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Breakup and finite-range effects on the 8B(d,n)9C reaction
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The astrophysical factor of 8B(p,γ )9C at zero energy, S18(0), is determined by a three-body coupled-channels
analysis of the transfer reaction 8B(d,n)9C at 14.4 MeV/nucleon. Effects of the breakup channels of d and 9C
are investigated with the continuum-discretized coupled-channels method. It is found that, in the initial and final
channels, respectively, the transfer process through the breakup states of d and 9C, its interference with that
through their ground states in particular, gives a large increase in the transfer cross section. The finite-range
effects with respect to the proton-neutron relative coordinate are found to be about 20%. As a result of the present
analysis, S18(0) = 22 ± 6 eV b is obtained, which is smaller than the result of the previous distorted-wave Born
approximation analysis by about 51%.
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I. INTRODUCTION

The explosive hydrogen burning called the hot pp chain
[1] in low-metallicity supermassive stars plays an important
role as a possible alternative path to the synthesis of the CNO
elements. The proton capture reaction of 8B, 8B(p,γ )9C, is
expected to lead to this hot pp chain. Since it is very difficult
to measure the cross section σpγ for the 8B(p,γ )9C reaction
at stellar energies, several experiments of alternative reactions
such as the inclusive [2] and exclusive [3] 9C breakup reactions
and the proton transfer reaction 8B(d,n)9C [4] have been done
to determine the astrophysical factor

S18(εpB) = σpγ εpB exp[2πη]. (1)

Here, εpB is the relative energy of the p-8B system in
the center-of-mass (c.m.) frame and η is the Sommerfeld
parameter. Because of the weak εpB dependence of S18(εpB),
its value at zero energy, S18(0), is paid special attention as a
reference value.

A problem with the results of the indirect measurements
of S18(0) is that they are not consistent with each other, with
values of 46 ± 6 eV b (from inclusive 9C breakup [2]), 77 ±
15 eV b (from exclusive 9C breakup [3]), and 45 ± 13 eV b
(from transfer [4]). In Ref. [5], reanalysis of the two 9C
breakup reactions has been performed with a three-body
coupled-channels reaction model, and S18(0) = 66 ± 10 eV b
was obtained, resolving the discrepancy between the two
results of 9C breakup. There remains, however, about a 30%
difference between the result of Ref. [5] and that of the transfer
reaction. It was reported in Ref. [6] that, in the 7Be(d,n)8B
reaction at 7.5 MeV, breakup channels of d played an essential
role. One may expect a similar effect also in the 8B(d,n)9C
reaction.

The purpose of the present study is to investigate the
deuteron breakup effects on the cross section of 8B(d,n)9C
at 14.4 MeV/nucleon and S18(0), by means of the continuum-
discretized coupled-channels method (CDCC) [7–9]. In the
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CDCC method, one nonperturbatively treats the channel
couplings of the breakup (continuum) states of weakly bound
nuclei, and the method has been highly successful in describing
various real or virtual breakup reactions in a wide range of
incident energies. The theoretical foundation of the CDCC
method is given in Refs. [9–11]. As an advantage over the
previous CDCC study on 7Be(d,n)8B [6], in this work the
breakup channels of both the “projectile” d, the target nucleus
in inverse kinematics, and the residual nucleus 9C are taken
into account. Furthermore, a finite-range (FR) calculation of
the transition matrix (T matrix) of the transfer reaction is
performed. We also propose a finite-range correction (FRC)
to the zero-range (ZR) calculation, which is appropriate for
three-body model calculation including breakup channels of
both the projectile and the residual nucleus. Interpretation of
the FR effects on S18(0) is given through this correction.

This paper is constructed as follows. In Sec. II, we give
a formulation of the coupled-channels Born approximation
(CCBA) for the 8B(d,n)9C reaction. In Sec. III, we extract
S18(0) from the transfer cross section; the role of the breakup
channels of d and 9C are discussed. The formalism of the FRC
for the three-body reaction model and discussion of the FR
effects on the transfer cross section are also given. Finally, we
summarize this study in Sec. IV.

II. COUPLED-CHANNELS BORN APPROXIMATION
FORMALISM

In the present study we describe the transfer reaction
8B(d,n)9C at 14.4 MeV/nucleon with the three-body (p +
n + 8B) model shown in Fig. 1. The transition matrix in the
post form is given by

Tβα = 〈	(−)
β |Vpn|	(+)

α 〉, (2)

where 	(+)
α and 	

(−)
β are, respectively, three-body wave

functions for the initial and final channels; their explicit
definition is given below. The interaction between p and n,
Vpn, is adopted as the transition interaction that causes the
transfer process. The superscripts (+) and (−) represent the
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FIG. 1. Illustration of the three-body system.

outgoing and incoming boundary conditions for the scattering
wave, respectively.

The Schrödinger equation for 	(+)
α is given by

[Hα − E] 	(+)
α (rpn,rα) = 0, (3)

Hα = Krα
+ hpn + U

(α)
pB (rpB) + U

(α)
nB (rnB) + VC(rα), (4)

where KX is the kinetic energy operator with respect to the
coordinate X , hpn is the internal Hamiltonian of d, and E is the
total energy of the three-body system. The nuclear interaction
between x (= p or n) and 8B is represented by UxB with the
superscript (α) specifying the initial channel. The Coulomb
interaction between d and 8B is denoted by VC; we disregard
the Coulomb breakup in this study. We describe 	(+)

α with
CDCC as

	(+)
α (rpn,rα) ≈

∑
i

ψi
pn(rpn)χii0(+)

α (rα), (5)

where ψi
pn is the internal wave function of d with i its energy

index; i = i0 corresponds to the ground state of d and i �= i0

to the discretized continuum states of the p-n system. ψi
pn

satisfies (
hpn − εi

pn

)
ψi

pn(rpn) = 0, (6)

where εi
pn is the energy eigenvalue of the p-n system. One may

obtain the d-8B distorted wave χii0(+)
α by solving the CDCC

equations under the standard boundary condition [7–9]. Note
that, in the present study, we ignore the intrinsic spin of each
particle for simplicity. Details of the description of 	(+)

α with
CDCC are given in Ref. [12].

In the exact form of Eq. (2), 	(+)
α includes not only the

deuteron components, consisting of the elastic and breakup
ones, but also rearrangement components. The latter are not
explicitly taken into account in the present CCBA calculation,
which has been justified in Refs. [10,11].

The three-body wave function 	
(+)
β in the final channel,

which is the time reversal of 	
(−)
β , satisfies the following

Schrödinger equation:

[Hβ − E]	(+)
β (rpB,rβ) = 0, (7)

Hβ = Krβ
+ hpB + U

(β)
nB (rnB), (8)

where hpB is the p-8B internal Hamiltonian given by

hpB = KrpB + U
(β)
pB (rpB) + VC(rpB). (9)

The superscript (β) represents the final channel. Note that
Hβ does not contain the term Vpn that has been used as a
transition interaction in Eq. (2). In the CDCC framework 	

(+)
β

is expressed by

	
(+)
β (rpB,rβ) ≈

∑
j

ψ
j
pB(rpB)χjj0(+)

β (rβ), (10)

where (
hpB − ε

j
pB

)
ψ

j
pB(rpB) = 0 (11)

with ψ
j
pB the overlap functions of the ground and discretized

continuum states of 9C with the p-8B(g.s.) configuration;
here the ground state is denoted by j = j0 and ε

j
pB is the

eigenenergy of 9C in the j th state. The n-9C distorted wave
χ

jj0(+)
β can be calculated with the same procedure as for χii0(+)

α .
Since the ground state of 9C includes the component that
cannot be described by the p-8B(g.s.) configuration, ψ

j0
pB has

to be normalized by the square root of the spectroscopic factor
S. The breakup components ψ

j
pB (j �= j0) also have to be

normalized by the same factor
√S , because

	
(+)
β (rpB,rβ) = lim

ε→+0

iε

E − Hβ + iε
eikβ ·rβ

√
Sψ

j0
pB(rpB)

=
√
S lim

ε→+0

iε

E − Hβ + iε
eikβ ·rβ ψ

j0
pB(rpB);

(12)

note that the ψ
j
pB (j �= j0) are generated by the Møller wave

operator iε/(E − Hβ + iε). Here, S has only one quantum
number, i.e., 
 = 1 for the orbital angular momentum between
p and 8B(g.s.) in the ground state of 9C. This is due to the
neglect of the intrinsic spin of each particle in the present
study. Thus S is understood as an averaged value of the S’s,
each with a different value of the total angular momentum of
the p-8B(g.s.) system.

III. RESULTS AND DISCUSSION

A. Model setting

We adopt the one-range Gaussian interaction [13] for Vpn.
The pseudostate method with the real-range Gaussian basis
functions [14] is used for obtaining the discretized-continuum
states of d; we include the s and d states and neglect the
intrinsic spin of d. The number of basis functions taken is 20,
and the minimum (maximum) range parameter of the Gaussian
is 1.0 (30.0) fm. We include in the CDCC pseudostates with
εi
pn < 65 MeV and εi

pn < 80 MeV for the s and d states,
respectively. To obtain 	(+)

α , ψi
pn is calculated up to rpn =

100.0 fm.
In the calculation of ψ

j
pB in the final channel, we adopt a

Woods-Saxon central potential as U
(β)
pB with radial parameter

R0 = 1.25 × 81/3 fm and diffuseness parameter a0 = 0.65 fm.
Its depth is determined to reproduce the proton separation
energy of 1.30 MeV in the p state. The interaction between
a point charge and a uniformly charged sphere with the
charge radius 2.5 fm is used as VC, which is used also in
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the CDCC calculation in the initial channel. The pseudostate
method is also used for the final channel. For the expansion of
ψ

j
pB we take 20 Gaussian basis functions with the minimum

(maximum) range parameter of 1.0 (20.0) fm. We take into
account the s, p, d, f , and g waves of ψ

j
pB with maximum

values of ε
j
pB of 70, 75, 85, 90, and 70 MeV, respectively. ψj

pB
is calculated up to rpB = 100.0 fm.

For U
(α)
pB , U

(α)
nB , and U

(β)
nB , we adopt the nucleon global

optical potential for p-shell nuclei by Watson et al. [15]
(WA). The nonlocal correction proposed by Timofeyuk and
Johnson [16–18] (TJ) to the nucleon distorting potentials of
the initial channel is used. The calculated energy shift [16–18]
with the above-mentioned p-n model is 17.8 MeV in the c.m.
frame. We thus evaluate U

(α)
pB and U

(α)
nB at 33.0 MeV in the

laboratory frame, which is shifted from the incident energy of
14.4 MeV/nucleon. The nonlocal correction to U

(β)
nB is made

following Perey and Buck [19] with the nonlocal parameter
β = 0.85 fm.

For describing the transfer reaction, Eq. (2) is integrated
over rα and rβ up to 25.0 and 20.0 fm, respectively. The
number of partial waves for χii0(+)

α and χ
jj0(−)
β is 25. As

mentioned above, we include only the s states of ψi
pn,

consisting of the ground and discretized-continuum states, in
the calculation of the T matrix of the transfer process. It should
be noted that the coupling between the s and d states of ψi

pn is
taken into account in the calculation of 	(+)

α with the CDCC
method. It is found that Di

pn defined below by Eq. (22) is
negligibly small for the d states of the deuteron, which justifies
their neglect in the transfer process.

B. Asymptotic normalization coefficient and
astrophysical factor S18(0)

We show in Fig. 2 the cross section of the transfer reaction
8B(d,n)9C at 14.4 MeV/nucleon as a function of the neutron
emission angle in the c.m. frame. The solid line shows the

FIG. 2. (Color online) Cross section of the transfer reaction
8B(d,n)9C at 14.4 MeV/nucleon as a function of the neutron emission
angle in the c.m. frame. The result of the CCBA (solid line) is
normalized to the experimental data [4].

CCBA result. We have normalized the result to reproduce the
experimental data [4] multiplied byS = 0.361. Note that, from
the present transfer reaction, S cannot be determined because
the reaction is peripheral, as will be confirmed below. Instead,
the asymptotic normalization coefficient (ANC) [5,12,20]
C

9C
p8B for the overlap of the 9C wave function with the

p-8B(g.s.) configuration is well determined. From S and the
so-called single-particle ANC of ψ

j0
pB, one can obtain the ANC:

(C
9C
p8B)2 = 0.59 fm−1.
The accuracy of the value of the ANC depends on how the

transfer reaction 8B(d,n)9C is peripheral with respect to rpB.
This can be examined by estimating the dependence of C

9C
p8B on

the parameters of U
(β)
pB ; each of R0 and a0 is changed by 20%.

As mentioned above, we put a constraint on the depth of the
potential so that the proton separation energy is reproduced.
It is found that, by this change of R0 and a0, (C

9C
p8B)2 varies

by only 2%, which indicates the peripherality of the transfer
reaction and guarantees the reliability of C

9C
p8B.

Uncertainty due to the distorting potential is estimated by
using another nucleon global potential set for p-shell nuclei.
We adopt the parameter set by Dave and Gould [21] (DG).
Since the incident energy corrected with the TJ prescription
for nonlocality, 33.0 MeV, is out of the range of the DG
parametrization, we see the difference between the values of
ANC calculated with WA and DG potentials, both without the
nonlocal correction. As a result, the uncertainty of the ANC
coming from the optical potential is found to be 3%.

By compiling the uncertainties due to peripherality (2%)
and the optical potential (3%) as well as the experimental
error of 22% [4], we obtain (C

9C
p8B)2 = 0.59 ± 0.02(theor.) ±

0.13(exp.) fm−1, where (theor.) and (exp.), respectively, stand
for the theoretical and experimental uncertainties. Using the
proportionality of (C

9C
p8B)2 to S18(0), we have

S18(0) = 22 ± 1(theor.) ± 5(exp.) eV b. (13)

C. Breakup effects of d and 9C on transfer cross section

The result for S18(0) in the present study, 22 ± 6 eV b, is
somewhat smaller than the result from the previous analysis
(45 ± 13 eV b) extracted from the same experimental data [4]
with the distorted-wave Born approximation (DWBA), which
does not explicitly take into account the breakup states of
nuclei. In this section we discuss this difference in view of
the breakup effects of d and 9C in the transfer reaction. In
Fig. 3, we show by the thick (thin) solid line the cross section
of 8B(d,n)9C at 14.4 MeV/nucleon calculated with (without)
the breakup states of both d and 9C. Inclusion of the breakup
channels gives a large increase of about 58% in the cross
section at 0◦.

To see this in more detail, we decompose the T matrix into

Tβα = Tβ(el),α(el) + Tβ(el),α(br) + Tβ(br),α(el) + Tβ(br),α(br),

(14)

Tβ(el),α(el) ≡ 〈
ψ

j0
pBχ

j0j0(−)
β

∣∣Vpn

∣∣ψi0
pnχ

i0i0(+)
α

〉
, (15)
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Tβ(el),α(br) ≡
〈
ψ

j0
pBχ

j0j0(−)
β

∣∣Vpn

∣∣∑
i �=i0

ψi
pnχ

ii0(+)
α

〉
, (16)

Tβ(br),α(el) ≡
〈∑

j �=j0

ψ
j
pBχ

jj0(−)
β

∣∣Vpn

∣∣ψi0
pnχ

i0i0(+)
α

〉
, (17)

Tβ(br),α(br) ≡
〈∑

j �=j0

ψ
j
pBχ

jj0(−)
β

∣∣Vpn

∣∣∑
i �=i0

ψi
pnχ

ii0(+)
α

〉
. (18)

The T matrix with the subscript γ (el) and γ (br) corresponds to
the elastic transfer (ET) and the breakup transfer (BT) in the γ
channel, respectively. The dash-dotted line in Fig. 3 shows the
cross section due to the ET described by Tβ(el),α(el). Note that
Tβ(el),α(el) includes the breakup effects as the back-coupling
between the elastic channel and the breakup channels for both
d and 9C. However, the small difference between the thin solid
line and the dash-dotted line indicates that those back-coupling
effects are not significant in the present case. The dashed line
shows the result including the breakup states of only d, which
is about 23% larger than that shown by the thin solid line at
0◦. It is also found that the transfer cross section through the
breakup states of d is less than 1% of that shown by the dashed
line. We thus conclude that the increase in the cross section
caused by the breakup states of d is due to the interference
between Tβ(el),α(el) and Tβ(el),α(br). This conclusion holds also
for the role of the breakup states of 9C; large interference
between Tβ(el),α(el) and Tβ(br),α(el) increases the cross section by
about 38% at 0◦, as shown by the dotted line. Furthermore, it
is found numerically that the contribution of Tβ(br),α(br) to the
cross section is negligibly small.

These properties of the numerical result can be understood
as follows. If we make the adiabatic approximation [22–24] to

FIG. 3. (Color online) Breakup effects of d and 9C on the cross
section of 8B(d,n)9C at 14.4 MeV/nucleon. The thick solid and thin
solid lines show, respectively, the results with and without the breakup
states of both d and 9C. The dashed (dotted) line represents the result
with the breakup states of d (9C) in the transition matrix Tβα being
neglected. The cross section corresponding to the ET is shown by the
dash-dotted line. See the text for detail.

	(+)
α , we have

	(+)
α (rpn,rα) ≈ ψi0

pn(rpn)χAD(+)
α (rpn,rα). (19)

The adiabatic wave function χAD(+)
α satisfies[

Krα
+ U

(α)
pB (rpB) + U

(α)
nB (rnB) − Eα

]
χAD(+)

α (rpn,rα) = 0,

(20)

where Eα = E + εi0
pn. The rpn dependence of U

(α)
NB (N = p or

n) gives that of χAD(+)
α . Consequently, 	(+)

α contains not only
the elastic-channel but also the breakup-channel components:

χii0AD(+)
α (rα) ≡ 〈

ψi
pn(rpn)

∣∣ψi0
pn(rpn)χAD(+)

α (rpn,rα)
〉
. (21)

The rpn dependence of U
(α)
NB is, however, quite weak within the

range of Vpn. Then one can expect that, for χii0AD(+)
α with i �=

i0, the amplitude would be much smaller than that of χi0i0AD(+)
α

and the phase would be very similar to that of χi0i0AD(+)
α .

The former is the reason for the very small contribution of
the BT and the latter is that for the constructive interference
between the ET and BT amplitudes. These properties have
been confirmed numerically. This interpretation of the breakup
effects can also be applied to 	

(−)
β in the final channel. It should

be noted that the adiabatic approximation [22–24] itself is
found to work well; it makes C

9C
p8B smaller by about 6% (12%)

when applied to 	(+)
α (	(−)

β ).
As mentioned above, the back-coupling effects are found

to be small in the present case. In fact, if we evaluate C
9C
p8B and

S18(0) from the thin solid line, we obtain (C
9C
p8B)2 = 0.95 fm−1

and S18(0) = 36 eV b. This value is, within only about 2%
difference, consistent with the result corresponding to the
D1-N1 set for the distorting potentials, (C

9C
p8B)2 = 0.97 fm−1,

shown in Table 1 of Ref. [4]; N1 corresponds to the WA
potential. We have confirmed by our DWBA calculation that
the result with the D1-N1 set agrees well with the thin
solid line in Fig. 3. From these findings we conclude that
inclusion of the breakup states of both d and 9C is necessary
to accurately describe the transfer reaction, which gives quite
a large increase in the cross section, that is, decrease in S18(0).

The non-negligible BT component in each channel is op-
posite to what was found in the analysis [12] of 13C(6Li,d)17O
below the Coulomb barrier energy, in which breakup effects
of 6Li (= α + d) were investigated. Below we discuss the
difference between the breakup properties of d and 6Li in the
two reactions. The origin of the difference can be understood
from the behavior of Di

pn defined by

Di
pn(rpn) = Vpn(rpn)φi

pn(rpn), (22)

where φi
pn is the radial part of ψi

pn. We show in Fig. 4(a)
Di

pn for some s-wave eigenstates of d; the eigenvalue εi
pn is

given in the legend. Similarly, we plot in Fig. 4(b) Di
αd (rαd ) =

Vαd (rαd )φi
αd (rαd ) for the α-d system; the two-range Gaussian

interaction Vαd given in Ref. [25] is adopted to generate the
radial part φi

αd of the s-wave eigenstate ψi
αd .

In Figs. 4(a) and 4(b), respectively, Di
pn and Di

αd for some
eigenstates are plotted. One sees that the amplitude of Di

pn for
breakup states (the dashed and dotted lines) are comparable
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FIG. 4. (Color online) (a) Di
pn for several ith states with the

eigenenergy εi
pn. (b) Same as in panel (a) but for the α-d system.

to that of Di0
pn (solid line). On the other hand, Di

αd for the

breakup states are much smaller than D
i0
αd , which is found to

be due to the Coulomb interaction between α and d. Thus, the
difference in the BT components between the 8B(d,n)9C and
13C(6Li,d)17O reactions can be understood. It should be noted
that a large value of Di for a breakup state does not necessarily
give a large BT cross section, because even in this case χii0

α can
be small as a result of the channel couplings. Furthermore, the
importance of the back-coupling effect depends on the reaction
system in a nontrivial manner.

D. Formalism of finite-range correction for CCBA transition
amplitude and finite-range effect on transfer cross section

In this section we describe a procedure for an FRC to the
ZR CCBA transition matrix. The essence of this correction
is similar to that given in Ref. [26], except that the present
method is based on a three-body reaction model including
continuum states of both the projectile and the residual nucleus.
The integral expression of Eq. (2), with Eq. (10), is given by

Tβα =
∑

j

∫
d rpnd rαχ

jj0(−)∗
β (rβ)ψj∗

pB(rpB)Vpn(rpn)

× 	(+)
α (rpn,rα). (23)

By using

ψ
j∗
pB(rpB) = ψ

j∗
pB(rα + σ rpn) = e

σ∇rpB ·rpnψ
j∗
pB(rα),

χ
jj0(−)∗
β (rβ) = χ

jj0(−)∗
β (τ−1rα + ξ rpn)

= eτξ∇rβ ·rpnχ
jj0(−)∗
β (τ−1rα) (24)

with σ = 1/2, τ = 9/8, and ξ = σ/τ − 1, Eq. (23) can be
rewritten as

Tβα =
∑

j

∫
d rpnd rαe

(σ∇rpB +τξ∇rβ )·rpnχ
jj0(−)∗
β (τ−1rα)

× ψ
j∗
pB(rα)Vpn(rpn)	(+)

α (rpn,rα). (25)

It should be noted that ∇rpB and ∇rβ
operate on only ψ

j∗
pB and

χ
jj0(−)∗
β , respectively.

As in Ref. [26], we use

e
(σ∇rpB +τξ∇rβ )·rpn ≈ 1 + 1

6

(
σ∇rpB + τξ∇rβ

)2
r2
pn. (26)

Here, we assume that only the s-wave component of the
deuteron wave function contributes to the T matrix, which
has eliminated the first-order term of the expansion series in
Eq. (26); justification of this assumption is given in Sec. III A.
With the local energy approximation [26], one may find

Tβα ≈
∑

j

∫
d rpnd rαχ

jj0(−)∗
β (τ−1rα)ψj∗

pB(rα)Vpn(rpn)

× F̂LEA	(+)
α (rpn,rα) (27)

with

F̂LEA ≡ 1 + 1

6
r2
pn

2μpn

�2

[
U

(β)
pB (rpB) + U

(β)
nB (rnB) + �VC

− U
(α)
pB (rpB) − U

(α)
nB (rnB) − hpn

]
(28)

and

�VC ≡ VC(rpB) − VC(rα), (29)

where μpn is the reduced mass of the p-n system. Here
we assume �VC ∼ 0. Note that, if we include the Coulomb
breakup in the initial channel, VC(rα) is replaced with VC(rpB),
which results in �VC = 0. Using rpB = rα + σ rpn and rnB =
rα − σ rpn, we make the following expansion:

U
(γ )
pB (rpB) ≈ U

(γ )
pB (rα) + [∇rα

U
(γ )
pB (rα)

] · σ rpn, (30)

U
(γ )
nB (rnB) ≈ U

(γ )
nB (rα) − [∇rα

U
(γ )
nB (rα)

] · σ rpn. (31)

The second terms of Eqs. (30) and (31) vanish after being
integrated over rpn, because we consider only the s-wave states
of ψi

pn, as mentioned above. By using Eqs. (5) and (6), we then
obtain

Tβα ≈
∑
ij

∫
d rαχ

jj0(−)∗
β (τ−1rα)ψj∗

pB(rα)

× Di
0F

i
LEA(rα)χii0(+)

α (rα) (32)
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with

F i
LEA(rα) ≡ 1 + ρ2

i

6

2μpn

�2

[
U

(β)
pB (rα) + U

(β)
nB (rα)

−U
(α)
pB (rα) − U

(α)
nB (rα) − εi

pn

]
. (33)

In Eqs. (32) and (33) Di
0 and ρ2

i are defined by

Di
0 =

√
4π

∫
drpnr

2
pnD

i
pn(rpn), (34)

ρ2
i =

∫
drpnr

4
pnD

i
pn(rpn)∫

drpnr2
pnD

i
pn(rpn)

. (35)

Thus, the integration over rpn is factored out in the evaluation
of the T matrix. It should be noted that the FRC function F i

LEA
does not depend on j .

If we take only the first term on the right-hand-side (r.h.s)
of Eq. (33), we obtain a T matrix with the ZR approximation
to Di

pn:

Di
pn(rpn) = Di

0√
4π

δ(rpn). (36)

Therefore, the second term on the r.h.s. of Eq. (33) is regarded
as the FRC to the ZR calculation. Equations (32) and (33) give
a natural extension of the FRC proposed in Ref. [26] that can
be used in the CCBA formalism.

When the breakup states in the final channel are neglected
as in the previous study [6], Eq. (33) reduces to

F i
LEA(rα) = 1 + ρ2

i

6

2μpn

�2

[
U

(β)
pB (rα) + U (β)(τ−1rα)

− U
(α)
pB (rα) − U

(α)
nB (rα) − εi

pn

]
, (37)

where U (β) is the distorting potential for the n-9C scattering
wave function. This expression is useful when we adopt the
CDCC wave function in only the initial channel.

FIG. 5. (Color online) CCBA results of the FR calculation (solid
line), the ZR calculation (dotted line), and the ZR calculation with
the FRC (dashed line).

Further simplification of Eq. (33) can be done if U
(β)
pB ≈

U
(α)
pB and U

(β)
nB ≈ U

(α)
nB , that is,

F i
LEA(rα) ≈ 1 − ρ2

i

6

2μpn

�2
εi
pn. (38)

By definition, εi
pn is negative for the ground state (i = i0)

and positive for the breakup states (i �= i0). Thus, we can
see from Eq. (38) that for the transfer process through the
deuteron ground state, the ET, the FRC increases the T -matrix
element. On the other hand, for the transfer process through
the breakup states of d, the BT, the correction gives a decrease
in the T -matrix element. This behavior is useful to interpret the
difference between the results of the ZR and FR calculations,
as shown below. It should be noted that ρ2

i can be negative
when εi

pn is very large. However, the contribution of such state
to the T matrix is found to be negligibly small. Note also that
in the actual calculation we use Eq. (33); Eq. (38) is used just
for interpretation of the numerical result.

We show in Fig. 5 the results obtained by the FR calculation
(solid line), the ZR calculation (dotted line), and the ZR
calculation with the FRC described by Eqs. (32) and (33)
(dashed line). One finds that the FR effect gives about a 20%
increase in the cross section at θ = 0◦. The FRC works well

0

0.05

0.10

0.15

0.20

0.25

0.30

2.22 MeV
1.33 MeV
5.75 MeV

13.15 MeV

(b) imaginary part

F
i

LE
A

0 2 4 6 8 10
rα  (fm)

FIG. 6. (Color online) (a) Real and (b) imaginary parts of the
correction function F i

LEA defined by Eq. (33). Each line corresponds
to the result with εi

pn specified in the legends.
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qualitatively but is not sufficient to get good agreement with the
solid line. This suggests that the FR effect found in 8B(d,n)9C
at 14.4 MeV/nucleon contains a higher-order component that
cannot be included in the present procedure.

The correction function F i
LEA of Eq. (33) is plotted in

Fig. 6; panels (a) and (b) correspond to the real and imaginary
parts of F i

LEA, respectively. It is found that F i
LEA has a

nontrivial behavior in the interior region, say, rα � 6 fm.
As clarified in Sec. III B, however, the 8B(d,n)9C reaction
at 14.4 MeV/nucleon is peripheral with respect to rpB, which
is the same as rα in the ZR limit. Thus, the contribution of
F i

LEA in the interior region to the T matrix is expected to be
very small. In this case, a simple estimation of the FR effect
based on Eq. (38) works well. At higher incident energies,
where we have less peripherality, the FR effect can change
significantly.

IV. SUMMARY

We have analyzed the transfer reaction 8B(d,n)9C at
14.4 MeV/nucleon by means of the p + n + 8B three-body
coupled-channels framework. The ANC of 9C in the p-8B(g.s.)
configuration, C

9C
p8B, and the astrophysical factor at zero energy,

S18(0), for the 8B(p,γ )9C reaction have been determined.
Our results are (C

9C
p8B)2 = 0.59 ± 0.15 fm−1 and S18(0) =

22 ± 6 eV b. It is found that the breakup states of both d and
9C increase the transfer cross section through the interference
between the ET and BT amplitudes. As a result, the present
result is smaller than the previous value [4] extracted from
the same experimental data by about 51%. The back-coupling
effects on the elastic channel are found to be small.

We proposed a new prescription of the FRC to the ZR
calculation of the T matrix, which can be used in the CCBA
formalism. For the 8B(d,n)9C reaction at 14.4 MeV/nucleon,
the FRC is not sufficient to reproduce the result of the
FR calculation, indicating the importance of higher-order
correction terms. The FR effect on the transfer reaction
considered turns out to be about 20%.

In Fig. 7 we compare the present result for S18(0) with
previous results extracted from indirect measurements. As
mentioned, we obtained a smaller S18(0) than that of Ref. [4]
because of the contribution of d and 9C breakup states. The
present result is not consistent with the result of a three-body
model analysis [5] of the inclusive [2] and exclusive [3] 9C
breakup reactions within 2σ . Further investigation is necessary

FIG. 7. (Color online) S18(0) in the present work (circle) com-
pared with the results evaluated from the 8B(d,n)9C reaction (dia-
mond) [4] and values extracted from 9C breakup reactions (triangle
[2], cross [3], and square [5]).

to understand the reason for this discrepancy. Extension of the
present framework to include breakup channels of 8B as well as
the three-body model description of 9C will be importan future
work. Another possible reason for the discrepancy in S18(0)
is the Pauli blocking effect on the transfer reaction [27,28].
Antisymmetrization between a nucleon in d and that in 8B in
calculation of the d-8B three-body wave function will be an
important subject.

In Ref. [29], S18(0) = 44 ± 11 eV b was extracted from
8Li(d,p)9Li, which is the mirror reaction to 8B(d,n)9C, by
means of the DWBA. It will be interesting to estimate breakup
effects of d in this mirror reaction. Furthermore, a compilation
of the ANCs for the p-shell nuclei has been made recently
[30], in which C

9C
p8B = 1.080 fm−1 was reported. It will be

important to elucidate the difference between this value and
the present result.
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