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We study the effects of density-dependent weak vector form factors on the inclusive neutral-current–neutrino
(antineutrino)-nucleus scattering in the quasi-elastic region within the framework of a relativistic single-particle
model. The density-dependent weak form factors are obtained from a quark-meson coupling model. The density-
dependence effects are studied separately in protons and neutrons participating in the reactions, in each response
cross section, and with regard to asymmetry. These density effects reduce the cross section at high densities
and show different behavior with regard to asymmetry. Furthermore we calculate flux-averaged differential cross
sections and compare them with the experimental data.
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I. INTRODUCTION

Neutrino interactions provide valuable information on
various domains of physics such as astrophysics, particle
physics, and nuclear physics. In particular, the neutrino-
nucleus (ν-A) scattering is one of the useful tools in studying
weak interaction, properties of the nucleus, and so on. Neutral-
current (NC) ν-A scattering is more effective to investigate the
nuclear structure because of there is no Coulomb distortion
of outgoing leptons from the target nucleus. Moreover, NC
scattering could be the alternative to parity-violating electron
scattering [1,2], which measures matter distribution of finite
nuclei, because of the intermediate Z0 boson in the NC
scattering [3–5].

Since the first measurement of NC muon neutrino (νμ) scat-
tering at Brookhaven National Laboratory [6], the MiniBooNE
Collaboration has recently performed the charged-current
reaction (CC) [7] and the NC [8] from a CH2 target. In
particular, the MiniBooNE data, which measured the flux-
averaged NC elastic cross sections in the quasi-elastic region,
can be explained by nonstandard values of the axial mass and
the strange axial form factor at Q2 = 0, MA = 1.39 GeV, and
gs

A = 0.08. Other MiniBooNE data obtained from antineutrino
scattering experiments [9,10] can be explained using the
fit with MA = 1.39 GeV in the analysis, but the fit with
MA = 1.02 GeV is also shown to be compatible with the
data.

Since the publication of the MiniBooNE data [7,8] for
12C(νμ,μ−) and 12C(ν,ν ′) scattering, there have been many
theoretical works [11–16]. Nieves et al. [11] calculated the CC
double cross section by including random-phase approxima-
tion (RPA) correlations and multinucleon contributions based
on the Fermi gas model and then deduced the increase of
the value of the axial mass. Meucci et al. [12] calculated
the CC quasi-elastic cross section in the framework of a
relativistic mean-field (RMF) model utilizing the relativistic
Green function method. They found that the relativistic
Green function results may describe the experimental data

for total cross sections without additional adjustment of the
nucleon axial mass. Butkevich and Perevalov [13] calculated
the NC reaction with the relativistic distorted-wave impulse
approximation (RDWIA) and extracted the axial strange form
factor gs

A = −0.11 by using the MiniBooNE data from (νp →
νp)/(νN → νN ) in the high-energy region. Ankowski [14]
calculated the 12C(νμ,μ−) scattering, the results of which
underestimated the MiniBooNE data by 20% with the axial
mass 1.23 GeV, but overestimated the data by 15% with the
axial mass 1.39 GeV. Amaro et al. [15] tried to explain the
muon neutrino cross section [7] by using the superscaling ap-
proach (SuSA) with inclusion of the meson-exchange current
in the two-particle–two-hole (2p-2h) sector. Their results do
not seem to describe the data well at large scattering angle and
low muon energy. Gonzalez-Jimenez et al. [16] calculated the
NC neutrino scattering based on the RMF and SuSA models
and estimated the ratio (νp → νp)/(νN → νN ).

On the other hand, since the first discovery of the “EMC”
effect [17], the possible medium modifications of nucleon
form factors have been studied over 30 years. Among various
approaches, two theoretical models, which have exploited the
modifications of the electric and magnetic form factors of
nucleons in the nuclear medium, might be interesting. These
are the quark-meson coupling (QMC) model proposed by
Thomas and collaborators [18] and the cloudy bag model
by Cheon and Jeong [19]. In specific, by using the QMC
model, Thomas and collaborators [20] calculated the density
dependence of weak form factors. This model successfully
described various properties of hadrons in nuclear matter [21],
finite nuclei [22], and hypernuclei [23]. The authors of
Ref. [22] found a simple scaling relation for the change of the
hadron masses, which was described in terms of the number
of nonstrange quarks in a hadron and the strength of the scalar
mean field in a nucleus. In Ref. [24], the 12C(νμ,μ−)X reaction
was calculated using the density-dependent weak form factors
within a relativistic Fermi gas model and then the bound
nucleon form factors were found to reduce total cross sections
by 8% (or higher for a heavier nucleus).
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The ratio of GE/GM for protons was measured at the
Thomas Jefferson National Accelerator Facility (JLab) [25] in
�ep → e �p scattering in terms of high Q2. Another experiment
at JLab was performed to measure the transverse and longi-
tudinal responses of the polarized knocked-out proton in the
reaction 16O(�e,e′ �p) in quasi-elastic perpendicular kinematics
at Q2 = 0.8 (GeV/c)2 in terms of the missing momentum [26].
The ratio of the transverse to longitudinal polarization transfer
for the proton from 16O agreed with theoretical calculations
from free proton form factors.

In our previous articles [27,28], we studied the effects
of density-dependent weak form factors on the CC and NC
reactions of the ν-A scattering within the framework of the
quasi-particle random-phase approximation (QRPA) in the
low-energy range (Eν(ν̄) � 80 MeV). Neutrino reaction cross
sections at normal nuclear density, ρ0, can be reduced by 5% at
most, but, in ν̄-A reactions, the cross sections are substantially
decreased in the nuclear medium, up to 35% in comparison
with the calculations using the free form factors. Also, in
the quasi-elastic region, the effect of the density-dependent
weak form factor on the CC neutrino-nucleus scattering from
12C, 40Ca, and 208Pb was estimated, and the cross section was
reduced maximally by 60% at ρ = 2.0ρ0 for the antineutrino
around the peak position [29].

In this work, we extend our previous calculations
[27–29] and investigate the in-medium effects by the density-
dependent weak form factors for the inclusive NC ν(ν̄)-A
scattering from 12C. Specifically, we focus on the roles of
each density-dependent form factor in the weak current. For
this calculation, a relativistic single-particle model requires
bound-state and continuum-nucleon wave functions and a
transition current operator. The bound nucleon wave functions
are generated by solving the Dirac equation in the presence
of the strong scalar and vector potentials of the σ -ω model
self-consistently [30]. The wave functions of the knocked-out
nucleons are also generated by the same potential of the
bound nucleons, called the RMF. This RMF model guarantees
the current conservation and gauge invariance and provides
very good agreement with the Bates (e,e′) experimental
data with the inclusion of the Coulomb distortion of the
electrons [31]. Our results are compared with flux-averaged
differential-cross-section data measured by the MiniBooNE
Collaboration [8].

In Sec. II we briefly introduce the formalism for the ν-A
scattering. Our theoretical results are presented in Sec. III with
the cross sections and asymmetry. Finally, the summary and
conclusion are given in Sec. IV.

II. FORMALISM

We choose the nucleus fixed frame where the target
nucleus is seated at the origin of the coordinate system.
The four-momenta of incident and outgoing ν(ν̄) are labeled
p

μ
i = (Ei,pi) and p

μ
f = (Ef ,pf ), respectively. p

μ
A, p

μ
A−1,

and pμ represent the four-momenta of the target nucleus,
the residual nucleus, and the final nucleon, respectively.
In the laboratory frame, the differential cross section is
given by the contraction between the lepton and the hadron

tensors [32]:

dσ

dTN

= 4π2 MNMA−1

(2π )3MA

∫
sin θldθl

∫
sin θNdθNpf −1

rec σZ
M

× [vLRL + vT RT + hv′
T R′

T ], (1)

where MN is the nucleon mass, θl denotes the scattering
angle of the lepton, and h = −1 (h = +1) corresponds to
the helicity of the incident ν(ν̄). θN and TN represent the polar
angle and the kinetic energy of the knocked-out nucleons,
respectively. Detailed forms for the kinematical coefficients v
and the corresponding response functions R for ν-A scattering
are given in Refs. [32,33]. In Eq. (1), the first term refers to
the longitudinal term, the second the transverse term, and the
last the interference term.

For the NC reaction, σZ
M is defined as

σZ
M =

(
GF cos(θl/2)Ef M2

Z√
2π

(
Q2 + M2

Z

)
)

, (2)

where MZ is the rest mass of the Z boson and GF is the Fermi
constant. The recoil factor frec is given by

frec = EA−1

MA

∣∣∣∣1 + Ep

EA−1

[
1 − q · p

p2

]∣∣∣∣ . (3)

In a plane-wave Born approximation, where leptons are
described as Dirac plane waves, the cross sections for the
inclusive ν-A scattering are calculated straightforwardly (e.g.,
see Refs. [32,33]). The weak current Jμ represents the Fourier
transform of the nucleon current density written as

Jμ =
∫

ψ̄pĴμψbe
iq·rd3r, (4)

where Ĵμ is a free weak nucleon current operator, and ψp and
ψb are wave functions of the knocked-out and the bound-state
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FIG. 1. (Color online) The differential cross sections of the in-
clusive (e,e′) reaction in terms of the energy transfer for the incident
electron energy 2.02 GeV from 12C. Solid (red) curves are the results
for no density-dependence, dashed (black) curves are for ρ = 0.6ρ0,
dotted (blue) curves are for ρ = 1.0ρ0, and dash-dotted (sky blue)
curves are for ρ = 2.0ρ0. The experimental data come from the
Stanford Linear Accelerator Center (SLAC) [35]. The explanations
of the panels (a), (b), and (c) are in the context. Results for ρ = 0.6ρ0

are shown for the presumed Fermi momentum of 12C.
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nucleon, respectively. For a free nucleon of the NC reaction,
the current operator comprises the weak vector and the axial
vector form factors:

Ĵμ = FV
1 (Q2)γ μ + FV

2 (Q2)
i

2MN

σμνqν + GA(Q2)γ μγ 5.

(5)

The vector form factors for the proton (neutron), F
V,p(n)
i (Q2),

are expressed as

F
V,p(n)
i (Q2) = (

1
2 − 2 sin2 θW

)
F

p(n)
i (Q2)

− 1
2F

n(p)
i (Q2) − 1

2F s
i (Q2), (6)

where θW is the Weinberg angle given by sin2 θW = 0.2224.
The strange vector form factor F s

i (Q2) in Eq. (6) is usually
given as a dipole form, independently of the nucleon isospin:

F s
1 (Q2) = F s

1 (0)Q2

(1 + τ )
(
1 + Q2/M2

V

)2 ,

(7)

F s
2 (Q2) = F s

2 (0)

(1 + τ )
(
1 + Q2/M2

V

)2 ,

where τ = Q2/(4M2
N ) and MV = 0.843 GeV is the cutoff

mass parameter usually adopted for nucleon electromagnetic
form factors. F s

1 (0) is defined as the squared strange radius
of the nucleus, F s

1 (0) = dGs
E(Q2)/dQ2|Q2=0 = 0.53 GeV−2,

and F s
2 (0) = μs = −0.4 is an anomalous strange magnetic

moment.
The axial form factors are given by

GA(Q2) = 1
2

(∓gA + gs
A

)/(
1 + Q2/M2

A

)2
, (8)

where gA = 1.262, MA = 1.032 GeV, and gs
A = −0.19, which

represents the strange quark contents on the nucleon [34].
−(+) coming from the isospin dependence denotes the
knocked-out proton (neutron), respectively. The gs

A represents
the strange quark contents in the nucleon.

In this work, we introduce just the density dependence of the
weak form factors multiplying the free form factors in previous
expressions by R(FV

1,2) = FV
1,2(ρ,Q2)/FV

1,2(ρ = 0,Q2), which
is generated by the QMC model [20]. In this way, the free
result for all cross sections and contributions is recovered for
the ρ = 0 case. Detailed features of the form factors and their
modifications in nuclear matter used in this study are found
in Refs. [27,28]. Of course, the weak form factors including
the axial form factor are shown to be recovered from the
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FIG. 2. (Color online) The differential cross sections of the inclusive (ν,ν ′) scattering in terms of the kinetic energy of the knocked-out
nucleon for the incident ν energies 0.5 and 1.5 GeV from 12C. Solid (red) curves are the results for no density-dependence, dashed (black)
curves are for ρ = 0.6ρ0, dotted (blue) curves are for ρ = 1.0ρ0, and dash-dotted (sky blue) curves are for ρ = 2.0ρ0. The explanations of the
panels (a), (b), (c), and (d) are in the context.
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standard form factors at the ρ = ρ0 limit in the Appendix
of Ref. [28].

III. RESULTS

To investigate the effects of density dependence we cal-
culate the inclusive (e,e′) reaction as shown in Fig. 1. The
incident electron energy is 2.02 GeV and the scattering angle
is 15◦. The experimental data were measured at the Stanford
Linear Accelerator Center [35]. Solid (red) curves are the
results for no density-dependence, dashed (black) curves are
for ρ = 0.6ρ0, dotted (blue) curves are for ρ = 1.0ρ0, and
dash-dotted (sky blue) curves are for ρ = 2.0ρ0. Figure 1(a)
shows the results including the density dependence of all form
factors (F1 and F2), Fig. 1(b) shows the results including
only the density dependence of the Dirac form factor F1, and
Fig. 1(c) shows the results allowing the density dependence on
the Pauli form factors F2. The effects of the density dependence
on F1 reduce the cross section in Fig. 1(b) less than 1% but
those on F2 enhance the cross section. However, the in-medium
effects in the electron scattering turn out to be not as large
as that of neutrino scattering as shown later on. The reason
comes from the absence of the axial current in the electron
scattering. Namely, the in-medium effect on the axial form
factor is larger than the electromagnetic form factors. In this

work, the choice of ρ = 0.6ρ0 is due to the density of 12C.
Note that ρ0 ∼ 0.15 fm−3 is the normal density.

Next we present our numerical results for the NC scattering
with detailed discussions regarding the density-dependent
effects. As shown in Fig. 2, we calculate the inclusive (ν,ν ′)
reaction in terms of the kinetic energy of the knocked-out
nucleon. Solid (red) curves are the results for no density-
dependence, dashed (black) curves are for ρ = 0.6ρ0, dotted
(blue) curves are for ρ = 1.0ρ0, and dotted (sky blue) curves
are for ρ = 2.0ρ0. Figure 2(a) (four panels in the upper left)
shows the results including the density dependence of all form
factors (F1, F2, and GA) and Fig. 2(b) (four panels in the upper
right) shows the results including only the density dependence
of the Dirac form factor F1, where the density dependence on
F2 and GA is not taken into account. Similarly, Figs. 2(c) (four
panels in the lower left) and 2(d) (four panels in the lower
right) show the results allowing the density dependence on the
Pauli form factor F2 and the axial form factor GA, respectively.

In general, the effects from the density dependence of each
form factor in neutrino scattering are larger on neutrons than
on protons. Also these effects decrease as the incident ν energy
increases. In particular, the effects on F1 [Fig. 2(b) ] are
very small in both protons and neutrons. Furthermore, the
effect is largest on GA [Fig. 2(d)] because the vector terms is
canceled out each other in Eq. (6). The decreasing pattern of
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FIG. 3. (Color online) The same as Fig. 2, but for antineutrino.
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FIG. 4. (Color online) The longitudinal cross sections for inclusive (ν,ν
′
) scattering with the same kinematics as in Fig. 2.

NC scattering is similar to that of CC scattering investigated
in our previous calculation [29].

In Fig. 3, we present the differential cross sections for the
ν̄-A scattering versus the kinetic energy of a knocked-out
nucleon. The kinematics and the explanation of the curves
are the same as the previous ones in Fig. 2. The density
effects on ν̄-A scattering are a little bit smaller than those on
(ν-A) scattering. The shapes of the cross sections are similar
to the corresponding cross sections of ν-A scattering but the
magnitudes are reduced by up to 25% in the case of neutrons.
Therefore cross sections of ν(ν̄)-A scattering are generally
reduced about 20%∼30% by the density dependence, irrespec-
tive of scattering modes of NC and CC and neutrino helicity.

Next we calculate and present the longitudinal, transverse,
and interference part of the cross sections as given in Eq. (1).
The nuclear response functions cannot be separated due to
the integration of the scattering angle. Because the difference
between the incident ν and ν̄ is only the intrinsic helicity
as shown in Eq. (1), first we calculate the longitudinal and
the transverse cross sections for the case of the incident ν.
Figure 4 shows the longitudinal cross sections for inclusive
(ν,ν

′
) scattering with the same kinematics as the previous

calculations in Fig. 2. The density dependence increases the
longitudinal cross sections for the proton case and decreases
the ones for the neutron. Similarly as in the previous results,

the effects due to F1 are very small. The effects on the neutron
are larger for F2 than those on the proton, and for GA on
the neutron are smaller than those on the proton. The effects
are largest for F2 and are almost independent of the incident
energy.

As shown in Fig. 5, we present the transverse cross sections,
which are the second term in Eq. (1). The effects are nearly
negligible on F1 and F2 but on GA they reduce the transverse
cross sections about 30%. Hence the main contribution of the
density dependence is to GA. Because the transverse cross
sections are about 10 times larger than the longitudinal cross
sections, most medium effects are thought to occur in the
transverse cross section.

Figure 6 shows the interference cross sections, which are the
third term in Eq. (1). The effects on F1 and F2 are small but on
GA they reduce the interference cross sections. Hence the main
contribution of the density dependence is to GA, similar to the
contribution of the transverse cross sections. In particular, the
shape of the interference term is different from that of other
terms. From Figs. 4–6, it can be seen that the transverse cross
sections’ biggest contribution is to the magnitude and the main
effects of the density-dependent form factors show up on the
transverse cross sections.

As an alternative way to investigate the effects of the density
dependence, we introduce an asymmetry on the ν and ν̄ cross
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FIG. 5. (Color online) The transverse cross sections for inclusive (ν,ν
′
) scattering with the same kinematics as in Fig. 2.
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FIG. 6. (Color online) The interference cross sections for inclusive (ν,ν
′
) scattering with the same kinematics as in Fig. 2.
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FIG. 7. (Color online) The asymmetry with the same kinematics as in Fig. 2.

sections given by

A = σ ν − σ ν̄

σ ν + σ ν̄
, (9)

where σ ν(ν̄) denotes the differential cross sections for the ν(ν̄).
Figure 7 shows the asymmetries with the same kinematics and
the same explanation of the curves as Fig. 2. The effects of the
density dependence on F1 are also small similar to other cases
of cross sections, but in the case of the proton with 1.5 GeV
the effects increase the asymmetry within a few percent. In
the case of F2 the effects reduce the asymmetry in the proton
but enhance it in the neutron. The effects on GA increase the
asymmetry except in the case of the neutron with 1.5 GeV.
Therefore, in the Fig. 7(a), which is the density dependence
in all form factors, the effects increase the asymmetry in the
neutron but in the proton they reduce it.

Finally, in Fig. 8, we calculate the flux-averaged differential
cross section 〈dσ/dQ2〉 per nucleon, νN → νN and ν̄N →
ν̄N , and compare our results with the MiniBooNE data [8], i.e.,
νNCE and ν̄NCE. The solid (red) line is the result for the free
space form factor, the dashed (black) line is for ρ = 0.6ρ0,
the dotted (blue) line is for ρ = 1.0ρ0, and the dash-dotted
(sky blue) curve is for ρ = 2.0ρ0. The density dependence
for ρ = 0.6ρ0, ρ = 1.0ρ0, and ρ = 2.0ρ0 reduces the flux-
averaged differential cross section about 20%, 30%, and 45%,
respectively. Our result of the free space form factor is below
the data about 50%. To compensate for the deviation from the

data, we calculate the differential cross section for the free
space form factor with the axial mass MA = 1.39 GeV, which
is extracted from the MiniBooNE data [8]. The dash-dot-dotted
(yellow) curve is the result for MA = 1.39 GeV. The result for
MA = 1.39 GeV enhances the differential cross section with
higher Q2. In the low-Q2 region, the deviation from the data
is about 20% but it overestimates the data in the high-Q2

region (Q2 > 0.8(GeV/c)2). Notice that we do not change the
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FIG. 8. (Color online) Flux-averaged differential cross sections
〈dσ/dQ2〉 per nucleon, ν N → ν N and ν̄ N → ν̄ N. The solid (solid)
curve is the result for no density-dependence, the dashed (black)
curve is for ρ = 0.6ρ0, the dotted (blue) curve is for ρ = 1.0ρ0, the
dash-dotted (sky blue) curve is for ρ = 2.0ρ0, and the dash-dot-dotted
(yellow) curve is for no density-dependence. The experimental data
are from the MiniBooNE experiment [8], νNCE and ν̄NCE.
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strange quark form factor gs
A = −0.19 because its contribution

is small [32]. Furthermore, the target of the experimental data
is CH2 and the contribution of the hydrogen is about 14% [7,8].
However in this work only carbon is used as a target.

IV. SUMMARY AND CONCLUSION

In this work, we investigate the effects of density-dependent
form factors on the differential cross sections for the inclusive
(e,e′) reaction and the NC reaction of A(ν,ν ′) and A(ν̄,ν̄ ′)
scattering in the framework of a relativistic single-particle
model. The density effects reduce the cross sections in both
incident neutrinos and antineutrinos. We study the roles of the
density dependence in each form factor (F1, F2, and GA). The
effects on GA are biggest and those on F1 are very small. We
also investigate the effects on each response cross section. In
the case of the proton, the effects increase the longitudinal
cross sections because the contribution to F2 is largest. Shapes
of the longitudinal and transverse cross sections are the same
as those of the corresponding differential cross sections but
the interference term is different. The main contribution turns
out to appear at the transverse cross section by comparing the
magnitude. However, the effects increase the asymmetry in the
proton except in the case of F2.

Finally, we calculate the flux-averaged differential cross
section in terms of four-momentum squared. The effect of
density dependence reduces the cross sections and we compare
this data with the experimental data. Our result with the free
space form factor is below about 50%. To cure this discrepancy,
we use different axial mass MA = 1.39 GeV. As a result, in
the low-Q2 region, the flux-averaged differential cross section
is increased about 20% but, in the high-Q2 region (Q2 >
0.8 GeV2), the cross section is larger than the data, although
this model has been successful for electron scattering.

In conclusion, our results taking into account the density
dependence of the weak form factors as well as modulating the
axial mass up to MA = 1.39 GeV do not successfully describe
the MinBooNE data. In the future, various model calculations
including the improvement of our current nuclear model will
be necessary to reproduce the MinBooNE data. This will shed
light on the nuclear responses, especially to weak probes.
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