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as sources of theoretical uncertainties

A. V. Afanasjev,1 S. E. Agbemava,1 D. Ray,1 and P. Ring2

1Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA
2Fakultät für Physik, Technische Universität München, D-85748 Garching, Germany

(Received 25 September 2014; revised manuscript received 12 December 2014; published 29 January 2015)

The sources of theoretical uncertainties in the prediction of the two-neutron drip line are analyzed in the
framework of covariant density functional theory. We concentrate on single-particle and pairing properties
as potential sources of these uncertainties. The major source of these uncertainties can be traced back to
the differences in the underlying single-particle structure of the various covariant energy density functionals
(CEDF’s). It is found that the uncertainties in the description of single-particle energies at the two-neutron drip
line are dominated by those existing already in known nuclei. Only approximately one-third of these uncertainties
are from the uncertainties in the isovector channel of CEDF’s. Thus, improving the CEDF description of
single-particle energies in known nuclei will also reduce the uncertainties in the prediction of the position of the
two-neutron drip line. The predictions of pairing properties in neutron-rich nuclei depend on the CEDF. Although
pairing properties affect moderately the position of the two-neutron drip line they represent only a secondary
source for the uncertainties in the definition of the position of the two-neutron drip line.
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I. INTRODUCTION

The analysis of theoretical uncertainties in the prediction
of the position of the two-neutron and two-proton drip lines
has recently attracted great interest [1–3] because of the
possibility to estimate the number of nuclei which may exist
in nature. Figure 1 shows an example of the nuclear landscape
and related theoretical uncertainties in the definition of the
position of the two-proton and two-neutron drip lines which
emerge from an analysis performed in the framework of
covariant density functional theory (CDFT) [4,5] using four
state-of-the-art covariant energy density functionals (CEDF’s).
The detailed comparison of these results with the ones obtained
in nonrelativistic density functional theories (DFTs) and in
the microscopic+macroscopic model was already presented in
Refs. [2,3]. The theoretical uncertainties for the two-neutron
drip line obtained in nonrelativistic and relativistic frameworks
are comparable.

One can see that the largest uncertainties exist in the
position of the two-neutron drip line. Inevitably, the question
about possible sources of these uncertainties emerges. Several
sources have been proposed but they have not been investigated
in detail. For example, the uncertainties in the position of the
two-neutron drip line were related to existing uncertainties
in the definition of isovector properties of the energy density
functionals (EDF’s) in Ref. [1]. Indeed, the isovector properties
of an EDF impact the depth of the nucleonic potential
with respect to the continuum, and, thus, may affect the
location of two-neutron drip line. However, an inaccurate
reproduction of the depth of the nucleonic potential exists
in modern EDF’s also in known nuclei (see the discussion in
Sec. IV C of Ref. [7]). Thus, they alone cannot explain the
observed features. Moreover, the observed differences in the
prediction of the position of the two-neutron drip line cannot
be explained by the underlying nuclear matter properties of the
EDF’s [3].

Note that throughout this manuscript (as in Refs. [1–3]) the
position of the two-neutron drip line is specified via the two-
neutron separation energy S2n = B(Z,N − 2) − B(Z,N ), the
amount of energy needed to remove two neutrons. Here
B(Z,N ) stands for the binding energy of a nucleus with Z
protons and N neutrons. If the separation energy is positive,
the nucleus is stable against two-neutron emission; conversely,
if the separation energy is negative, the nucleus is unstable. The
two-neutron drip line is reached when S2n � 0.

Figure 1 clearly illustrates that for medium and heavy mass
nuclei extreme extrapolations are necessary to reach the two-
neutron drip line. This figure also suggests that only light nuclei
with Z � 28 and medium mass nuclei with Z ∼ 38 may be
experimentally studied in the vicinity of the two-neutron drip
line with future facilities such as FRIB, RIKEN, GANIL, or
FAIR.

In Ref. [2] it was suggested that the position of the two-
neutron drip line depends also sensitively on the underlying
shell structure and the accuracy of the description of the single-
particle energies. Indeed, the shell structure effects are clearly
visible in the fact that for some values of the proton number
Z there is basically no (or only very little) dependence of the
predicted location of the two-neutron drip line on the EDF
(see Fig. 1 in the present paper and Refs. [1–3]). However, no
detailed study of this aspect of the problem has been performed
so far.

Another interesting question is the impact of pairing and
its strength on the position of the two-neutron drip line. It
was found that they play an important role in the region of
the drip line [8,9]. Virtual neutron pairs can be scattered to
the continuum. This leads in some cases to enhanced pairing
correlations and to an increasing of the binding.

The effective pairing interaction is treated in DFT in a
phenomenological way with its strength fixed by a fit to
experimental observables such as odd-even mass stagger-
ings [3,10] or moments of inertia in rotating nuclei [11].
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FIG. 1. (Color online) The nuclear landscape as provided by state-of-the-art CDFT calculations. The uncertainties in the location of
the two-proton and two-neutron drip lines are shown by violet shaded areas. They are defined by the extremes of the predictions of the
corresponding drip lines obtained with the different functionals. The uncertainties (the range of nuclei) in the location of the neutron chemical
potential λn = −2.0 MeV are shown by the blue shaded area. Experimentally known stable and radioactive nuclei (including proton emitters)
are shown by black and green squares, respectively. The green solid line shows the limits of the nuclear chart (defined as fission yield greater
than 10−6) which may be achieved with dedicated existence measurements at FRIB [6]. Red solid circles show the nuclei near the neutron drip
line for which the single-particle properties are studied in Sec. V. The figure is partially based on the results presented in Fig. 4 of Ref. [2].

While in light nuclei the comparison with experiment in the
vicinity of two-neutron drip line will be possible in future,
the situation is different in medium and heavy mass nuclei
for which the neutron drip line is located far away from
existing or future experimental data. As a consequence, it
will be impossible to verify whether the model calculations
reproduce correctly the changes in pairing with increasing
isospin in the experimentally unknown region of the nuclear
landscape. Thus, theoretical uncertainties in the definition of
pairing in such nuclei and their impact on the position of the
two-neutron drip line have to be estimated.

The main goal of the current manuscript is to investigate
the impact of pairing correlations and the underlying shell
structure on the position of the two-neutron drip line and
to outline the approaches which will allow in the future to
decrease theoretical uncertainties in the definition of two-
neutron drip lines.

We would like to emphasize that we discuss only systematic
uncertainties and do not consider statistical errors which can
be calculated from a statistical analysis during the fit [12].
Note that the number of employed covariant energy density
functionals is somewhat limited and that they do not form
a statistically independent ensemble because they are based
on very similar terms in the CDFT Lagrangian [3]. Thus,
these systematic theoretical uncertainties are only a crude
approximation to the systematic theoretical errors discussed
in Ref. [12].

The manuscript is organized as follows. The global be-
havior of pairing properties obtained in relativistic Hartree-
Bogoliubov (RHB) calculations with four different CEDF’s
and their dependence on the specific CEDF is analyzed in
Sec. II. The impact of pairing on the position of the two-neutron

drip line is discussed in Sec. III. Section IV outlines the parts of
the nuclear chart in which the coupling with the continuum will
(or will not) affect future experimental data obtained with the
next generation of experimental facilities such as FRIB. The
role of the shell structure and the influence of the uncertainties
in the single-particle energies on the two-neutron drip line
and the uncertainties in its definition are discussed in Sec. V.
Finally, Sec. VI summarizes the results of our work and gives
conclusions.

II. PAIRING PROPERTIES: A GLOBAL VIEW

A. Pairing indicators

In investigations based on relativistic or nonrelativistic
density functional theory it is not a trivial task to deduce
from the self-consistent solutions of the Hartree-Bogoliubov
or Hartree-Fock-Bogoliubov equations the size of the pairing
correlations and to characterize it by one number. Apart from
the trivial case of monopole pairing, where the pairing field is
a multiple of unity, in calculations based on a more realistic
particle-particle force the pairing field has a complicated
structure. In calculation in a configuration space it is a
complicated matrix with many diagonal and off-diagonal
matrix elements �nn′ and in r space it is in general a nonlocal
function �(r,r ′). Only for effective interactions of zero range
this reduces to a local function �(r).

In practice two measures for the size of pairing correlations
have been used, namely, the pairing gap �, which represents
the order parameter for the phase transition from a normal fluid
to a superfluid, and the pairing energy Epairing, the expectation
value of the effective pairing force in the nuclear ground state.
Of course, both quantities have to be given for neutrons and
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protons separately and they will be discussed in detail in the
present section.

In addition, pairing correlations also reveal themselves
through the position of the chemical potentials for neutrons
and protons and their evolution with particle number. These
quantities are extremely important for the precise definition
of the positions of the neutron and proton drip lines and
the regions of the nuclear chart where the coupling with the
continuum may become important. They will be discussed in
Sec. IV.

At present, as discussed in Ref. [3], several definitions of
the pairing gap � exist. However, the analysis presented in
Sec. IV of this manuscript clearly indicates that in even-even
nuclei the �uv values,

�uv =
∑

k ukvk�k∑
k ukvk

, (1)

provide the best agreement with the pairing indicators deduced
from odd-even mass staggerings. Here the values �k are the
diagonal matrix elements of the pairing field in the canonical
basis [13] and the BCS occupation numbers u2

k and v2
k are

calculated from the usual BCS expression,

u2
k

v2
k

}
= 1

2

⎛
⎝1 ± εk − λ√

(εk − λ)2 + �2
k

⎞
⎠ , (2)

where εk = hkk are the diagonal matrix elements of the mean
field Hamiltonian in the canonical basis. The pairing gap �uv

averages the matrix elements �k in Eq. (1) with the weights
ukvk; these are the quantities concentrated around the Fermi
surface.

An alternative measure of the size of pairing correlations in
theoretical calculations is the so-called pairing energy Epairing.
In Hartree-(Fock)-Bogoliubov calculations it is defined as

Epairing = −1

2
Tr(�κ) = −

∑
k>0

�kukvk. (3)

Note that this is not an experimentally accessible quantity.
For zero range pairing forces it has in addition the unpleasant
property that it diverges with the energy cutoff, i.e., with the
size of the pairing window. This can also be seen for the case
of a monopole pairing force [13],

V pp = GS†S, with S† =
∑
k>0

a
†
ka

†
k̄
, (4)

where the gap parameter,

� = G〈S†〉, (5)

is the product of the strength G of the force and the expectation
value of the pair operator S†,

〈S†〉 =
∑
k>0

ukvk. (6)

In this case the �uv = � is finite, because for fixed size of
the pairing window it is adjusted to experimental odd-even
mass differences. However, 〈S†〉 diverges and G vanishes with
an increasing pairing window. As a consequence the pairing

energy,

Epairing = −G〈S†〉〈S〉 = − 1

G
�2, (7)

diverges with increasing pairing window, too. The same is true
for zero range pairing forces.

From these considerations it is evident, that zero range pair-
ing forces are reliable only in the regions where experimental
gap parameters are available. Their predictive power for the
regions far away from these regions might be considerably
reduced (see also Ref. [14], where it was shown that the heights
of fission barriers depend in the case of zero range forces on
the pairing window).

B. Pairing force

To avoid the uncertainties connected with the definition
of the size of the pairing window, we use in all the RHB
calculations discussed in this manuscript the separable pairing
interaction of finite range introduced by Tian et al. [15]. Its
matrix elements in r space have the form,

V (r1,r2,r ′
1,r

′
2) = −f Gδ(R − R′)P (r)P (r ′) 1

2 (1 − P σ ), (8)

with R = (r1 + r2)/2 and r = r1 − r2 being the center of
mass and relative coordinates. The form factor P (r) is of
Gaussian shape,

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (9)

The two parameters G = 738fm3 and a = 0.636 fm of this
interaction are the same for protons and neutrons and have
been derived in Ref. [15] by a mapping of the 1S0 pairing gap
of infinite nuclear matter to that of the Gogny force D1S [16].

The scaling factor f in Eq. (8) is determined by a fine
tuning of the pairing strength in a comparison between
experimental moments of inertia and those obtained in cranked
RHB calculations with the CEDF NL3* (see Ref. [3] for
details). It is fixed at f = 1.0 in the Z � 88 actinides and
superheavy nuclei, at f = 1.075 in the 56 � Z � 76 and at
f = 1.12 in the Z � 44 nuclei. Between these regions, i.e.,
for 44 � Z � 56 and for 76 � Z � 88, the scaling factor f
gradually changes with Z in a linear interpolation. The weak
dependence of the scaling factor f on the CEDF was seen in
the studies of pairing and rotational properties in the actinides
in Refs. [11,17] and pairing gaps in spherical nuclei in Ref. [3].
Thus, the same scaling factor f as defined above for the CEDF
NL3* is used in the calculations with DD-PC1, DD-ME2, and
DD-MEδ. Considering the global character of this study, this
is a reasonable choice.

C. Other details of the numerical calculations

In the present manuscript, the RHB framework is used for
systematic studies of ground-state properties of all even-even
nuclei from the proton-to-neutron drip line. We consider only
axial and parity-conserving intrinsic states and solve the RHB
equations in an axially deformed oscillator basis [18–20]. The
truncation of the basis is performed in such a way that all states
belonging to the shells up to NF = 20 fermionic shells and
NB = 20 bosonic shells are taken into account. As tested in a
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number of calculations with NF = 26 and NB = 26 for heavy
neutron-rich nuclei, this truncation scheme provides sufficient
numerical accuracy. For each nucleus the potential energy
curve is obtained in a large deformation range from β2 = −0.4
up to β2 = 1.0 by means of a constraint on the quadrupole
moment Q20. Then, the correct ground-state configuration and
its energy are defined; this procedure is especially important
for the cases of shape coexistence.

The absolute majority of nuclei are known to be axially and
reflection symmetric in their ground states [21]. The global
calculations performed in the RHB framework with allowance
of reflection symmetric (octupole deformed) shapes and with
DD-PC1 CEDF confirm these results and clearly show that
octupole deformation does not affect the ground states of the
nuclei located in the vicinity of the two-neutron drip line [22].
Similar results are expected for other CEDF’s. At present,
triaxial RHB [23] calculations are too time-consuming to
be undertaken on a global scale. However, even if triaxial
deformation is present in some nuclei in the vicinity of
the two-neutron drip line, its presence will not affect the
conclusions obtained in the present manuscript.

D. Global pairing properties

Figure 2 compares neutron pairing energies Epairing obtained
with four CEDF’s. In the region of known nuclei these
energies are, in general, quite comparable. They are very
similar in the RHB calculations with the three CEDF’s DD-
ME2, DD-MEδ, and DD-PC1 CEDF’s with density-dependent
coupling constants and slightly higher (in absolute values) in
the ones with the CEDF NL3*. However, on approaching the
two-neutron drip line, substantial differences develop between
the pairing energies in the RHB calculations with these four
CEDF’s. For DD-PC1 and DD-MEδ the largest increase of
neutron pairing energies is seen near the two-neutron drip line
between N = 50 and N = 126; for other nuclei in the vicinity
of the two-neutron drip line this increase is more modest.
These increases in neutron pairing energy on approaching the
two-neutron drip line become more pronounced in DD-ME2
(as compared with DD-PC1 and DD-MEδ) and they are
especially pronounced in NL3*. For the latter CEDF, the
absolute values of neutron pairing energies are by a factor
of 3–4 higher near the two-neutron drip line than those in
the known nuclei (Fig. 2). This difference reduces to a factor
2 for the DD-ME2 CEDF and becomes even smaller for the
DD-MEδ and DD-PC1 CEDF’s (Fig. 2). In this context we
have to keep in mind that the parameter set NL3* has no
density dependence in the isovector channel. Therefore, as
discussed in detail in Ref. [3] the symmetry energy and the
slope of the symmetry energy at saturation is considerably
larger in this case than in the other three cases.

In Fig. 3 we compare for four CEDF’s the evolution of
the neutron pairing gaps �uv and pairing energies Epairing as a
function of the neutron number in the chain of the Yb isotopes
with Z = 70. One can see that in the RHB calculations with
the three density-dependent sets DD-MEδ, DD-ME2, and DD-
PC1 the pairing gaps �uv in neutron-rich N � 126 nuclei have
on average the same magnitude as pairing gaps in known nuclei
[Fig. 3(a)]. However, the absolute pairing energies are larger

by a factor of about 2 in neutron-rich nuclei as compared
with the ones in known nuclei. Note that both �uv and Epairing

are more or less constant in neutron-rich nuclei in the RHB
calculations with DD-PC1 and DD-MEδ. On the contrary, a
slight increase of the absolute values of these quantities is
observed with increasing isospin in DD-ME2.

The situation is different for the CEDF NL3*. Its pairing
correlations are only slightly stronger in known nuclei as
compared with the density-dependent CEDF’s. However, more
pronounced differences are seen when the results in neutron-
rich nuclei are compared with the ones in known nuclei. The
pairing gaps �uv are on average 25% larger in neutron-rich
nuclei as compared with known ones and, in addition, they
gradually increase with neutron number. The absolute values
of the pairing energies rapidly increase with neutron number
in neutron-rich N � 126 nuclei; near the two-proton drip line
these energies are larger by a factor of 4 than average pairing
energies in known nuclei.

Considering the existing differences in the �uv and Epairing

values obtained in the calculations with different CEDF’s
in known nuclei (curves in shaded area of Fig. 3), it is
important to understand to which extent the minimization of
these differences will also remove the differences in these
quantities in neutron-rich nuclei. To address this question, the
calculations with the DD-PC1 CEDF have been performed
with a pairing strength increased by 3.5%. In the region of
known nuclei, the �uv values obtained in these calculations are
on average the same as the ones obtained in the calculations
with NL3* CEDF [Fig. 3(a)]. The pairing energies are also
similar in both calculations [Fig. 3(b)]. However, in the region
of experimentally known nuclei the isospin dependencies of
the quantities �uv and Epairing are slightly different in these
calculations with NL3* and DD-PC1 CEDF’s. These differ-
ences increase with isospin; they are especially pronounced
near the two-neutron drip line. This effect may be related
to different density dependence of these two CEDF’s in the
isovector channel.

The strong dependence of the predictions for neutron
pairing on the underlying functional is also seen in the fact
that Skyrme DFT calculations for the spherical nuclei with
large proton gaps [9] show the reduction of neutron pairing
towards the neutron drip line, which, however, is overcast by
strong shell effects. This analysis is based on the �lcs pairing
gaps (for definition see Ref. [24] and Sec. IV of Ref. [3]) in
even-even nuclei. However, it was found in Ref. [3] that the
�uv pairing gaps used in the present calculations reproduce
the experimental odd-even mass staggerings in a considerably
better way than the �lcs pairing gaps.

E. Comments on pairing uncertainties

These results have some unpleasant consequences. First,
even a careful fitting of the pairing force in known nuclei to
experimental odd-even mass staggerings will not necessarily
lead to a pairing force with a reliable predictive power towards
the two-neutron drip line. Indeed, the �uv and Epairing values
obtained in the calculations with the CEDF’s NL3* and
DD-PC1 (with a scaled pairing strength) differ by ∼30%
and ∼100% in neutron-rich nuclei, respectively, despite the
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FIG. 2. (Color online) Neutron pairing energies Epairing obtained in the RHB calculations with the indicated CEDF’s.
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FIG. 3. (Color online) Neutron pairing gaps �uv and pairing
energies Epairing of the Yb nuclei located between the two-proton and
two-neutron drip lines obtained in the axial RHB calculations with the
indicated CEDF’s. The shaded yellow area indicates experimentally
known nuclei. The “DD-PC1(scaled)” curves show the results of the
calculations in which the pairing strength is increased by 3.5%.

fact that they are more or less similar in known nuclei.
Second, because the form of pairing force is the same in both
calculations, the observed differences in the quantities �uv and
Epairing have to be traced back to the underlying shell structure
and its evolution with neutron number. As discussed in detail in
Sec. V, this is the property most poorly constrained in modern
DFT’s.

Note that in Ref. [3], the selection of scaling factors
f for separable pairing was guided by the comparison of
experimental data with different calculations based on the
CEDF NL3*. The same scaling factors f were used here also
in the calculations with DD-PC1, DD-ME2, and DD-MEδ.
The spread in the calculated values �uv values in known
nuclei indicates that the scaling factors f used in Ref. [3]
are reasonable to a within a few % (see also Sec. IV in Ref. [3]
and Fig. 3 in the present paper). The weak dependence of the
scaling factor f on the CEDF was already seen in the studies
of pairing and rotational properties in the actinides [11,17].
Considering the global character of the study in Ref. [3], this
is a reasonable choice. Definitely there are also some nuclei in
which the choice of the scaling factors f is not optimal.

Figure 3 shows also some very promising facts. The
predictions for pairing in nuclei with large neutron excess,
i.e., far from the experimentally accessible region are very
similar for the three density-dependent parameter sets DD-
ME2, DD-MEδ, and DD-PC1. In particular, the results
for DD-MEδ and DD-PC1 are very close. Apart from the
fact that both sets are relativistic functionals these two
sets are somewhat different: DD-MEδ has a finite range
meson exchange and DD-PC1 has zero range, DD-MEδ was
fitted to spherical nuclei, and DD-PC1 to deformed nuclei.
Both of them, however, are adjusted carefully to ab initio
calculations of nuclear matter, DD-PC1 to the nonrelativistic
variational calculations of the Urbana group [25] and DD-MEδ
to the nonrelativistic Brueckner-Hartree-Fock calculations
of the Catania group [26] as well as to the relativistic

Brueckner-Hartree-Fock calculations of the Tübingen
group [27]. In addition to these ab initio inputs the set DD-MEδ
uses only four free parameters fitted to finite nuclei. It is also
seen that the parameter set DD-ME2 shows for large neutron
excess slight deviations from the other two density-dependent
sets. This might be connected with the fact that this CEDF
has no ab initio input and that the proper isospin dependence
is more difficult to deduce from present experimental data
in nuclei located mostly in the vicinity of the valley of beta
stability.

III. THE IMPACT OF PAIRING PROPERTIES ON THE
POSITION OF TWO-NEUTRON DRIP LINE

A. The example of the Rn isotopes

Having in mind that there are differences in the predicted
size of pairing correlations for nuclei with large neutron
excess, it is important to understand how they affect the
physical observables of interest, in particular the position
of the two-neutron drip line. To address this question we
analyze the chain of the Rn isotopes with Z = 86. The
calculations of Refs. [2,3] show that the two-neutron drip
line is located in this case at N = 206 for NL3* and at N =
184 for DD-ME2, DD-MEδ, and DD-PC1 (see Table IV in
Ref. [3]).

First, we perform RHB calculations with the set NL3* and
with a pairing strength decreased by 8% as compared to the
one used in Ref. [3]. This brings the calculated pairing energies
near the two-neutron drip line close to those obtained in the
calculations with DD-ME2, DD-MEδ, and DD-PC1 [compare
Figs. 2 and 4(d)]. This decrease of pairing strength has a
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pairing gap �uv (b), and neutron pairing energy Epairing (d) as a
function of the neutron number N in the Rn isotopes with N � 184
obtained in RHB calculations with the CEDF NL3*. Only the results
for bound nuclei are shown. The results of the calculations for two
values of the strength of the pairing force [Eq. (8)] are presented. The
calculational scheme labeled “A” corresponds to the pairing force with
the scaling factor f defined in Sec. II B. The calculational scheme
“B” uses a pairing strength reduced by 8% as compared with the
scheme “A.”
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significant impact on the Rn isotopes near the two-neutron
drip line and the position of the two-neutron drip line. Indeed,
the Rn isotopes with N = 186,188,190,202,204, and 206,
which are bound for the original pairing strength (scheme
“A”), become unbound for decreased pairing (scheme “B”).
Thus, the position of the two-neutron drip line located at
N = 206 is single valued in calculational scheme A. On the
contrary, in the calculational scheme B the creation of the
peninsula of stability at N = 192–200 leads to primary (at
N = 184) and secondary (at N = 200) two-neutron drip lines.
In addition, the deformations of the N = 192–200 isotopes
become larger in calculational scheme B [Fig. 4(c)]. This
reflects the well-known fact that pairing typically tries to
reduce the nuclear deformation.

However, the situation is more complicated. Larger pairing
correlations do not necessarily shift the neutron drip line to
larger neutron numbers. When we increase, for instance, in
the RHB calculations with DD-ME2 and DD-PC1 the pairing
strength by 8%, bringing the calculated pairing energies
closer to those for NL3*, this does not affect the position
of the two-neutron drip line for the chain of Rn isotopes in
these CEDF’s because of the details of the underlying shell
structure.

The possible impact of pairing correlations on the position
of the two-neutron drip line can be understood by the following
arguments: The nucleus becomes unbound when the two-
neutron separation energy becomes negative. In the majority
of the cases (see discussion in Sec. III B) it takes place when
the neutron chemical potential λn becomes positive. In nuclei
close to the two-neutron drip line pairing correlations scatter
neutron pairs from negative energy bound states into positive
energy unbound states. As a consequence, the actual position
of the neutron chemical potential depends on the energies of the
involved levels, their degeneracy, and the strength of pairing
correlations. In the extreme limit of no pairing, λn is equal to
the negative energy of the last occupied state. For example,
this takes place in the Rn isotope with N = 184 [Figs. 4(a)
and 4(b)]. Note that the situation in nuclei with large shell
gaps is very close to this limit because these gaps strongly
quench pairing correlations [28]. For a realistic pairing and
for a typical shell structure of nuclei close to the drip line
(see, for example, Fig. 6) the neutron chemical potential
will be close to the zero energy [Fig. 4(a)]. The increase of
neutron number above N = 190 triggers the development of
deformation [Fig. 4(c)] which activates a new mechanism.
Now the degeneracy of states goes down from 2j + 1 to 2
and intruder orbitals from above the gap and extruder orbitals
from below the gap start to close the spherical N = 184 gap;
this mechanism is active in the vicinity of any spherical shell
gap and clearly seen in the Nilsson diagram (see, for example,
Fig. 15 in Ref. [11]). This mechanism combined with the
gradual increase of the deformation and neutron number allows
to keep the neutron chemical potential in the vicinity of zero
energy for an extended range of neutron numbers [Fig. 4(a)].
However, increasing pairing correlations produce additional
binding and can shift in some cases the neutron chemical
potential below zero energy thus making the nucleus bound.
The opposite can happen for decreasing pairing correlations.

B. The numerical comparison of two definitions of bound and
unbound nuclei and the positions of two-neutron drip line

Occasionally, in the literature the position of the two-
neutron drip line is defined via the neutron chemical potential
λn = dE/dN as a point (nucleus) of the transition from
negative λn (“bound” nuclei) to positive λn (“unbound” nuclei)
values. This definition depends on the employed pairing
model. In addition, it presents a linear approximation in a
Taylor expansion and therefore it ignores nonlinear effects
like shape changes on going from the (Z,N − 2) to the
(Z,N ) nucleus and their contribution to S2n. However, this
definition leads in approximately two-thirds of the cases to
the same two-neutron drip line as obtained in the definition
of the two-neutron drip line via the separation energies. In
the remaining one-third of the cases, it leads to a two-neutron
drip line which is two neutrons short of the two-neutron drip
line defined via the separation energies; the nucleus which
is unbound (as defined via the chemical potential) has in
most of the cases a low positive value of λn � 0.05 MeV.
Only in two cases, the difference of the positions of the
two-neutron drip line, defined via the separation energies and
the chemical potential, reaches four neutrons. These results
were obtained from the calculations of Refs. [2,3] by analyzing
the two-neutron drip line positions of 60 isotopic chains for
four different CEDF’s.

It is also important to mention that in the Rn isotopes
discussed in the previous subsection, both definitions (via
the chemical potential and via the two-neutron separation
energies) give the same bound and unbound nuclei, and, thus,
the same primary and secondary two-neutron drip lines. This
clearly allows to trace back the distinction between bound
and unbound nuclei (and thus the position of the two-neutron
drip line) to the underlying single-particle structure and the
properties of the pairing interaction which together define the
position of chemical potential (see Sec. V D below).

C. Two-neutron drip line for the Z = 84–104 nuclei

To address the impact of the pairing strength on the
position of the two-neutron drip line in a more global way,
the two-neutron drip lines for the Z = 82–104 isotope chains
have been studied in a similar fashion as for the Rn isotopes
above. This means that the pairing strength in the RHB
calculations with NL3* (DD-ME2) was decreased (increased)
by 8% as compared with the one employed in Ref. [3] and the
results for the two-neutron drip lines with the original and the
modified strength of the pairing have been compared. These
two functionals were selected because of two reasons. First,
among the four CEDF’s used in Refs. [2,3], the CEDF’s NL3*
and DD-ME2 lead to the most neutron-rich and neutron-poor
two-neutron drip lines in the Z = 82–104 range, respectively.
Second, as shown in Figs. 6(c) and 6(d), considerable similar-
ities are seen for the neutron-single particle spectra in these
two CEDF’s.

Figure 5 shows the results of such a comparison. One can
see that the change of the pairing strength has an impact on the
two-neutron drip line. With few exceptions, stronger pairing
leads to the two-neutron drip line located at larger neutron
number N . However, the shift of the drip line is quite modest
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FIG. 5. (Color online) The bound nuclei in the range 82 � Z � 104 found in RHB calculations with the CEDF’s NL3* and DD-ME2. In
both panels, green solid squares show the bound nuclei obtained in Ref. [3]. Red (orange) solid circles in the top (bottom) panel show the
bound nuclei obtained in RHB calculations with NL3* (DD-ME2) with a pairing strength decreased (increased) by 8%. For comparison, in
the bottom panel the last bound nucleus for each isotope chain obtained in Ref. [3] with the set NL3* is shown by a solid black diamond for
86 � Z � 102; the results for Z = 82,84, and 104 are identical for NL3* and DD-ME2. In all calculational schemes the nuclei with N � 184
are bound and the ones with N > 258 are unbound.

for most of the values of Z. On the other hand, the peninsulas
in the nuclear landscape, the physics of which was discussed
in detail in Sec. IV of Ref. [3] and in Ref. [2], appear more
frequently in the calculations with weaker pairing. The gaps
in isotope chains, leading to such peninsulas, are present at
(Z = 92,N = 186–192) and (Z = 104,N = 236–240) in the
calculations with DD-ME2 [Fig. 5(b)] and at (Z = 86,N =
186–190) and (Z = 88,N = 186–190) in the calculations with
NL3* [Fig. 5(a)]. Although the pairing has an effect on the
position of the two-neutron drip line, the comparison of the
results obtained with the DD-ME2 and NL3* CEDF’s in Fig. 5
suggests that its impact is only secondary to the one which is
coming from the underlying shell structure of the functional
discussed in Sec. V.

IV. LIMITS FOR THE COUPLING WITH
THE CONTINUUM

Another interesting question is which future experimental
data in neutron-rich nuclei will be at least moderately affected
by the coupling with the continuum. If the Fermi energy is

close to the continuum limit the pairing interaction causes a
substantial scattering of the pairs from discrete single-particle
levels below the Fermi surface to the levels in the continuum.
Of course, with the present method to solve the RHB equations
by an expansion in a discrete set of oscillators the details of
this coupling, as, for instance, the occurrence of halo phenom-
ena [29,30], cannot be described properly because oscillator
wave functions are of Gaussian shape and decay somewhat
rapidly for large radial distances. However, for the majority
of nuclei with well-localized and sharply dropping density
distributions at the nuclear surface, oscillator expansions have
turned out to provide a very successful description of the gross
properties of the coupling to the continuum. In particular, the
ground states of nuclei with a Fermi level well separated from
the continuum (by at least the size of the neutron pairing gap)
are very well described by oscillator expansions. For medium
and heavy mass nuclei the pairing gap at the Fermi surface
is smaller than 2 MeV and the coupling to the continuum is
strongly reduced in such cases. Thus, to have a qualitative
measure for the importance of the coupling to the continuum,
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FIG. 6. (Color online) Neutron single-particle states at spherical shape in the nuclei 114Ge, 180Xe, 266Pb, and 366Hs determined with the
indicated CEDF’s in calculations without pairing. Solid and dashed connecting lines are used for positive and negative parity states. Spherical
gaps are indicated; all the states below these gaps are occupied in the ground-state configurations.

the value of the neutron chemical potential λn = −2.0 MeV
can be used as a safe limit for which a measurable effect of
the coupling to the continuum can be expected.

We therefore compare in Fig. 1 the position of neutron
chemical potential λn = −2.0 MeV (with its theoretical
uncertainties shown by the blue shaded area) with a possible
extension (green solid line) of the experimentally known part
of the nuclear landscape by means of the new facilities for rare
isotope beams (as, for instance, FRIB, RIKEN, GANIL or
FAIR). The nuclear landscape of Fig. 1 as well as the neutron
chemical potential are obtained with four state-of-the-art
CEDF’s (NL3*, DD-ME2, DD-PC1, and DD-MEδ) [2]. Con-
sidering the discussion above, Fig. 1 suggests that in future ex-
periments the region of nuclei with measurable coupling with
the continuum is restricted to Z � 50. For higher Z nuclei,
future experimental data on neutron-rich nuclei can be safely
treated without accounting of the coupling with the continuum.

V. SHELL STRUCTURE AND SINGLE-PARTICLE
ENERGIES AT THE TWO-NEUTRON DRIP LINE.

A. Single-particle shell structure for drip line nuclei
at neutron shell closures

It was suggested in Ref. [2] that the position of the
two-neutron drip line sensitively depends on the underlying

shell structure and that the uncertainties of the theoretical
predictions of the neutron drip-line depend on the accuracy
of the description of the single-particle energies. Indeed, the
shell structure effects are clearly visible in the fact that for
some combinations of Z and N there is basically no (or very
little) dependence of the predicted location of the two-neutron
drip line on the EDF [2,3] (see Fig. 1 of the present paper
and Refs. [1–3]). Such a weak (or vanishing) dependence,
seen in all model calculations, is especially pronounced at the
spherical neutron shell closures with N = 126 and 184 around
the proton numbers Z = 54 and 80, respectively. In addition, a
similar situation is seen in the CDFT calculations at N = 258
and Z ∼ 110 (Fig. 1).

Although it was pointed out in Ref. [2] that these features
are due to the large neutron shell gaps at the magic neutron
numbers, these gaps and their dependence on the CEDF have
not been explored in detail. To fill this gap in our knowledge,
we will perform a detailed investigation of the shell structure
of nuclei in the areas where the spread in the predictions for
the position of the two-neutron drip line is either nonexistent
or very small. These are the nuclei 114

32 Ge82, 180
54 Xe126,

266
82 Pb184,

and 366
108Hs258 and their location in the nuclear chart is shown in

Fig. 1. The neutron single-particle orbitals active in the vicinity
of the Fermi level of these nuclei are shown in Fig. 6. To create a
more representative statistical ensemble, the calculations have
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been performed with 10 CEDF’s. Among those are first the
CEDF’s NL3* [31], DD-ME2 [32], DD-MEδ [33], and DD-
PC1 [34] used earlier in Ref. [3] for a global study of the
performance of the state-of-the-art CEDF’s. For these CEDF’s,
the two-neutron drip lines are defined in model calculations
up to Z = 120 in Refs. [2,3]. Only these four CEDF’s were
used in the definition of theoretical uncertainties in the position
of the two-neutron drip line shown in Fig. 1. In addition, we
employ now the CEDF’s NL3 [35], NL1 [36], FSUGold [37],
PC-F1 [38], PC-PK1 [39], and TM1 [40] in a study of the
shell structure. Note that two-neutron drip lines have not been
studied with these six CEDF’s so far.

The results of the calculations with all these CEDF’s clearly
show the presence of large neutron shell gaps at N = 126 in
180Xe, at N = 184 in 266Pb, and at N = 258 in 366Hs and a
smaller N = 82 gap in 114Ge (see Fig. 6). The average sizes of
these gaps and the spreads in their predictions are summarized
in Fig. 7. The gaps at N = 126 and 184 are around 4 MeV
and they are the largest among these four gaps. The gap at
N = 258 is the smallest and it is slightly larger than 2 MeV.
Neutron pairing is typically quenched at these gaps (see Fig. 2).
Definitely, the substantial size of the gap and the quenching
of neutron pairing lead to a decrease of the uncertainties in
the prediction of the two-neutron drip lines. Indeed, the largest
uncertainties in the position of the two-neutron drip line exist
around 114Ge (Fig. 1), where the neutron N = 82 shell gap is
the smallest among the above discussed nuclei. It is interesting
that the spreads in the prediction of the size of these gaps
decrease with the increase of the neutron number.

These gaps are also compared with the calculated gaps in the
doubly magic nuclei 56Ni, 100Sn, 132Sn, and 208Pb (Fig. 7). The
experimentally known gaps of these nuclei are reasonably well
described in the relativistic calculations with particle-vibration

coupling of Refs. [7,41] with the CEDF NL3*. The general
trend of the decrease of the size of the neutron gaps with
neutron number is clearly visible. However, the N = 126 gap
in 180Xe and the N = 184 gap in 266Pb are only by 1 MeV
smaller than the N = 126 gap in doubly magic 208Pb. It is
also important to mention that for the nuclei with N = 82 and
N = 126 the spread of theoretical predictions with respect
to the size of the gap only slightly increases on going from
known nuclei towards nuclei in the vicinity of the two-neutron
drip line. On the contrary, this spread decreases appreciably
for the nuclei 266Pb and 366Hs as compared with lighter nuclei
(Fig. 7). These results clearly suggest that the pronounced shell
structure at the well-known major shells still survives in the
nuclei close to the two-neutron drip line (see also an early
investigation in this direction in Ref. [42]).

B. Further indicators for the two-neutron shell gap

This is also illustrated in Fig. 8 where the quantity
δ2n(Z,N ), defined as

δ2n(Z,N ) = S2n(Z,N ) − S2n(Z,N + 2)

= −B(Z,N − 2) + 2B(Z,N ) − B(Z,N + 2),

(10)

is shown for the four CEDF’s whose global performance was
studied in Ref. [3]. Here B(N,Z) is the binding energy. The
quantity δ2n(Z,N ), being related to the second derivative of
the binding energy as a function of nucleon number, is a more
sensitive indicator of the local decrease in the single-particle
density associated with a shell gap than the two-nucleon
separation energy S2n(Z,N ).

In the literature, the quantity δ2n(Z,N ) is frequently called
a two-neutron shell gap. However, as discussed in detail in
Ref. [17], many factors (such as deformation changes and
pairing) beyond the size of the single-particle shell gap �Egap

shown in Fig. 7 contribute to δ2n(Z,N ). For example, for some
(Z,N ) values in Fig. 8, δ2n(Z,N ) becomes negative because of
deformation changes. Because by definition the shell gap has
to be positive, it is clear that the quantity δ2n(Z,N ) cannot serve
as an explicit measure of the size of the shell gap. However,
the variations (but not their absolute values) of δ2n(Z,N )
and �Egap with particle number agree rather well [17]. Thus
δ2n(Z,N ) is still a useful quantity to see where pronounced
shell gaps are located.

The quantities δ2n(Z,N ) for N = 50, which are quite
large for the known nuclei (Fig. 8), decrease substantially on
approaching the two-neutron drip line (at Z = 22,24 for DD-
ME2, DD-MEδ, and DD-PC1 and at Z = 20–28 for NL3*).
This is a reason why theoretical uncertainties in the definition
of the position of the two-neutron drip line are relatively large
at N = 50 (see Fig. 1 and Refs. [2,3]). Figures 8(b)–8(d) show
that pronounced shell gaps exist at N = 82 and 126 in the
CEDF’s DD-ME2, DD-MEδ, and DD-PC1 for a large range
of proton numbers Z up to the two-neutron drip line. However,
on approaching the two-neutron drip line the N = 82 shell gap
becomes smaller as compared with known nuclei for NL3*
[Figs. 8(a) and Fig. 6(a)]. This again leads to a relative large
theoretical uncertainty in the definition of the two-neutron drip
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FIG. 8. (Color online) Neutron δ2n(Z,N ) quantities between two-proton and two-neutron drip lines obtained in RHB calculations with the
indicated CEDF’s.
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line at N = 82 (see Fig. 1 and Refs. [2,3]). The corresponding
uncertainty is relatively small for N = 126 (see Fig. 1 and
Refs. [2,3]); this is because of minor differences in the size of
this gap in all four CEDF’s [Fig. 6(b)]. Because the shell gap
for N = 184 is pronounced in all CEDF’s near the two-neutron
drip line (Fig. 8) there is no uncertainty in the definition of the
two-neutron drip line at this neutron number (see Fig. 1 and
Refs. [2,3]).

C. Other factors affecting the position of the
two-neutron drip line

On going away from the four nuclei 114Ge, 180Xe, 266Pb,
and 366Hs discussed above, other additional factors affect the
position of the two-neutron drip line.

First, there is a close correlation between the nuclear
deformation at the neutron-drip line and the uncertainties in the
prediction of this line [2,3]. The regions of large uncertainties
corresponds to transitional and deformed nuclei. This is caused
by the changes in the distribution of the single-particle states
induced by deformation. The spherical nuclei under discussion
are characterized by large shell gaps and a clustering of highly
degenerate single-particle states around them. Deformation
removes this high degeneracy of the single-particle states and
leads to a more equal distribution of the single-particle states
with energy.

Second, the large density of the neutron single-particle
states close to the neutron continuum leads to a small slope
of the two-neutron separation energies S2n as a function of
neutron number in the vicinity of the two-neutron drip line for
medium and heavy mass nuclei (see Fig. 12 in Ref. [3]). As
discussed in details in Sec. VIII of Ref. [3] this translates
(i) into much larger uncertainties in the definition of the
position of the two-neutron drip line as compared with the
two-proton drip line and (ii) into a stronger dependence of the
predictions for the position of the two-neutron drip line on the
accuracy of the description of the single-particle energies.

Third and most important, the position of the two-neutron
drip line sensitively depends on the positions and the dis-
tribution of single-particle states around the Fermi surface,
which means for nuclei close to the drip line around the
continuum limit. In particular, the orbitals with high j values,
known as intruder or extruder orbitals play an important role,
because they usually drive deformation and, therefore, cause a
considerable reordering of the single-particle spectrum. As a
consequence, small differences in the single-particle spectra
for the various density functionals can cause considerable
effects leading to large differences in the predicted position
of the two-neutron drip line.

D. A representative example of the Rn isotopes

To illustrate the factors discussed in the previous subsec-
tions we consider the chain of Rn (Z = 86) isotopes calculated
with the CEDF NL3* and a pairing strength reduced by 8%
(scheme B in the notation of Sec. III A). Moreover, we focus on
the underlying single-particle structure and how its variation
with particle number leads to either bound or unbound nuclei;
other physical observables of this isotopic chain are discussed
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FIG. 9. (Color online) Neutron single-particle energies, i.e., di-
agonal elements of the single-particle Hamiltonian h in the canonical
basis [13], for the ground-state configurations of the Rn isotopes
calculated at their equilibrium deformations as a function of neutron
number N . The neutron chemical potential λn is shown by a dashed-
dotted line with solid circles. Note that the transition to deformation
removes the 2j + 1 degeneracy of the spherical orbitals. Solid black
lines at the top of the figure are the deformed states emerging from
the 1k17/2 spherical orbital. See text for further details.

in Sec. III A. The evolution of the neutron single-particle states
of these isotopes is shown as a function of neutron number in
Fig. 9.

The N = 184 isotope is spherical in the ground state and
its chemical potential λn coincides with the energy of the last
occupied single-particle orbital since neutron pairing collapses
because of the large N = 184 shell gap. This nucleus is bound.
The addition of several (two, four, and six) neutrons above
this shell gap leading to the isotopes with N = 186,188, and
190 restores the neutron pairing but does not affect the shape
of the nucleus. However, for a given strength of pairing the
chemical potential becomes positive and thus these three nuclei
are unbound.

A further extension of this isotope chain to larger neutron
numbers is achieved by a gradual buildup of deformation. For
this process to take place the deformation driving intruder
orbitals with low 
 (
 = jz being the projection of the
single-particle angular momentum j on the symmetry axis)
emerging from the high-j 2h11/2,1j13/2, and 1k17/2 spherical
orbitals (located above the gap) have to be partially occupied.
This indeed takes place in the RHB calculations. Note that

014324-12



NEUTRON DRIP LINE: SINGLE-PARTICLE DEGREES OF . . . PHYSICAL REVIEW C 91, 014324 (2015)

-6

-4

-2

0

2

4

N
eu

tr
on

  s
in

gl
e-

pa
rt

ic
le

  e
ne

rg
ie

s 
 e

i [
M

eV
]

4d
3/2

4d
5/2

5s
1/22h
9/2

3f
5/2

3f
7/2

1j
13/2

4p
1/2

4p
3/2

2h
11/2

3d
3/2

4s
1/2

3d
5/2

1j
15/2

2g
7/2

2g
9/2

N
L

3*

D
D

-M
E

2

D
D

-M
E

δ

D
D

-P
C

1

184
270

Rn

FIG. 10. (Color online) The same as Fig. 6 but for 270Rn. Note
that only the results for four indicated CEDF’s are presented.

deformed levels with low 
 emerging from high-j orbitals
come strongly down with increasing prolate deformation (see,
for example, Fig. 15 in Ref. [11]). In the NL3* CEDF
the energies of the spherical single-particle orbitals, from
which these deformation driving intruder orbitals emerge, are
such that lowering of the low 
 orbitals due to deformation
triggers the chemical potential to become negative (Fig. 9).
Two factors, namely, the increase of neutron number and the
induced changes in single-particle structure due to deformation
affect the position of chemical potential. Their delicate balance
keeps the chemical potential negative up to N = 200 (Fig. 9).
As a result, the deformed isotopes with N = 192,194,196,
and 198 are bound. However, a further increase of the neutron
number leads to unbound nuclei.

The mechanism presented above is active in the nuclei
with neutron numbers above N = 184 or N = 258 because
several resonant high-j orbitals are located relatively low in
energy with respect to the continuum limit [see Figs. 6(c)
and 6(d)]. Note that, in general, the position of the Fermi
level depends both on the energies of occupied single-particle
states and on their occupation probabilities. As a consequence,
the energies of the single-particle states below the shell
gap, their occupation probabilities and their evolution with
deformation are also important for the exact definition of the
position of the Fermi level. In that respect it is important to
mention that in some nuclei bound extruder orbitals could
be as important as unbound intruder resonant orbitals for
the position of the two-neutron drip line. This is because the
hole states in deformed extruder orbitals with high 
 values
emerging from spherical high-j orbital are as important for
the creation of deformation [43] and for the definition of the

position of the Fermi level as intruder orbitals with low 

discussed above. Pair scattering from bound to resonant states
creates partial holes in the extruder orbitals. The energies of
these orbitals increase fast with increasing prolate deformation
and this affects the position of the Fermi level. In addition,
they can become unbound with increasing deformation. Such
extruder orbitals are probably not that important in nuclei
with N above 184 or 258 because the relevant spherical
high-j orbitals {1j15/2 below the N = 184 gap [Fig. 6(c)]
and 1k17/2 and 2h11/2 below the N = 258 gap [Fig. 6(d)]}
are located too deep with respect to the relevant neutron shell
gaps and the continuum limit. On the contrary, such orbitals
[1h11/2 in Fig. 6(a) and 1i13/2 in Fig. 6(b)] are important
around N = 126 and especially around N = 82 because of
the following reasons: (i) Their positions define the size of
the gap, (ii) they are located not far away from the continuum
limit, and (iii) they are reasonably well separated from bound
low- and medium-j orbitals.

The current analysis also allows to understand why contrary
to NL3* the chain of the Rn isotopes terminates at N =
184 for the CEDF’s DD-ME2, DD-MEδ, and DD-PC1. The
evolution of the neutron single-particle spectra as a function
of neutron number in these CEDF’s is similar to the one
of Fig. 9. However, the neutron chemical potential never
becomes negative for N > 184 in these three CEDF’s. The
reason for that is clearly seen in Fig. 10 where the spherical
spectra of 270Rn obtained with these CEDF’s are compared
with the ones obtained with NL3*. Indeed, for DD-ME2,
DD-MEδ, and DD-PC1 the single-particle orbitals [especially
the high-j 2h11/2 [in all three CEDF’s] and the 1j13/2 (in
DD-ME2) spherical orbitals from which low 
 deformation
driving orbitals emerge] are located higher in energy than for
NL3*. Although the shift of the single-particle energies with
respect to zero energy is not very large, it is sufficient to
shift the neutron chemical potential, which already fluctuates
for NL3* in the energy window ±0.17 MeV for N = 186–
202 (Fig. 9), into the positive energy range for neutron
numbers above N = 184 for all three density dependent
functionals.

E. Systematic uncertainties in the spherical shell structure

This discussion clearly shows that one needs a high
predictive power for the energies of the single-particle states,
in particular, for the deformation driving high-j intruder
and extruder orbitals, to make reliable predictions for the
location of the two-neutron drip line. In Fig. 11 we sum-
marize the theoretical uncertainties in the description of the
spherical single-particle energies shown in Fig. 6. Here all
the functionals are taken into account and, therefore, these
differences are substantial. In most cases they exceed 1 MeV.
However, there are several states in each nucleus the energies
of which depend only weakly on the CEDF (Fig. 11). These
are the 4s1/2,3d5/2, and 3d3/2 states in 114Ge, 4p1/2, and
4p3/2 states in 180Xe, 5s1/2,4d3/2, and 4d5/2 states in 266Pb
and 5s1/2,6p3/2, 4d3/2, and 4d5/2 states in 366Hs. These are
low-j positive energy states. However, in general, the spread
of theoretical predictions for the energies of the single-particle
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FIG. 11. (Color online) The spreads �εi for the indicated neutron single-particle states in the nuclei 114Ge, 180Xe, 266Pb, and 366Hs at the
two-neutron drip line. �εi = |εmax

i − εmin
i |, where εmax

i and εmin
i are the largest and smallest energies of a given single-particle state obtained

with the selected set of CEDF’s. The line-shaded area indicates the spreads when only the four CEDF’s (namely, NL3*, DD-ME2, DD-MEδ,
and DD-PC1), used in the study of Ref. [3], are considered. The combination of line-shaded and solid area shows the spreads obtained with all
10 CEDF’s. The orbital angular momentum of the single-particle state increases on going from the bottom to the top of the figure. To facilitate
the discussion the neutron numbers of the nuclei are shown. Based on the results presented in Fig. 6.

states increase with the increase of total angular momentum
of the state.

The spread of theoretical predictions for the single-particle
energies is smaller if we restrict our consideration to the last
generation of CEDF’s (such as NL3*, DD-ME2, DD-MEδ, and
DD-PC1) for which the global performance and related theo-
retical uncertainties in the description of physical observables
have been extensively tested in Ref. [3]. But, even for these
CEDF’s the uncertainties in the description of the energies of
the single-particle states are in the vicinity of 1 MeV for the
majority of the states.

It is interesting to compare such theoretical uncertainties
in the region of the two-neutron drip line with the ones in
doubly magic nuclei of a known region of the nuclear chart.
Theoretical uncertainties for later nuclei (56Ni, 100,132Sn, and
208Pb) are shown in Fig. 12. One can see that for known
nuclei these theoretical uncertainties still remain substantial.

However, they are by approximately 35% smaller than for the
nuclei in the two-neutron drip line region. Note that only in
the case of the N = 126 shell gap nuclei (180Xe in Fig. 11 and
208Pb in Fig. 12) the comparison is straightforward. This is
because the same group of the single-particle states is located
around the shell gap in both nuclei.

Summarizing the results of these investigations we find
that for nuclei near the neutron drip line only approximately
one-third of the uncertainty in the description of the single-
particle energies comes from the uncertainties of the isovector
properties of the EDF’s. The remaining two-thirds of the
uncertainties already exist in known nuclei close to the
stability line. Thus, the improvement in the description of
single-particle energies in known nuclei will also reduce
the uncertainties in the prediction of the position of the
two-neutron drip line. However, such improvement will not
completely eliminate these uncertainties.
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FIG. 12. (Color online) The same as in Fig. 11 but for doubly magic nuclei in an experimentally known region of the nuclear chart.

VI. CONCLUSIONS

Covariant density functional theory was applied to an
analysis of sources of uncertainties in the predictions of the
two-neutron drip line. The following conclusions have been
obtained:

(1) The differences in the underlying single-particle struc-
ture of different covariant energy density functionals
represent the major source of uncertainty in the predic-
tion of the position of the two-neutron drip line. In par-
ticular, this position depends on the positions of high-j
orbitals below the shell gap and of high-j resonances
in the continuum above the shell gap. Both of them
have a high degree of degeneracy at spherical shape.

(2) The analysis of the present results strongly suggests
that the uncertainties in the description of the single-
particle energies at the two-neutron drip line are
dominated by those which already exist in known
nuclei. As a consequence, only an estimated one-third
of the uncertainty in the description of the single-
particle energies at the two-neutron drip line could

be attributed to the uncertainties in the isovector
properties of EDF’s. This result strongly suggests that
the improvement in the DFT description of the energies
of the single-particle states in known nuclei will reduce
the uncertainties in the prediction of the position of the
two-neutron drip line.

(3) The uncertainties in the pairing properties near the
two-neutron drip line represent a secondary source
of uncertainty in the definition of the two-neutron
drip line. The pairing properties in neutron-rich nuclei
depend substantially on the underlying CEDF, even
when these properties are similar in experimentally
known nuclei. For example, the pairing energies in-
crease drastically on approaching the neutron drip line
for NL3*. However, small or no increase of pairing
energies is seen for DD-MEδ and for DD-PC1 in the
vicinity of the neutron drip line.
These uncertainties in pairing properties translate into
some uncertainties in the position of the two-neutron
drip line. However, they are substantially smaller than
the ones from the underlying single-particle structure.
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During the last several years considerable progress was
achieved in our understanding of the global performance
of state-of-the-art covariant energy density functionals and
the corresponding theoretical uncertainties. Many physical
observables related to the ground-state properties (binding
energies, charge radii, deformations, neutron skin thicknesses,
the positions of drip lines, etc., [3]) and the properties
of excited states (moments of inertia [11], the energies
of (predominantly) single-particle states [7,41,44], fission
barriers [45,46], etc.) have been studied either globally or at
least systematically in a specific region of the nuclear chart.
Theoretical uncertainties for many physical observables have
been defined.

A careful and systematic comparison of these results with
available experimental data clearly shows that in many cases
the discrepancies between theory and experiment are caused by
a nonoptimal description of the single-particle energies [47].
This is not surprising considering that the current generation of
CEDF’s was fitted only to bulk and nuclear matter properties.
As a consequence, density functional theory provides a
less accurate description of the single-particle energies as
compared to microscopic+macroscopic models [43,48,49]
with phenomenological potentials such as Folded Yukawa,
Woods-Saxon or Nilsson (see Ref. [44] and references quoted
therein) the parameters of which are directly adjusted to
experimental data on single-particle energies. The existing
discrepancies between theory and experiment clearly indicate
the need for an improvement of the description of the single-
particle energies in CDFT.

This probably cannot be achieved just by fitting theoretical
single-particle energies to experimental data because many of

the experimental single-particle states are strongly fragmented
by particle-vibrational coupling, in particular in spherical
nuclei [7,41]. Therefore, the inclusion of the single-particle
information into the fitting protocols of CEDF’s is at the
moment at its infancy [47,50]. A reasonable procedure needs
first a satisfying description of low-lying collective states in
nuclei and their coupling to the single-particle states. This is
definitely difficult, in particular in deformed nuclei, but it also
includes a problem of self-consistency because the low-lying
vibrations depend on the single-particle structure in the neigh-
borhood of the Fermi level [51]. In any case, such an approach
requires a systematic and comparative study of the influence
of tensor forces [50] and particle-vibrational coupling [51].
Therefore, as illustrated, for example, in Skyrme DFT [52,53]
there is a limit of accuracy for the description of single-particle
energies which can be achieved at the DFT level. So far, similar
investigations are missing in deformed nuclei.

Although the present investigation is restricted to covariant
energy density functionals, it is reasonable to expect that its
results are in many respects also applicable to nonrelativistic
DFTs. This is because similar problems in the description of
single-particle and pairing properties exist also for the Skyrme
and Gogny DFTs [10,52–54].
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