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Analytical formula for numerical evaluations of the Wigner rotation matrices at high spins
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The Wigner d function, which is the essential part of an irreducible representation of SU(2) and SO(3)
parameterized with Euler angles, has been know to suffer from a serious numerical errors at high spins, if it is
calculated by means of the Wigner formula as a polynomial of cos and sin of half of the second Euler angle. This
paper shows a way to avoid this problem by expressing the d functions as the Fourier series of the half angle. A
precise numerical table of the coefficients of the series is provided as Supplemental Material.
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I. INTRODUCTION

The matrix elements of the rotation operator between
angular-momentum eigenstates are called the Wigner D
function [1]. When the rotation is specified with the three
Euler angles (φ,θ,ψ), and the eigenstates are labeled with
the magnitude (j = 0, 1

2 ,1, 3
2 , . . . ) and the z component (m or

k = −j,−j + 1, . . . ,j ) of the angular momentum vector, the
D function can be decomposed into three factors,

D
j
mk(φ,θ,ψ) = 〈jm|e−iφĵz e−iθ ĵy e−iψĵz |jk〉

= e−i(mφ+kψ)d
j
mk(θ ), (1)

where

d
j
mk(θ ) = 〈jm|e−iθ ĵy |jk〉 (2)

is the nontrivial part which needs some method to evaluate. It
is called the Wigner (small) d function. In the standard phase
convention for angular-momentum eigenstates, the matrix
elements of ĵy are purely imaginary and thus d

j
mk(θ ) takes

on real numbers.
One may be anxious about the fact that Bohr and Mot-

telson [2] define the rotation matrix D
j
mk as the complex

conjugate of the right-hand side (r.h.s.) of Eq. (1). However,
their definition for d

j
mk is identical with Wigner’s and the

definition of the d function is unique.
The Wigner D function is used in various fields of physics.

In some applications, those for large values of j (say, >50)
are necessary. An example in nuclear structure physics is
the projection from spatially deformed solutions of modern
realistic mean-field models to eigenstates of large angular
momentum. For toy models, too, one occasionally needs d
functions for very large j to confirm the validity of one’s
picture under extreme conditions. (e.g., a two-rotor model of
Refs. [3] and [4]).

The explicit form of the d function is given by the Wigner
formula [1], which can be written as

d
j
mk(θ ) =

nmax∑
n=nmin

(−1)nWjmk
n (θ ), (3)
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where nmin and nmax are zero or positive integers,

nmin = max(0,k − m), (4)

nmax = min(j − m,j + k), (5)

and

Wjmk
n (θ ) = wjmk

n

(
cos

θ

2

)2j+k−m−2n(
−sin

θ

2

)m−k+2n

, (6)

wjmk
n =

√
(j + m)!(j − m)!(j + k)!(j − k)!

(j − m − n)!(j + k − n)!(n + m − k)!n!
. (7)

However, this formula suffers from a serious loss of precision
at high spins (i.e., for large j ) except in the neighborhood of
θ = 0,π .

For example, assuming that j is a positive integer, θ = π
2 ,

and m = k = 0, one obtains

Wj00
n

(
π

2

)
= 1

2j

[
j !

(j − n)!n!

]2

, (8)

which, if j is even, becomes maximum at n = j
2 ,

W
j00
j/2

(
π

2

)
= 1

2j

j !

[(j/2)!]2
≈

√
2

πj
2j . (9)

(The Stirling’s formula is used in the last approximation.) The
absolute value of the d function is not greater than one because
it is a matrix element of a unitary operator between normalized
states. Wigner’s formula expresses the d function as a result
of cancellation among terms of possibly huge size, W

jmk
n ∼

2j . For j ∼ 54, the precision of double-precision floating-
point numbers (53-bit mantissa) is lost completely, and even
quadruple precision float numbers (113-bit mantissa) is lost
completely for j ∼ 114.

A few remedies have been proposed [5,6] but the results
are not completely free of the precision loss. In this paper,
I investigate the details of this loss of significance and then
present a perfect remedy to avoid such numerical difficulty.

II. THE FOURIER-SERIES EXPRESSION
OF d FUNCTIONS

One can see easily that terms like cosλ θ
2 sinμ θ

2 appearing
in the r.h.s. of Eq. (6), where λ and μ are zero or positive
integers such that λ + μ � 2j , can be expressed as linear
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TABLE I. The values of νmin appearing in Eq. (10).

Even m − k Odd m − k

Even 2j 0 1
Odd 2j 1

2
1
2

combinations of terms sin κθ
2 (when μ is odd) and cos κθ

2 (when
μ is even) with integers κ in 0 � κ � λ + μ and κ ≡ λ + μ
(mod 2), by means of repeated applications of the elementary
trigonometric identities called the product-to-sum identities or
the prosthaphaeresis formulas.

Because the power of sin θ
2 is μ = m − k + 2n in Eq. (6),

one can see that μ ≡ m − k (mod 2) and that the d function
is an even (odd) function if m − k is even (odd), which can
be expanded only with cos (sin) function. This may also be
deduced from Eq. (A3), one of the properties of the d function
which I have enumerated in the Appendix.

From these considerations, one can conclude that the
Fourier expansion of the d function has the following form:

d
j
mk(θ ) =

∑
ν

tjmk
ν f (νθ ), (10)

where

f =
{

cos
sin

}
for

{
even
odd

}
m − k, (11)

and the summation runs over

ν = νmin,νmin + 1, . . . ,j, (12)

with the values of νmin given in Table I.
For example, for j = 7

2 and m = −k = 1
2 , the Wigner

formula (3) gives an expression,

d
7
2
1
2 ,− 1

2
(θ ) = sin7 θ

2
− 12 cos2 θ

2
sin5 θ

2

+ 18 cos4 θ

2
sin3 θ

2
− 4 cos6 θ

2
sin

θ

2
, (13)

which can be rewritten in the form (10) as

d
7
2
1
2 ,− 1

2
(θ ) = −35 sin 7θ

2 − 5 sin 5θ
2 + 15 sin 3θ

2 − 9 sin θ
2

64
.

(14)

By utilizing the orthogonality of cos νθ and sin νθ over
0 � θ � 4π (considering that ν can take both integer and
half-integer values), one can express the coefficients t

jmk
ν by

an integral

t jmk
ν = 1

2π (1 + δν0)

∫ 4π

0
d

j
mk(θ )f (νθ )dθ, (15)

where δν0 = 1 for ν = 0 and δν0 = 0 for ν = 1
2 ,1, 3

2 , . . . .
By substituting the d function in Eq. (15) with Eqs. (3)–(7),

I have derived a more useful expression for t
jmk
ν containing

only four elementary operations of arithmetic,

t jmk
ν = 2(−1)m−k

1 + δν0

nmax∑
n=nmin

(−1)nwjmk
n

[ν− 1
2 p]∑

r=0

(−1)r
(

2ν
2r + p

)

× 1

2π
I2(j+ν−n−r)−m+k−p,2(n+r)+m−k+p, (16)

where nmin and nmax are those already defined by Eqs. (4)
and (5), the square brackets are the floor function, i.e., [l +
x] = l for integer l and real x in [0,1),

p ≡ |m − k| (mod 2), (17)

i.e.,

p = 0 for k = m,m ± 2,m ± 4, . . . , (18)

p = 1 for k = m ± 1,m ± 3, . . . , (19)

and

Iλμ =
∫ 2π

0
cosλ x sinμ x dx (20)

with zero or positive integers for λ and μ. If both λ and μ are
even,

Iλμ = 2π (λ − 1)!!(μ − 1)!!

(λ + μ)!!
, (21)

while Iλμ = 0 otherwise.
Unlike the r.h.s. of Eq. (3), where the terms can have huge

sizes and thus the numerical error is a serious problem, the
r.h.s. of Eq. (10) is a summation of terms of order one or less
and hence the problem is expected to disappear. This can be
seen by calculating the integrals of the squares of the both
sides of Eq. (10),∫ 4π

0
d

j
mk(θ )2dθ =

∑
ν

∑
μ

tjmk
ν tjmk

μ

∫ 4π

0
f (νθ )f (μθ )dθ

=
∑

ν

4π

2 − δν0

(
t jmk
ν

)2
. (22)

Because the absolute values of d functions are �1, the left-
hand side is �4π and, consequently, it holds |t jmk

ν | � 2 − δν0.
A further study from the numerical point of view has indi-

cated that the maximum (among all the possible combinations
of m,k, and ν) value of |t jmk

ν | is 1 for j � 1, decreases as j
increases from an integer to the next half integer, and does not
change as j increases from a half integer to the next integer. For
the interval 50 � j � 100, the maximum value for integer j
behaves as ≈1.13/

√
j .

III. COMPUTATION OF THE NUMERICAL VALUES OF
THE COEFFICIENTS

Unfortunately, Eq. (16) also suffers from a serious loss
of significant digits in ordinary floating-point numerical
calculations. Indeed, for even integer j , the term having the
maximum magnitude among those in the r.h.s. of Eq. (16)
occurs at m = k = 0,n = r = 1

2j,ν = j , with the maximum
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value of

1

π
w

j00
j/2

(
2j
j

)
I2j,2j ≈ 22(j+1)

(πj )2
, (23)

which is roughly 2j times as large as the value given by Eq. (9).
To avoid this problem, I first evaluated the r.h.s. of

Eq. (16) rigorously as rational numbers or square root of
rational numbers by means of a formula-manipulation software
MAXIMA. Numerical values to be used in programs coded in
Fortran, C, etc., can be calculated from such rigorous numbers
to the full precision of the 64-bit floating-point number.

However, the computation time turned out to be excessively
long for large values of j . To speed up the computation, I have
changed the method to evaluate Eq. (16) not rigorously but in
terms of high-precision floating-point numbers (of MAXIMA).
This does not seem to be a major drawback because numerical
values are sufficient for most of practical purposes.

I change the precision of floating-point numbers depending
on j in such a way that the number of digits equals the common
logarithm of the value of Eq. (23) divided by 10−18. It increases
with j , reaching 74 digits for j = 100. Precise 64-bit floating-
point numbers can be obtained simply by truncating the high-
precision results.

Empirically, the time necessary to compute all the coeffi-
cients t

jmk
ν for each j increases as j 4. The new method takes

43 h for j = 100 with a personal computer with a CPU Intel
core-i7 3960X running at 3.3 GHz, using one physical core.

I use the obtained 64-bit floating-point number coefficients
to evaluate the Fourier-series formula for d functions. I
provide data files of the numerical values of the coefficients,
together with a sample FORTRAN90 program to read the data
and calculate the values of the d function, as Supplemental
Material [7].

For each value of j , there are (2j + 1)2 possible com-
binations of the values of m and k (because −j � m �
j,−j � k � j ). Only about a quarter of them are independent,
however, because of the properties of the d function expressed
by Eqs. (A4), (A6), and (A7) in the Appendix. Therefore, I
consider only such combinations as m � 0 and k � |m| in the
following analysis of the numerical precision.

In other words, the coefficients t
jmk
ν have the following

symmetry:

t jkm
ν = (−1)m−kt jmk

ν , (24)

t j,−m,−k
ν = (−1)m−kt jmk

ν , (25)

t j,−k,−m
ν = t jmk

ν . (26)

Hence, the numerical data for t
jmk
ν in the Supplemental

Material are given only for m � 0 and k � |m|.
There are ≈ 1

2 (jmax + 3
2 )4 coefficients for j =

0, 1
2 ,1, . . . ,jmax. The size of the memory to store them

as 64-bit floating-point numbers amounts to 27 (404) MiB
for jmax = 50 (100). My data are given as text files for the
sake of compatibility, whose sizes are not very different from
the above memory sizes after they are compressed (with the
software GZIP).
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FIG. 1. (Color online) Maximum and root-mean-square errors
in the values of cos νθ and sin νθ , numerically calculated with
64-bit floating-point numbers, over 0 � θ � π . The values of θ are
sampled with a uniform spacing of 10−5 degree. The abscissa is
ν = 0, 1

2 ,1, . . . ,100. Recursion means the usage of Eq. (27) together
with the initial values described in the following sentences.

The magnitude of the coefficient t
jmk
ν becomes smaller for

larger values of j . However, even at j = 100, 80% (90%) of
the coefficients are larger than 10−5 (10−10).

Some of the coefficients vanish according to rules unmen-
tioned so far. For example, t

jmk
ν = 0 if j is an integer, m = 0

and/or k = 0, and j − ν ≡ 1 (mod 2). One can prove this using
Eq. (A8). I do not use these additional rules but simply give
zero values in the data files.

The evaluations of cos νθ and sin νθ should be calculated
by means of a recursion relation,(

cos (ν + 1)θ
sin (ν + 1)θ

)
=

(
cos θ, − sin θ
sin θ, cos θ

) (
cos νθ
sin νθ

)
, (27)

which is nothing but the trigonometric (angle) addition theo-
rem. For integer j , the initial values are cos 0 = 1 and sin 0 =
0. For half integer j , one has to calculate, first, the initial values
cos θ

2 and sin θ
2 and, second, cos θ and sin θ using identities

cos θ = cos2 θ
2 − sin2 θ

2 and sin θ = 2 sin θ
2 cos θ

2 .
Straightforward evaluation of cos νθ and sin νθ (i.e.,

passing the value of νθ to the internal functions cos and
sin) requires about j calls to the functions and is computa-
tionally very inefficient. Moreover, as shown in Fig. 1, such
straightforward evaluation causes slightly larger numerical
errors probably due to the loss of significant digits in reducing
the value of νθ to an interval such as [−π

4 , π
4 ], especially

when the value of |νθ | is large. The reason why the recursion
formula (27) does not suffer from large errors even after
hundred steps may be attributed to the fact that the magnitudes
of cos and sin functions are always not greater than one.

IV. PRECISION OF THE NUMERICAL VALUES
OF THE d FUNCTION

In this section, I compare the errors of the values of d
j
mk(θ )

calculated with 64-bit floating-point numbers according to the
Wigner formula (3) and the Fourier series expression (10).
The errors have been calculated as the differences from the
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FIG. 2. (Color online) The common logarithm of the error in the
64-bit floating-point numerical value of the d function d

j
mk(θ ) as

a function of m and k for j = 40 and θ = 30◦. The value of the
d function is calculated by means of the Wigner formula in part (a)
and the Fourier series expression in part (b). Only a quarter of the
possible combinations of m and k are plotted because the error is
symmetric in the lines m = ±k. Errors smaller than 10−20 are painted
with the same color as that for the error of 10−20.

exact values calculated by applying the formula-manipulation
software MAXIMA to the Wigner formula.

Figures 2, 3, and 4 show the errors for θ = 30◦,60◦, and
90◦, respectively. The errors are expressed as a function of
(m,k) while j is fixed at 40. I have found that similar plots for
θ > 90◦ look almost indistinguishable from those for 180◦ − θ
except that the sign of k is reversed, as could be foreseen from
Eq. (A9).
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FIG. 3. (Color online) The same as in Fig. 2 but for θ = 60◦.
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FIG. 4. (Color online) The same as in Fig. 2 but for θ = 90◦.

One can see that the Wigner formula results in very large
errors, up to ∼10−5 for θ ∼ 90◦ and m ∼ k ∼ 0, while the
Fourier series expression gives precisely 15 digits irrespective
of the values of θ,j,m, and k. I confidently recommend the
Fourier series expression over the Winger formula already at
j ∼ 40.

For a special purpose, however, the Wigner formula still has
an advantage. For regions of the arguments θ ∼ 0◦ (180◦) and
|m + k| ∼ 0 (2j ), the Wigner formula has smaller errors than
10−15, i.e., than the level of the almost constant error of the
Fourier series expression. In such regions of the arguments,
the magnitude of d

j
mk(θ ) is very small and a small number

of terms dominate in the summation of the Wigner formula,
while many terms of order 1 cancel among themselves to give
the small value in the Fourier series expression. Therefore, if
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FIG. 5. (Color online) The common logarithm of the maximum
error in the numerical value of the d function d

j
mk(θ ) vs j calculated

with the Wigner formula (blue [gray] solid line) and the Fourier series
expression (red [gray] dashed line). The maximum is taken over the
values of m,k, and θ for each j .
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one needs such high precision at those regions, it would be a
good idea to develop a program which switches between the
two formulas depending on the values of θ,j,m, and k.

In Fig. 5, I compare the maximum errors of d
j
mk(θ ) as func-

tions of j . The maximum is taken over the values of θ from 0◦
to 180◦ with an increment of 5◦ and all possible combinations
of m and k. For both formulas, the maximum error increases
as exponential functions of j . The Wigner formula increases
its error, however, far faster than the Fourier series expression.
For the interval 20 � j � 100, the error of the Wigner formula
can be approximated by log10 |error| ≈ 0.294j − 17.2 while
that of the Fourier series expression can be approximated by
log10 |error| ≈ 0.006j − 14.8. In other words, by increasing j
by one, the error of the Wigner formula is doubled, while that
of the Fourier series expression increases only by 1.4%.

V. SUMMARY

I have shown that the Wigner formula for the d function
results in intolerable large numerical errors for large values of
the angular momentum quantum number j . On the other hand,
the Fourier series expression for the d function is shown to be
free of such errors, providing precision of ∼10−14 even at j =
100. An analytic expression for the coefficients of the Fourier
series is given. Their numerical values, which are precise as
far as 64-bit floating-point numbers can express, are provided
as electric files in Supplemental Material. Sample programs in
FORTRAN90 to use the data files are also provided.

APPENDIX: PROPERTIES OF THE d FUNCTION
UTILIZED IN THIS PAPER

I enumerate the symmetries of the d function to be referred
to in this paper.

First, the unitarity of rotations (i.e., the Hermite conjugate
operator is the inverse operator) means

d
j
mk(θ ) = d

j
km(−θ ). (A1)

Second, the composition of two rotations can be rewritten as
multiplication of matrices to represent them,

d
j
mk(θ1 + θ2) =

j∑
ν=−j

dj
mν(θ1)dj

νk(θ2). (A2)

I need three more relations, whose easiest derivation may be
to use the Wigner formula (3) as in Ref. [1],

d
j
mk(θ ) = (−1)m−kd

j
mk(−θ ), (A3)

d
j
mk(θ ) = d

j
−k,−m(θ ), (A4)

d
j
mk(π ) = (−1)j+mδm,−k. (A5)

From Eqs. (A1) and (A3), one can prove

d
j
mk(θ ) = (−1)m−kd

j
km(θ ), (A6)

from Eqs. (A4) and (A6),

d
j
mk(θ ) = (−1)m−kd

j
−m,−k(θ ), (A7)

and from Eqs. (A2), (A5), and (A6),

d
j
mk(π + θ ) = (−1)j+md

j
−m,k(θ ), (A8)

d
j
mk(π − θ ) = (−1)j+md

j
m,−k(θ ). (A9)
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