R) is the radial part of Fβ(R) with total angular

momentum J . In Eq. (5), U (J )
ββ (R) and U

(J )
ββ ′ (R) stand for radial

dependent diagonal and nondiagonal matrix elements of the
interaction potentials,

U
(J )
ββ ′ (R) = 〈uβ |V̂dT + V̂αT |uβ ′ 〉, (6)

where the integration is carried out over the target and
projectile internal coordinates as well as the angular part of
R. The diagonal term U

(J )
00 (R) refers to the elastic optical

potential; the couplings among the projectile states appear on
the r.h.s in Eq. (5).

Details of the calculations

The CDCC calculations have been performed with
the FRESCO code [35], using the following interaction
potentials:

(i) The nuclear part of the deuteron-target potential VdT is
the global optical potential from Ref. [25]. Note that a
parameterization for radii (Rj = rjA

1/3) which differs
from the FRESCO parametrization [Rj = rj (A1/3

1 +
A1/3)] has been used in Ref. [25], where A1 = 2 and
A refers to the target mass.

(ii) For the nuclear part of VαT , the Sao Paulo potential
(SPP) has been used [29,30]. The SPP is a nonlocal,
double-folding density-dependent and parameter-free
potential. The bare interaction takes into account the
Pauli nonlocality involving the exchange of nucleons
between projectile and target. The bare nonlocal
potential is connected with the local folding potential
VF (r) through an effective energy dependence, as the
following expression:

VαT (r,Eα) = [NR + iNI ]VF (r)e−v2
α/c2

, (7)

where r is the separation between the α particle and
target, vα is their relative velocity, and c is the speed
of light. The velocity dependence of the potential
is essential to account for the data from sub-barrier
to intermediate energies, about 200 MeV/nucleon.
However, for the energy range of the present work, it is
not important. The radial shape of the imaginary part
has the same form as the real part, with normalization
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TABLE I. Calculated and experimental values (MeV) for energies
and widths of 6Li resonances.

Res. Ecal �cal Eexp �exp

3+ 0.73 0.034 0.716 0.024
2+ 3.09 1.3 2.84 1.7
1+ 4.67 4.2 4.18 1.5

coefficients NR and NI . The values of NR = 1 and
NI = 0.78 are widely used, since they were able
to explain data for tens of systems [31]. The SPP,
which has been widely used in tens of papers with
the assumptions mentioned above, is, therefore, a
parameter-free potential which depends only on the
masses A1,A2 of the interacting nuclei and collision
energy Eα . In our case, A1 = 4, A2 = AT , and the
collision energy is Eα = 4

6Elab.
(iii) Two potentials, Vαd (see Table I in Ref. [20]), have

been used for generating the 6Li g.s. and contin-
uum states, respectively. A Woods-Saxon potential
provides the correct g.s. (with an energy of ε0 =
−1.47 MeV and quantum numbers n = 2,l = 0,jπ =
1+), while another Woods-Saxon potential including a
spin-orbit term yields the l = 2 (jπ = 3+,2+, 1+) res-
onances whose features are in reasonable agreement
with observations (see Table I), with the exception
of the calculated 1+ resonance width that is notably
broader than the experimental value. However, we
expect that this disagreement does not impact on
the conclusions drawn in the present work, as the
discretized breakup space (see below) has provided
a good quantitative explanation of observed fusion
excitation functions [20] as well as elastic-scattering
differential cross sections [18] in low-energy colli-
sions involving the 6Li projectile.

The nuclear and Coulomb potential multipoles of both VdT

and VαT up to the hexadecapole term (Q � 4) have been
included in the calculations.

1. Breakup space for convergence

The discretization of the continuum is as follows. The
maximum orbital angular momentum for the α-d relative
motion is lmax = 3; larger values do not have any effect on
the calculations. So, bin states for l = 0 ( jπ = 1+) and l = 1
(jπ = 0−,1−,2−) are constructed with step �ε = 0.5 MeV
up to εmax = 6.8 MeV. Finer and variable steps are used for
resonant states l = 2 (jπ = 3+,2+, 1+).

For bin states l = 3 (jπ = 4+,3+,2+) a larger step �ε =
1.0 MeV is used. Convergence tests at εmax = 7.0,7.5, and
8.0 MeV were done with no effect on elastic angular
distributions. Similarly, larger steps �ε = 0.75 and 1.0 MeV
were used with no appreciable effect on elastic scattering.

2. Separating the effect of resonances on the elastic scattering

It is very difficult (if not impossible) to separate the
resonant continuum from the nonresonant one completely,
as the features of the scattering states as a function of the

energy are determined by the Vαd potential. However, the
continuum-discretization procedure facilitates such a separa-
tion as follows. A resonant bin state is constructed with Eq. (2)
using scattering states within an energy window determined
by the resonance width (see Table I); a single bin state or
a group of bins are associated to the centroid energy of the
resonance. The resonant bins with l = 2 (jπ = 3+,2+, 1+) can
be either included or removed from the set of coupled equations
(5), allowing us to study their role in the elastic-scattering
differential cross section. Please note that there is still some
ambiguity in the present separation procedure as scattering
states lying at the tail of the resonance strength function may be
included in the nonresonant continuum bins. Nevertheless, the
present work sheds light on the effect of specific 6Li resonant
states on the elastic-scattering angular distribution.

III. RESULTS OF THE CDCC CALCULATIONS:
EFFECT OF RESONANCES

In this section CDCC calculations of elastic scattering
angular distributions are presented for the projectile 6Li
with targets 28 Si and 58Ni, for incident energies just above
the corresponding Coulomb barriers. Figure 1 shows the
calculations (solid lines) for elastic scattering cross section
for 6Li with target 28Si at several incident energies around the
barrier, where the data are those reported in Refs. [36–39].
The calculations with all couplings have, in general, a good
agreement with the data. In some cases the agreement is not as
good, owing to the fact that global interactions are used for the
fragment-target subsystems. The dashed lines in these figures
represent the calculations with states corresponding to the
resonances omitted from the complete discrete space (the so
called “second kind of calculation”). In this calculation ground
and nonresonant breakup states are the same as those used in
the full calculation with all couplings. It can be observed that
the results of elastic scattering without couplings to resonance
states have a negligible effect. Only at the lower energies

FIG. 1. Elastic scattering angular distributions for 6Li + 28Si. See
text for details.
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FIG. 2. Polarization potentials associated with couplings to the
whole discrete space of 6Li (solid lines) and without resonance space
(dashed lines).

some small effect may be observed, at backward angles. The
calculations corresponding to the elastic channel coupling, that
is, when only the term with β = 0 is considered in Eq. (5), with
no couplings to continuum states, are represented by the dotted
lines, which are not in agreement with the data. These results
show that couplings to continuum states of 6Li are essential to
achieve agreement to the data.

To further investigate the effect of continuum resonance
states of the projectile on elastic scattering, a calculation
of the polarization potentials that emerge from couplings to
these states has been performed. This has been done using the
prescription given in Ref. [40]. The polarization potential �V
is defined as the potential produced by couplings of the elastic
scattering to other reaction channels, important at near barrier
energies, leading to an effective potential Veff = U00 + �V ,
where U0,0 is the optical potential for the elastic channel given
in Eq. (6). Figure 2 shows the results for the polarization

FIG. 3. Elastic scattering angular distribution calculation for
6Li + 28Si at Elab = 99 MeV and corresponding polarization
potentials with and without resonances.

FIG. 4. Elastic scattering angular distributions for 6Li + 58Ni.
See text for details.

potentials associated with the calculations when couplings
between the whole discrete space of 6Li (solid lines) are
used. Also, the potentials without resonant state couplings
are shown (dashed lines). As can be observed, these latter
potentials present a less repulsive character with respect to
the full calculation. So, the inclusion of couplings to resonant
states provides a net repulsive polarization potential, and not
an attractive polarization potential, as it is found when the
resonant state is considered as a bound excited state. Indeed,
this repulsive potential becomes less strong as the energy
increases as shown in Fig. 3 for Elab = 99 MeV. Here, the
top figure shows the calculation of elastic scattering angular
distribution with the full spectrum (solid line) which is in
reasonable agreement with the data [41]. The dashed and
dotted lines represent the results without resonant continuum
states and the elastic channel, respectively. The bottom

FIG. 5. Polarization potentials associated with couplings to the
whole discrete space of 6Li (solid lines) and without resonance space
(dashed lines). See text for details.
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FIG. 6. Elastic scattering angular distribution calculation for
6Li + 58Ni at Elab = 99 MeV and corresponding polarization
potentials with and without resonances.

figure shows a negligibly less repulsive polarization potential
corresponding to the calculation without resonances (dashed
line) respect to the full discrete spectrum calculation (solid
line). Thus, as before, the inclusion of breakup resonant states
of 6Li provides a repulsive polarization potential. These results
are in agreement with the well known fact that breakup
reactions give rise to a repulsive polarization potential that
is particularly strong at low bombarding energies.

Figure 4 shows the results for the 6Li + 58Ni reaction. As
can be observed, elastic scattering cross section calculations
(solid lines) are, in general, in good agreement with the data
of Refs. [42,43]. The effect of omitting resonance couplings
(dashed lines) are slightly observed at low energies while in
all cases, coupling to only the elastic channel (dotted lines)
is insufficient to fit the data. Figure 5 shows the results
for the polarization potentials for the full space calculation
(solid lines) and without resonances (dashed lines). Similar
conclusions are obtained for this system as those mentioned
above for 6Li + 28Si. Couplings to resonant continuum states
of 6Li become progressively less important as the energy
increases as can be observed in Fig. 6 for 6Li + 58Ni
at Elab = 99 MeV. The top figure shows elastic scattering
calculations for the full discrete space (solid line) which is
in good agreement with the data of Ref. [44]. The dashed line
corresponds to the calculation without resonance states of 6Li
and the dotted line the single elastic channel one. The bottom
figure of Fig. 6 shows the polarization potentials for the full
spectrum (solid line) and without resonances (dashed line),
where it is observed that the effect of omitting the resonances
is even less important at higher than at lower energies.

IV. SUMMARY AND CONCLUSIONS

CDCC calculations of elastic scattering angular distribu-
tions have been performed for the nuclear systems 6Li + 28Si
and 6Li + 58Ni at energies around the Coulomb barrier. In the
calculations, the cluster structure of the projectile 6Li → α + d
is assumed and global interactions for the α-target and d-target
subsystems are used. In general, good agreement between the
calculations and the data has been achieved.

Using an original technique, the effect on elastic scattering
due to couplings to resonance states of 6Li, namely, l = 2,
Jπ = 3+,2+, and 1+ has been studied. This effect is calculated
by extracting from the whole energy discrete space of 6Li,
the states corresponding to the resonances. That is, couplings
to and between resonance states are not allowed. For both
systems, only a very small effect is observed at the lowest
energies. Thus, in most cases, couplings to resonance states are
negligible. However, when couplings to the whole continuum
spectrum are omitted, that is the calculation with only the
elastic channel, the results are insufficient to fit the data.
Therefore, couplings to the rest of the continuum spectrum
of 6Li are very important, although those to the resonance
space per se are not.

The effect of resonance states is better understood in terms
of the polarization potentials produced by couplings to these
states. So, calculations of polarization potentials for the full
discrete energy space and also without resonance states have
been performed. A comparison of these potentials show that
when the resonance states are omitted, a less repulsive potential
emerges, respect to the full energy space. This result shows
that resonance states produce a net repulsive potential. This
conclusion is not surprising since it is well known that for
many weakly bound nuclei, breakup states give rise to virtual
repulsive polarization potentials that increase the fusion barrier
(Coulomb + bare potentials) and consequently lower fusion
absorption.

In summary, the results of our studies show that for the
present systems at energies around the Coulomb barrier,
the effect of breakup through resonant states on the elastic
scattering is almost negligible. It would be interesting to study
this effect on the elastic scattering angular distributions for
heavier nuclei.

ACKNOWLEDGMENTS

Fruitful and interesting discussions are acknowledged with
participants of the Workshop Low-Energy Reaction Dynamics
of Heavy-Ions and Exotic Nuclei held at ECT∗, Trento,
May 26–30, 2014. Financial support received: A.G.C. from
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GÓMEZ CAMACHO, DIAZ-TORRES, GOMES, AND LUBIAN PHYSICAL REVIEW C 91, 014607 (2015)

[5] L. F. Canto, J. Lubian, P. R. S. Gomes, and M. S. Hussein, Phys.
Rev. C 80, 047601 (2009).

[6] J. Lubian, T. Correa, P. R. S. Gomes, and L. F. Canto, Phys. Rev.
C 78, 064615 (2008).

[7] J. Lubian, T. Correa, E. F. Aguilera, L. F. Canto, A. Gomez-
Camacho, E. M. Quiroz, and P. R. S. Gomes, Phys. Rev. C 79,
064605 (2009).

[8] D. S. Monteiro et al., Phys. Rev. C 79, 014601 (2009).
[9] K. Rusek, P. V. Green, P. L. Kerr, and K. W. Kemper, Phys. Rev.

C 56, 1895 (1997).
[10] C. Beck, N. Keeley, and A. Diaz-Torres, Phys. Rev. C 75, 054605

(2007).
[11] J. P. Fernandez-Garcia et al., Phys. Lett. B 693, 310

(2010).
[12] Y. Sakuragi, M. Yahiro, and M. Kamimura, Prog. Theor. Phys.

Suppl. 89, 1 (1986).
[13] K. Zerva et al., Phys. Rev. C 80, 017601 (2009).
[14] K. Rusek, N. Keeley, A. Pakou, and N. Alamanos, Nucl. Phys.

A 784, 13 (2007).
[15] A. Pakou et al., Phys. Lett. B 633, 691 (2006).
[16] N. Keeley, R. S. Mackintosh, and C. Beck, Nucl. Phys. A 380,

1 (2010).
[17] N. Keeley and K. Rusek, Phys. Lett. B 375, 9 (1996).
[18] D. R. Otomar, J. Lubian, and P. R. S. Gomes, Eur. Phys. J. A 46,

285 (2010).
[19] G. R. Kelly et al., Phys. Rev. C 63, 024601 (2000).
[20] A. Dı́az-Torres, I. J. Thompson, and C. Beck, Phys. Rev. C 68,

044607 (2003).
[21] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,

and M. Yahiro, Phys. Rep. 154, 125 (1987).
[22] Y. Sakuragi, M. Yahiro, and M. Kimimura, Prog. Theor. Phys.

68, 322 (1982).

[23] A. Shrivastava et al., Phys. Lett. B 633, 463 (2006).
[24] M. Dasgupta et al., Phys. Rev. Lett. 82, 1395 (1999); ,Phys. Rev.

C 66, 041602(R) (2002); ,70, 024606 (2004).
[25] H. An and C. Cai, Phys. Rev. C 73, 054605 (2006).
[26] C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 13, 293

(1974).
[27] W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C 21,

2253 (1980).
[28] J. Bojowald, H. Machner, H. Nann, W. Oelert, M. Rogge, and

P. Turek, Phys. Rev. C 38, 1153 (1988).
[29] L. C. Chamon, D. Pereira, M. S. Hussein, M. A. Cándido

Ribeiro, and D. Galetti, Phys. Rev. Lett. 79, 5218 (1997).
[30] L. C. Chamon et al., Phys. Rev. C 66, 014610 (2002).
[31] M. A. G. Alvarez et al., Nucl. Phys. A 723, 93 (2003).
[32] L. R. Gasques, L. C. Chamon, P. R. S. Gomes, and J. Lubian,

Nucl. Phys. A 764, 135 (2006).
[33] E. Crema, L. C. Chamon, and P. R. S. Gomes, Phys. Rev. C 72,

034610 (2005).
[34] J. J. S. Alves et al., Nucl. Phys. A 748, 59 (2005).
[35] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
[36] A. Pakou et al., Phys. Lett. B 556, 21 (2003).
[37] J. E. Poling, E. Norbeck, and R. R. Carlson, Phys. Rev. C 13,

648 (1976).
[38] J. Cook, Nucl. Phys. A 375, 238 (1982).
[39] M. F. Vineyard, J. Cook, and K. W. Kemper, Nucl. Phys. A 405,

429 (1983).
[40] I. J. Thompson et al., Nucl. Phys. A 505, 84 (1989).
[41] P. Schwandt et al., IUCF Annual Report, 1979, p. 82.
[42] E. F. Aguilera et al., Phys. Rev. C 79, 021601(R) (2009).
[43] K. O. Pfeiffer, E. Speth, and K. Bethge, Nucl. Phys. A 206, 545

(1973).
[44] P. Schwandt et al., IUCF Annual Report, 1980, p. 126.

014607-6

http://dx.doi.org/10.1103/PhysRevC.80.047601
http://dx.doi.org/10.1103/PhysRevC.80.047601
http://dx.doi.org/10.1103/PhysRevC.80.047601
http://dx.doi.org/10.1103/PhysRevC.80.047601
http://dx.doi.org/10.1103/PhysRevC.78.064615
http://dx.doi.org/10.1103/PhysRevC.78.064615
http://dx.doi.org/10.1103/PhysRevC.78.064615
http://dx.doi.org/10.1103/PhysRevC.78.064615
http://dx.doi.org/10.1103/PhysRevC.79.064605
http://dx.doi.org/10.1103/PhysRevC.79.064605
http://dx.doi.org/10.1103/PhysRevC.79.064605
http://dx.doi.org/10.1103/PhysRevC.79.064605
http://dx.doi.org/10.1103/PhysRevC.79.014601
http://dx.doi.org/10.1103/PhysRevC.79.014601
http://dx.doi.org/10.1103/PhysRevC.79.014601
http://dx.doi.org/10.1103/PhysRevC.79.014601
http://dx.doi.org/10.1103/PhysRevC.56.1895
http://dx.doi.org/10.1103/PhysRevC.56.1895
http://dx.doi.org/10.1103/PhysRevC.56.1895
http://dx.doi.org/10.1103/PhysRevC.56.1895
http://dx.doi.org/10.1103/PhysRevC.75.054605
http://dx.doi.org/10.1103/PhysRevC.75.054605
http://dx.doi.org/10.1103/PhysRevC.75.054605
http://dx.doi.org/10.1103/PhysRevC.75.054605
http://dx.doi.org/10.1016/j.physletb.2010.07.060
http://dx.doi.org/10.1016/j.physletb.2010.07.060
http://dx.doi.org/10.1016/j.physletb.2010.07.060
http://dx.doi.org/10.1016/j.physletb.2010.07.060
http://dx.doi.org/10.1143/PTPS.89.136
http://dx.doi.org/10.1143/PTPS.89.136
http://dx.doi.org/10.1143/PTPS.89.136
http://dx.doi.org/10.1143/PTPS.89.136
http://dx.doi.org/10.1103/PhysRevC.80.017601
http://dx.doi.org/10.1103/PhysRevC.80.017601
http://dx.doi.org/10.1103/PhysRevC.80.017601
http://dx.doi.org/10.1103/PhysRevC.80.017601
http://dx.doi.org/10.1016/j.nuclphysa.2006.12.007
http://dx.doi.org/10.1016/j.nuclphysa.2006.12.007
http://dx.doi.org/10.1016/j.nuclphysa.2006.12.007
http://dx.doi.org/10.1016/j.nuclphysa.2006.12.007
http://dx.doi.org/10.1016/j.physletb.2005.11.088
http://dx.doi.org/10.1016/j.physletb.2005.11.088
http://dx.doi.org/10.1016/j.physletb.2005.11.088
http://dx.doi.org/10.1016/j.physletb.2005.11.088
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1140/epja/i2010-11040-y
http://dx.doi.org/10.1140/epja/i2010-11040-y
http://dx.doi.org/10.1140/epja/i2010-11040-y
http://dx.doi.org/10.1140/epja/i2010-11040-y
http://dx.doi.org/10.1103/PhysRevC.63.024601
http://dx.doi.org/10.1103/PhysRevC.63.024601
http://dx.doi.org/10.1103/PhysRevC.63.024601
http://dx.doi.org/10.1103/PhysRevC.63.024601
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1143/PTP.68.322
http://dx.doi.org/10.1143/PTP.68.322
http://dx.doi.org/10.1143/PTP.68.322
http://dx.doi.org/10.1143/PTP.68.322
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevC.73.054605
http://dx.doi.org/10.1103/PhysRevC.73.054605
http://dx.doi.org/10.1103/PhysRevC.73.054605
http://dx.doi.org/10.1103/PhysRevC.73.054605
http://dx.doi.org/10.1016/0092-640X(74)90005-9
http://dx.doi.org/10.1016/0092-640X(74)90005-9
http://dx.doi.org/10.1016/0092-640X(74)90005-9
http://dx.doi.org/10.1016/0092-640X(74)90005-9
http://dx.doi.org/10.1103/PhysRevC.21.2253
http://dx.doi.org/10.1103/PhysRevC.21.2253
http://dx.doi.org/10.1103/PhysRevC.21.2253
http://dx.doi.org/10.1103/PhysRevC.21.2253
http://dx.doi.org/10.1103/PhysRevC.38.1153
http://dx.doi.org/10.1103/PhysRevC.38.1153
http://dx.doi.org/10.1103/PhysRevC.38.1153
http://dx.doi.org/10.1103/PhysRevC.38.1153
http://dx.doi.org/10.1103/PhysRevLett.79.5218
http://dx.doi.org/10.1103/PhysRevLett.79.5218
http://dx.doi.org/10.1103/PhysRevLett.79.5218
http://dx.doi.org/10.1103/PhysRevLett.79.5218
http://dx.doi.org/10.1103/PhysRevC.66.014610
http://dx.doi.org/10.1103/PhysRevC.66.014610
http://dx.doi.org/10.1103/PhysRevC.66.014610
http://dx.doi.org/10.1103/PhysRevC.66.014610
http://dx.doi.org/10.1016/S0375-9474(03)01158-8
http://dx.doi.org/10.1016/S0375-9474(03)01158-8
http://dx.doi.org/10.1016/S0375-9474(03)01158-8
http://dx.doi.org/10.1016/S0375-9474(03)01158-8
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.001
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.001
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.001
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.001
http://dx.doi.org/10.1103/PhysRevC.72.034610
http://dx.doi.org/10.1103/PhysRevC.72.034610
http://dx.doi.org/10.1103/PhysRevC.72.034610
http://dx.doi.org/10.1103/PhysRevC.72.034610
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.020
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.020
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.020
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.020
http://dx.doi.org/10.1016/0167-7977(88)90005-6
http://dx.doi.org/10.1016/0167-7977(88)90005-6
http://dx.doi.org/10.1016/0167-7977(88)90005-6
http://dx.doi.org/10.1016/0167-7977(88)90005-6
http://dx.doi.org/10.1016/S0370-2693(03)00079-0
http://dx.doi.org/10.1016/S0370-2693(03)00079-0
http://dx.doi.org/10.1016/S0370-2693(03)00079-0
http://dx.doi.org/10.1016/S0370-2693(03)00079-0
http://dx.doi.org/10.1103/PhysRevC.13.648
http://dx.doi.org/10.1103/PhysRevC.13.648
http://dx.doi.org/10.1103/PhysRevC.13.648
http://dx.doi.org/10.1103/PhysRevC.13.648
http://dx.doi.org/10.1016/0375-9474(82)90411-0
http://dx.doi.org/10.1016/0375-9474(82)90411-0
http://dx.doi.org/10.1016/0375-9474(82)90411-0
http://dx.doi.org/10.1016/0375-9474(82)90411-0
http://dx.doi.org/10.1016/0375-9474(83)90580-8
http://dx.doi.org/10.1016/0375-9474(83)90580-8
http://dx.doi.org/10.1016/0375-9474(83)90580-8
http://dx.doi.org/10.1016/0375-9474(83)90580-8
http://dx.doi.org/10.1016/0375-9474(89)90417-X
http://dx.doi.org/10.1016/0375-9474(89)90417-X
http://dx.doi.org/10.1016/0375-9474(89)90417-X
http://dx.doi.org/10.1016/0375-9474(89)90417-X
http://dx.doi.org/10.1103/PhysRevC.79.021601
http://dx.doi.org/10.1103/PhysRevC.79.021601
http://dx.doi.org/10.1103/PhysRevC.79.021601
http://dx.doi.org/10.1103/PhysRevC.79.021601
http://dx.doi.org/10.1016/0375-9474(73)90084-5
http://dx.doi.org/10.1016/0375-9474(73)90084-5
http://dx.doi.org/10.1016/0375-9474(73)90084-5
http://dx.doi.org/10.1016/0375-9474(73)90084-5



