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Investigation of 9Be from a nonlocalized clustering concept
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The nonlocalized aspect of clustering, which is a new concept for self-conjugate nuclei, is extended for the
investigation of the N �= Z nucleus 9Be. A modified version of the Tohsaki-Horiuchi-Schuck-Röpke (THSR)
wave function is introduced with a new phase factor. It is found that the constructed negative-parity THSR wave
function is very suitable for describing the cluster states of 9Be. Namely, the nonlocalized clustering is shown
to prevail in 9Be. The calculated binding energy and radius of 9Be are consistent with calculations in other
models and with experimental values. The squared overlaps between the single THSR wave function and the
Brink + generator coordinate method wave function for the 3/2− rotational band of 9Be are found to be near 96%.
Furthermore, by showing the density distribution of the ground state of 9Be, the π -orbit structure is naturally
reproduced by using this THSR wave function.
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I. INTRODUCTION

The clustering phenomenon is one of the fundamental
problems in nuclear physics. Despite its long history since
the discovery of the α cluster, the clustering structure in
nuclei is still under active investigation [1–6]. To describe the
α-cluster condensation in self-conjugate nuclei 12C and 16O,
the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function
was proposed and provided a successful treatment of the
famous Hoyle (0+

2 ) state in 12C [1,2]. The THSR wave function
has been applied to different aggregates of α clusters including
8Be, 12C, and 16O [1,3]. It is also extended to study systems
composed of general clusters, such as 20Ne, treated as a
combination of an α cluster and 16O [4,7,8]. In the study
of inversion-doublet-band states of 20Ne, the THSR wave
function, which was originally introduced to describe gaslike
states, was shown to be also very suitable for the study of the
nongaslike cluster type of states.

The importance of the THSR wave function lies in the
fact that the resonating group method/generator coordinate
method (RGM/GCM) wave functions of both gaslike and
nongaslike states are almost 100% equivalent to single THSR
wave functions. Therefore, the single THSR wave function
grasps the physical properties of the state. The most important
property is the nonlocalized character of clustering [4]. On
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the other hand, superposing many Brink wave functions in
the GCM approach describes nonlocalized clustering because
the Brink-GCM wave function is almost 100% equivalent to a
single THSR wave function.

Following the success in describing self-conjugate nuclei,
a natural question is whether we can apply the THSR wave
function to general nuclei which consist not only of α clusters
but have also extra nucleons, such as 13C studied with
the interaction of α condensation and an extra neutron [9].
Therefore, it would be promising to extend the THSR wave
function to N �= Z nuclei.

The nucleus 9Be is a typical N �= Z nucleus with both
α + α + n cluster structure and also nuclear molecular orbits,
which is most suitable for the extension of the THSR wave
function. This study also belongs to our project, which tries
to understand any clustering phenomena from our new point
of view. The nucleus 9Be has been studied with the antisym-
metrized molecular dynamics, free from cluster assumptions
[10]. It is also investigated with the nuclear molecular orbit
(MO) model in which the extra neutron occupies nuclear
molecular orbits [11–13]. In the nuclear molecular orbit model,
the wave function of the extra neutron is assumed to be a
linear combination of cluster orbitals and provides a successful
description of 9Be. However, the dynamics of the clusters is
not explicitly given in these calculations. To have a clear view
of the nonlocalized clustering dynamics in the 9Be nucleus,
we need a new wave function in which this characteristic is
intrinsically included. In the present work, 9Be is investigated
with a new picture in which two α clusters and an extra nucleon
are performing nonlocalized motion. A modified version of
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the THSR wave function is proposed for the description of
this structure.

The outline of this paper is as follows. In Sec. II we
formulate the THSR wave function with intrinsic parity for
9Be. Then in Sec. III we give the results of the calculation
for 3/2− rotational band of 9Be and analyze the structure
of the ground state obtained from the THSR wave function.
Section IV contains the conclusions.

II. FORMULATION OF THSR WAVE FUNCTION FOR 9Be

The THSR wave function of 9Be is constructed with
creation operators as

|�〉 = (C†
α)2c†n |vac〉 , (1)

where C†
α and c

†
n are creation operators of the α particle and

neutron, respectively. Here we take the same α creator C†
α as

used in previous deformed THSR wave functions [3],

C†
α =

∫
dR exp

(
− R2

x

β2
α,xy

− R2
y

β2
α,xy

− R2
z

β2
α,z

)∫
d3r1 . . . d3r4

× ψ(r1 − R)a†
σ1,τ1

(r1) . . . ψ(r4 − R)a†
σ4,τ4

(r4), (2)

where R is the generate coordinate of the α cluster, ri is the
position of the ith nucleon, and the a†

σ,τ (ri) is the creation
operator of the ith nucleon with spin σ and isospin τ at posi-
tion ri . ψ(r) = (πb2)−3/4 exp(−r2/2b2) is the single-nucleon
harmonic oscillator shell model wave function representing
one of the four nucleons forming the α cluster, where b is a size
parameter. βα,xy and βα,z are parameters for the nonlocalized
motion of two α clusters. The subsystem of two α clusters is
supposed to have rotational symmetry around the z axis, so
the same size parameters βα,xy are used in x and y directions.
For the extra neutron, we use a creation operator c

†
n which is

similar to C†
α but has a new introduced phase factor,

c†n =
∫

d3Rn exp

(
− R2

n,x

β2
n,xy

− R2
n,y

β2
n,xy

− R2
n,z

β2
n,z

)
eimφRn

∫
d3rn

× (πb2)−3/4e
− (rn−Rn)2

2b2 a
†
↑,n(rn), (3)

where Rn is the generate coordinate of the extra neutron, rn

is the position of the extra neutron, a†
σ,τ (rn) is the creation

operator of the extra neutron with spin up at position rn,
and φRn

is the azimuthal angle in spherical coordinates
(RRn

,θRn
,φRn

) of Rn. In this creation operator, the same size
parameter b of Gaussian is used as in Eq. (2). βn,xy and βn,z are
parameters for the nonlocalized motion of the extra neutron.

To illustrate the detailed structure of our wave function
and prove its negative parity, we can rewrite the THSR wave
function of 9Be with m = ±1 in the form of,

〈r1,σ1,τ1, . . . ,rn,σn,τn |�〉 ∝ A [F (X1,X2,rn)φ(α1)φ(α2)] ,

(4)

where A is an antisymmetrizer, φ(α1) and φ(α2) are internal
α wave functions as in Ref. [1], X1 and X2 are center-of-mass
coordinates of the two α clusters, and the form of function

F (X1,X2,rn) is

F (X1,X2,rn)

= exp

{
−X2

1,x + X2
1,y + X2

2,x + X2
2,y

C2
α,xy

− X2
1,z + X2

2,z

C2
α,z

}

× exp

{
− r2

n,x + r2
n,y

C2
n,xy

− r2
n,z

C2
n,z

}

×
[
I0

(
r2
n,x + r2

n,y

A2

)
+ I1

(
r2
n,x + r2

n,y

A2

)]

× (
r2
n,x + r2

n,y

)1/2
e±iφrn (5)

where I0 and I1 are the modified Bessel functions of the
first kind, φrn

is the azimuthal angle of rn, and the denomi-
nators are C2

α,xy = b2/2 + β2
α,xy , C2

α,z = b2/2 + β2
α,z, C2

n,xy =
(8b4 + 4b2β2

n,xy)/(4b2 + β2
n,xy), C2

n,z = 2b2 + β2
n,z, and A2 =

4b2 + 8b4/β2
n,xy . The detailed derivation of Eqs. (4) and (5)

can be found in the Appendix.
The wave function in Eq. (4) gives a clear view of the dy-

namics of motions inside nucleus 9Be as a single function with-
out superposition. It consists of two parts, the internal motion
of nucleons inside α clusters φ(α1) and φ(α2) and the center-
of-mass motions of clusters and the extra neutron described by
F (X1,X2,rn). The negative parity of our THSR wave function
with m = ±1 can be clearly obtained with Eqs. (4) and (5).
The Gaussians and the modified Bessel functions in function F
will not change under the inversion of space. For the last phase
factor eiφrn in function F , we have P̂re

±iφrn = e±i(π+φrn ) =
−e±iφrn , which results in a negative parity for the function
F (X1,X2,rn). Considering that internal wave functions φ(α1)
and φ(α2) have positive parity, the negative parity of the THSR
wave function with m = ±1 is demonstrated.

We give another proof of the negative parity of our 9Be
wave function without executing the integrations over R and
Rn: The spatial wave function of the extra neutron �n(rn) can
be written as

�n(rn) =
∫

d3Rn exp

(
− R2

n,x

β2
n,xy

− R2
n,y

β2
n,xy

− R2
n,z

β2
n,z

)
eimφRn

× (πb2)−3/4e
− (rn−Rn)2

2b2 . (6)

When we change the integration variables (Rn,x,Rn,y,Rn,z)
to (−Rn,x,−Rn,y,−Rn,z), in the integral representation of
�n(−rn) by Eq. (6), we obtain �n(−rn) = −�n(rn). It is
because the azimuthal angle of (−Rn,x,−Rn,y,−Rn,z) is
(π + φRn

) and exp(i(π + φRn
)) = − exp(iφRn

). When m = 0,
Eq. (6) is a standard THSR wave function and has a positive
parity as already known from Ref. [4]. So the total parity of
9Be is now determined by m:

π = π (1)
α × π (2)

α × πn =
{+ (m = 0)
− (m = ±1). (7)

From Eq. (5) we can also see that the z component of
orbital angular momentum lz,n = m is a good quantum number
for the extra neutron. Because of the rotational symmetry of
the two-α-cluster subsystem about z axis, we have lz,α = 0
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for α clusters. Thus the z component of the orbital angular
momentum lz of total system is

lz = l(1)
z,α + l(2)

z,α + lz,n = m. (8)

In order to eliminate effects from spurious center-of-mass
(c.m.) motion, the c.m. part of |�〉 is projected onto a (0s)
state [11],

|�〉 = |(0s)c.m.〉〉〈〈(0s)c.m.|�〉. (9)

Here (0s) represents the wave function of the c.m. coordinate
XG, which is the ground state of the harmonic oscillator. For
the THSR wave function of 9Be, this projection can be accom-
plished simply by the transformation of coordinates ri in |�〉 as

ri → ri − XG. (10)

Then the spurious center-of-mass motion in the wave function
can be separated and eliminated analytically.

We also apply the angular-momentum projection technique
P̂ J

MK |�〉 to restore the rotational symmetry [14],

|�JM〉 = P̂ J
MK |�〉 = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�)|�〉,
(11)

where J is the total angular momentum of 9Be.
The Hamiltonian of 9Be system can be written as

H =
9∑

i=1

Ti − Tc.m. +
9∑

i<j

V N
ij +

9∑
i<j

V C
ij +

9∑
i<j

V ls
ij , (12)

where Tc.m. is the kinetic energy of the center-of-mass motion.
Volkov no. 2 [15] is used as the central force of nucleon-
nucleon potential,

V N
ij = {

V1e
−α1r

2
ij − V2e

−α2r
2
ij

}{W−MP̂σ P̂τ+BP̂σ−HP̂τ },
(13)

where M = 0.6, W = 0.4, and B = H = 0.125. Other pa-
rameters are V1 = −60.650 MeV, V2 = 61.140 MeV, α1 =
0.309 fm−2, and α2 = 0.980 fm−2.

In traditional THSR calculations of 4-n nuclei, the spin-
orbit interaction cancels out and can be safely neglected.
However, for the THSR calculation of 9Be, the spin-orbit
interaction plays a key role because of the existence of extra
neutron. The G3RS (Gaussian soft core potential with three
ranges) term [16], which is a two-body type interaction, is
taken as the spin-orbit interaction,

V ls
ij = V ls

0

{
e−α1r

2
ij − e−α2r

2
ij

}
L · SP̂31, (14)

where P̂31 projects the two-body system into triplet odd
state. Parameters in V ls

ij are taken from Ref. [17] with V ls
0 =

2000 MeV, α1 = 5.00 fm−2, and α2 = 2.778 fm−2.

III. RESULTS AND DISCUSSIONS

Here we calculated the ground-state properties of 9Be,
which is a stable bound state and the only state that exists
below the α + α + n threshold. The excited states 5/2− and
7/2−, which belong to the rotational band of the 3/2− ground
state, are also calculated.

For the intrinsic wave function, m = 1 is taken in the
phase factor eimφRn in Eq. (3) to ensure the negative parity
in these states. Because the lz = m is a good quantum number
for the intrinsic wave function as shown in Eq. (8), we
can write the z component of total angular momentum as
K = lz ± 1/2 for the parallel and antiparallel coupling of spin
and the orbital angular momentum. As we will show later,
because of the existence of spin-orbital interaction, the intrinsic
wave function with K = 3/2 has a much lower energy than
K = 1/2. In the following calculations, K = 3/2 is taken in
the angular momentum projection operators.

It should be noted here that m and K are parameters related
to the intrinsic wave function only, while parameters J and
M describe the state after angular momentum projection. The
parameter M can be chosen freely.

The binding energy of 9Be can be obtained by a variational
calculation with respect to parameters b,βα,xy,βα,z,βn,xy, and
βn,z as

E(b,βα,xy,βα,z,βn,xy,βn,z) = 〈�JM |Ĥ |�JM〉
〈�JM |�JM〉 . (15)

The Monte Carlo method is used for the numerical integration
of Euler angle � in the angular momentum projection and
coordinates {R,Rn} in creation operators.

In our calculations, we treat b as a variational parameter
and get as the optimum value b = 1.35 fm, which is the
same as that obtained for 8Be [3]. This shows that the size
of each α clusters in 9Be is similar to the ones in 8Be. This
also shows a relatively weak influence of the extra neutron
on the α clusters. The remaining optimum parameters in
the THSR wave function are βα,xy = 0.1 fm, βα,z = 4.2 fm,
βn,xy = 2.5 fm, and βn,z = 2.8 fm.

For the ground state of 9Be, we get an energy of −55.4 MeV
with the spin-orbit term of −2.2 MeV with the THSR wave
function. This negative value shows that, with K = 3/2, the
system energy is lowered by the spin-orbit interaction. As a
comparison, with the same parameters and K = 1/2, we get
a much higher energy of −50.3 MeV and a positive spin-orbit
term of 2.2 MeV. Thus, the parallel coupling structure in the
intrinsic wave function is preferred as we discussed above.

In Table I we show the calculated results of the 3/2−
rotational band. Binding energies calculated with both THSR
wave function and the Brink + GCM technique are included.

TABLE I. Calculation results of the 3/2− rotational band. G.S.
denotes the ground state and E.S. denotes the excited state. ETHSR

and EGCM are calculated binding energy with the THSR wave
function and the Brink + GCM wave function respectively. EExp

is the experimental result. Values in parentheses are corresponding
excitation energies. |〈�THSR|�GCM〉|2 is the squared overlap between
the THSR wave function and the Brink + GCM wave function. All
units of energies are MeV.

State ETHSR EGCM EExp [18,19] |〈�THSR|�GCM〉|2

7/2− (E.S.) 48.6 (6.8) 49.4 (7.0) 51.8 (6.4) 0.93
5/2− (E.S.) 53.0 (2.4) 53.8 (2.6) 55.8 (2.4) 0.95
3/2− (G.S.) 55.4 56.4 58.2 0.96
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The Brink + GCM results are calculated with the same
interactions as used in the THSR calculations. We use 72 Brink
wave functions of 9Be with 6 different α-α distances and 12
different positions of the extra neutron as the bases in the
Brink + GCM calculation. For all three states in the rotational
band, the calculated results from THSR wave function agree
well with the Brink + GCM results. The excitation energies
calculated with both THSR and Brink + GCM methods
are consistent with the experimental values. The differences
between theoretical results and experimental results in binding
energy is due to the choice of interactions. We also show the
squared overlap between the THSR wave function and the
Brink + GCM wave function. The calculated squared overlap
for the ground-state state is about 96% and the results for
the excited states are similar. As the Brink + GCM wave
function is generally considered as the exact wave function of
the system, these overlaps show that the single THSR wave
function provides a good description for these states.

The root-mean-square (rms) radius is also calculated for the
ground state of 9Be with

rrms =
√

〈�JM | 1
9

∑9
i=1(ri − XG)2|�JM〉

〈�JM |�JM〉 . (16)

With all parameters variationally optimized, the THSR wave
function gives a point-rms radius of 2.55 fm for the ground
state, which agrees well with the experimental value 2.45 fm
[20].

Figures 1(a) and 1(b) are contour maps of the ground-state
binding energy surface. The optimum parameters for the
ground state are labeled in the map. The very large difference
between βα,xy and βα,z indicates a long prolate shape of α
cluster distribution, which is surrounded by the less deformed
distribution of the extra neutron. This configuration indicates
a structure of nuclear molecular orbit for the ground state of

9Be. In order to illustrate this structure in detail, the density
distribution of 9Be is calculated as the expectation value of the
density operator,

ρ(r′) = 〈�| 1

9

9∑
i=1

δ(ri − XG − r′) |�〉 , (17)

where � is the normalized intrinsic THSR wave function of
9Be. Figure 2 shows the density distribution in the y = 0 cross
section. Similar to the case of 8Be, a clear structure of two α
clusters is displayed. Due to the Pauli blocking effect, the two α
clusters cannot get too close to each other and a neck structure
appears. The distance between two α clusters in 9Be is about
3.4 fm while the intercluster distance for the ground state of
8Be is about 4.6 fm. This shows a more compact structure and
a stronger binding effect of two α clusters in 9Be because of
the existence of the extra nucleon.

To get a clear view of the binding effect of the extra neutron
and the structure of the ground state, we also calculate the
density distribution ρ(r′

n) of the extra nucleon. The intrinsic
wave function � can be written in the form of

� = CÂ[�THSR(2α)φn(r)], (18)

where Â is the antisymmetrizer and C is the normalization
constant. Then we can define the density distribution ρ(r′

n) of
the extra neutron as

ρ(r′
n) =

√
9〈�THSR(2α)φn(r)|δ(r − XG − r′

n)|�〉, (19)

where
√

9 comes from the normalization constant [21]. As
shown in Fig. 3, a distribution result which consists of two
parts is displayed on the y = 0 cross section and a ring style
distribution can be seen on the z = 0 cross section. This
distribution, in which the extra neutron cannot stay along the z
axis, originates from the restriction of rotational symmetry by
the phase factor eiφRn . However, this restriction is reasonable

FIG. 1. Contour maps of binding energy surface with the β parameters in the THSR wave function. Left part (a) is the contour map of
parameters βα,xy and βα,z and the right part (b) is the contour map of parameters βn,xy and βn,z. The optimum value is marked on each map
labeled with coordinates. Parameter b is taken as the variational optimum value b = 1.35 fm.
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FIG. 2. Density distribution of the intrinsic ground state of 9Be.
The grayscale of each point in the figure stands for the nucleon density
on x − z plane of the y = 0 cross section. The unit of the density
is fm−3.

because similar distribution has been given by previous GCM
calculations [11,17]. The distribution of the extra nucleon
spreads more than 6 fm in z direction, which is about double
the size of each α cluster. It also has overlaps with distributions
of both α clusters, which is known as the π orbit in nuclear
molecular orbit model. This is interesting because, at variance
with previous works in Refs. [13] and [12], no molecular orbit
is presumed in our wave function. In the THSR wave function,
the extra nucleon is only assumed to make a nonlocalized
motion inside the nucleus. The π orbit emerges naturally
from the antisymmetrization, which cancels out nonphysical
distributions. This reproduction of nuclear molecular orbit
structure provides another support for our extension of the
nonlocalized clustering concept to 9Be.

TABLE II. Comparison of results from the THSR wave function
and the nuclear molecular orbit model. E is the binding energy
in MeV. “THSR” denotes the result calculated with THSR wave
function. “MO” denotes the result of molecular orbit model, and “MO
+ GCM” is the result of molecular orbit model plus GCM technique.
Parameter b = 1.46 fm as used in Ref. [12]. Other parameters are
variationally optimized.

Model b (fm) E(3/2−) (MeV)

THSR 1.46 54.7
MO [12] 1.46 54.8
MO + GCM [12] 1.46 56.1

To compare the THSR wave function with the nuclear
molecular orbit model, we use b = 1.46 fm, which is the same
value as in Ref. [12]. The calculated binding energy of the
ground state 3/2− with different models but same interaction
and parameter b are listed in Table II. With the THSR wave
function, we get a value of −54.7 MeV for the binding energy
of the ground state, which is almost the same as the result of
the molecular orbit (MO) model without GCM technique in
Ref. [12]. This agreement shows that the motion of the valence
neutron in 9Be is well treated with the THSR wave function.
Comparison with the result of MO + GCM method in Ref.
[12] shows that our result is about 1.3 MeV higher. This is
acceptable because the results of MO + GCM method should
be compared with results of THSR + GCM model rather than
with those from a single THSR wave function.

We consider that both 3/2− ground state and other states
such as 1/2+ state will be well described by single THSR
wave functions. This paper has shown that a single THSR wave
function well describes the 3/2− ground state. In another work
we will study the 1/2+ state.

IV. CONCLUSION

We extended the nonlocalized clustering concept inherent
to the THSR wave function to the N �= Z nucleus 9Be, in

FIG. 3. Density distribution ρ(r′
n) of the extra neutron of the intrinsic ground state of 9Be. The grayscale of each point in left part (a) of

the figure stands for the nucleon density on x − z plane of the y = 0 cross section. The gray scale of each point in right part (b) of the figure
stands for the nucleon density on the x-y plane of the z = 0 cross section. The unit of the density is fm−3.
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which the α clusters and extra neutron make nonlocalized
motion inside the nucleus. We introduce a modified version
of the THSR wave function that includes a creation operator
of the extra neutron. With the introduced phase factor eimφR ,
our wave function has intrinsic negative parity for m = ±1.
Binding energies are calculated for the 3/2− rotational band
head of 9Be by the variational method. The calculated binding
energy from the THSR wave function fits well with the Brink
+ GCM results. The excitation energies of two excited states
are also reasonable compared with the experimental results.
The squared overlap between the THSR wave function and
the Brink + GCM wave function are found to be close to
96%. This means that the THSR wave function provides a
good description of the 3/2− rotational band head of 9Be.
With the same parameter b = 1.46 fm, our result for the
binding energy of the ground state is consistent with the
molecular orbit (MO) model but higher than in the MO +
GCM model. The calculated rms radius of the ground state also
agrees well with the experimental value. By calculating density
distributions of the ground state of 9Be, the π -orbit structure
is naturally reproduced by the THSR wave function without
ad hoc assumption. The calculation of 9Be provides support
for the extension of the nonlocalized clustering concept to
N �= Z nuclei. It also possesses the flexibility to describe
other structures such as nuclear molecular orbital structure
with the THSR wave function. Though with our technique we
essentially have not found anything for the 9Be structure which
was not known before, we think that it is interesting to see
that the THSR wave function also works with adding valence
neutrons to the α particles. This is because it is shown that
the geometrical cluster structures arise only from kinematical
reasons, which is a new aspect of cluster physics. Otherwise
clusters and extra neutrons are free in their motion.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grants No. 11035001, No. 11375086,
No. 11105079, No. 10735010, No. 10975072, No. 11175085,
and No. 11235001), by the 973 National Major State
Basic Research and Development of China (Grants No.
2013CB834400 and No. 2010CB327803), by the Research
Fund of Doctoral Point (RFDP) Grant No. 20100091110028,
and by the Science and Technology Development Fund of
Macao under Grant No. 068/2011/A.

APPENDIX: THE DERIVATION OF THE SINGLE FORM
OF THE THSR WAVE FUNCTION WITH m = 1

The THSR wave function of 9Be can be written in r space as

〈r1,σ1,τ1, . . . ,rn,σn,τn |�〉
=

∫
dR1

∫
dR2

∫
dRn

∏
i=1,2,n

∏
k=x,y,z

× exp

{
−R2

i,k

β2
i,k

}
exp

{
iφRn

}
�B(R1,R2,Rn), (A1)

where �B is the Brink wave function. To obtain the single
function form of the THSR wave function, we need to perform

the integration of the generate coordinates R1, R2, and Rn

in Eq. (A1) analytically. Because the Brink wave function
is the antisymmetrization of single nucleon wave functions,
this integration over different generate coordinates can be
performed separately.

The integration over two α-cluster generate coordinates R1

and R2 is already given as Fα(R1,R2)φ(α1)φ(α2) in Ref. [1],
where �(α) is the internal α-cluster wave function and the
motion of the center-of-mass of α clusters is

Fα(X1,X2)

= exp

{
−X2

1,x + X2
1,y + X2

2,x + X2
2,y

C2
α,xy

− X2
1,z + X2

2,z

C2
α,z

}
,

(A2)

where C2
α,xy = b2/2 + β2

α,xy and C2
α,z = b2/2 + β2

α,z.
The integration over generate coordinate Rn for the extra

neutron can be separated into two integration of its different
components. The first one is the integration over its z
component Rn,z as

fn,z(rn,z) =
∫

dRn,z exp

{
−R2

n,z

β2
n,z

}
exp

{
− 1

2b2
(rn,z−Rn,z)

2

}

∝ exp

{
− r2

n,z

C2
n,z

}
, (A3)

where C2
n,z = 2b2 + β2

n,z. Another one is the integration over
its x component Rn,x and y component Rn,y as

fn,xy(rn,x,rn,y)

=
∫

dRn,xdRn,y exp

{
−R2

n,x + R2
n,y

β2
n,xy

}
eiφRn

× exp

{
− 1

2b2
[(rn,x − Rn,x)2 + (rn,y − Rn,y)2]

}
.

(A4)

This integration of Rn,x and Rn,y can be rewritten in polar
coordinate system as

fn,xy(rn,x,rn,y)

=
∫ 2π

0
dφR

∫ ∞

0
ρRdρR exp

{
− ρ2

R

β2
n,xy

}
eiφR

× exp

{
− 1

2b2

[
ρ2

R + ρ2
r + 2ρRρr cos(φR − φr )

]}
,

(A5)

where ρR = (R2
n,x + R2

n,y)1/2, ρr = (r2
n,x + r2

n,y)1/2, and φR

and φr are angles of vector (Rn,x,Rn,y) and (rn,x,rn,y) in polar
coordinate system respectively. Obviously, we have φR = φRn

,
where φRn

is the azimuthal angle of Rn in spherical coordinate
system.
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As a first step, the integration over radial coordinate ρR is performed as∫
ρRdρR exp

{
− ρ2

R

β2
n,xy

− 1

2b2

[
ρ2

R + ρ2
r + 2ρRρr cos(φR − φr )

]}

∝ exp

{
− 1

2b2
ρ2

r

} {
a + √

πρr cos(φR − φr )[Erf(ρr cos(φR − φr )/a) − 1] exp
(
ρ2

r cos2(φR − φr )
/
a2

)}
, (A6)

where a =
√

2b2 + 4b4/β2
xy .

The next step is to integrate over the angle φR . Since
∫ 2π

0 exp(iφR)dφR = 0, we can safely omit the first constant a in
Eq. (A6) as

fn,xy(rn,x,rn,y) ∝
∫ 2π

0
dφR exp

{
− 1

2b2
ρ2

r +iφR

}
ρr cos(φR−φr )[Erf(ρr cos(φR−φr )/a)− 1] exp

(
ρ2

r cos2(φR−φr )
/
a2

)
. (A7)

Then the substitution φR → φR − φr + φr is applied to the equation above as

fn,xy(rn,x,rn,y) ∝
∫ 2π

0
dφR exp

{
− 1

2b2
ρ2

r + iφr

}
ei(φR−φr )(ρr cos(φR − φr ))

× [Erf(ρr cos(φR − φr )/a) − 1] exp
(
ρ2

r cos2(φR − φr )
/
a2

)
. (A8)

Since fn,xy(rn,x,rn,y) is a periodic function of φR with a 2π period, the integration over φR can be written as

fn,xy(rn,x,rn,y) ∝
∫ 2π

0
exp

{
− 1

2b2
ρ2

r + iφr

}
eiθ (ρr cos θ )[Erf(ρr cos θ/a) − 1] exp

(
ρ2

r cos2 θ
/
a2)dθ, (A9)

where θ = φR − φr .
Considering the Euler equation eiθ = cos θ + i sin θ , the integration above is divided into two terms, one with the real part

cos θ and one with the imaginary part i sin θ . The term with i sin θ can be easily obtained as∫ 2π

0
i sin θ (ρr cos θ )[Erf(ρr cos θ/a) − 1] exp

(
ρ2

r cos2 θ
/
a2

)
dθ

= −
∫ 2π

0
iρr cos θ [Erf(ρr cos θ/a) − 1] exp

(
ρ2

r cos2 θ
/
a2

)
d cos θ

= −
(∫ −1

1
+

∫ 1

−1

)
iρr t[Erf(ρr t/a) − 1] exp

(
ρ2

r t
2
/
a2

)
dt

= 0. (A10)

Now the remaining term in fn,xy(rn,x,rn,y) is

fn,xy(rn,x,rn,y) ∝
∫ 2π

0
exp

{
− 1

2b2
ρ2

r + iφr

}
1

ρr

(ρr cos θ/a)2[Erf(ρr cos θ/a)−1] exp
(
ρ2

r cos2 θ
/
a2

)
dθ. (A11)

The integration over θ can be obtained analytically by Mathematica as∫ 2π

0
(ρr cos θ/a)2[Erf(ρr cos θ/a) − 1] exp

(
ρ2

r cos2 θ
/
a2)dθ = −πρ2

r

a2
exp

{
ρ2

r

(2a2)

}[
I0

(
ρ2

r

2a2

)
+ I1

(
ρ2

r

2a2

)]
, (A12)

where I0 and I1 are the modified Bessel functions of the first kind. We will show the proof of Eq. (A12) later. Substitute this
equation into fn,xy(rn,x,rn,y) and we have

fn,xy(rn,x,rn,y) ∝ exp

{(
1

2a2
− 1

2b2

)
ρ2

r + iφr

}
ρr

[
I0

(
ρ2

r

2a2

)
+ I1

(
ρ2

r

2a2

)]
. (A13)

which can be written as

fn,xy(rn,x,rn,y) ∝ exp

{
− r2

n,x + r2
n,y

C2
n,xy

}[
I0

(
r2
n,x + r2

n,y

A2

)
+ I1

(
r2
n,x + r2

n,y

A2

)] (
r2
n,x + r2

n,y

)1/2
eiφrn , (A14)

where

C2
n,xy = −

(
1

2a2
− 1

2b2

)−1

= 8b4 + 4b2β2
n,xy

4b2 + β2
n,xy

, (A15)
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and

A2 = 2a2 = 4b2 + 8b4

β2
n,xy

. (A16)

Thus we have obtained analytically all the integration results of the generate coordinates, and the THSR wave function can now
be written in the single function form as

〈r1,σ1,τ1, . . . ,rn,σn,τn |�〉 ∝ A [F (X1,X2,rn)φ(α1)φ(α2)] (A17)

where

F (X1,X2,rn) = Fα(R1,R2)fn,xy(rn,x,rn,y)fn,z(rn,z)

= exp

{
−X2

1,x + X2
1,y + X2

2,x + X2
2,y

C2
α,xy

− X2
1,z + X2

2,z

C2
α,z

}
exp

{
− r2

n,x + r2
n,y

C2
n,xy

− r2
n,z

C2
n,z

}

×
[
I0

(
r2
n,x + r2

n,y

A2

)
+ I1

(
r2
n,x + r2

n,y

A2

)] (
r2
n,x + r2

n,y

)1/2
e±iφrn (A18)

where C2
α,xy = b2/2 + β2

α,xy , C2
α,z = b2/2 + β2

α,z, C2
n,xy = (8b4 + 4b2β2

n,xy)/(4b2 + β2
n,xy), C2

n,z = 2b2 + β2
n,z, and A2 = 4b2 +

8b4/β2
n,xy .

Proof of Eq. (A12) in the Appendix

We will apply the substitution t = ρr/a in Eq. (A12) and prove the following integral,∫ 2π

0
t2 cos2 θ [Erf(t cos θ ) − 1] exp(t2 cos2 θ )dθ = −πt2 exp

(
t2

2

) [
I0

(
t2

2

)
+ I1

(
t2

2

)]
, (A19)

First we evaluate the integral of the first term in [· · · ] in the left side in Eq. (A19). We know that the error function is an odd
function, namely it contains only the terms of odd power of cos θ . The rest part in the integration contains only the terms of even
power of cos θ . As we will show later that the integration of the odd power of cos θ equals zero, we can get the result of this
integration immediately as ∫ 2π

0
t2 cos2 θErf(t cos θ ) exp(t2 cos2 θ )dθ = 0. (A20)

Thus we have to prove the following equation:∫ 2π

0
cos2 θ exp(t2 cos2 θ )dθ = π exp

(
t2

2

)[
I0

(
t2

2

)
+ I1

(
t2

2

)]
. (A21)

With use of a simple formula, cos2 θ = (cos 2θ + 1)/2, Eq. (A21) can be written as∫ 2π

0
(1 + cos 2θ ) exp

(
t2

2
cos 2θ

)
dθ = 2π

[
I0

(
t2

2

)
+ I1

(
t2

2

)]
. (A22)

Next we will prove Eq. (A22). For simplicity, we apply the substitution of z = t2/2.∫ 2π

0
exp(z cos 2θ )dθ =

∫ 2π

0
exp(z cos θ )dθ =

∞∑
n=0

zn

n!

∫ 2π

0
(cos θ )ndθ. (A23)

With use of the following formula,∫ 2π

0
(cos θ )ndθ

{
2
√

π �
(
k + 1

2

)/
�(k + 1) for n = 2k

0 for n = odd
, (A24)

�

(
k + 1

2

)
=

√
π (2k)!

22kk!
, (A25)

Iν(z) =
(

z

2

)ν ∞∑
k=0

1

k!�(ν + k + 1)

(
z

2

)2k

, (A26)
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we can write down∫ 2π

0
exp(z cos θ )dθ =

∞∑
k=0

z2k

(2k)!

∫ 2π

0
(cos θ )2kdθ = 2π

∞∑
k=0

1

k!�(k + 1)

(
z

2

)2k

= 2πI0(z). (A27)

On the other hand,∫ 2π

0
cos 2θ exp(z cos 2θ )dθ =

∫ 2π

0
cos θ exp(z cos θ )dθ =

∞∑
n=0

zn

n!

∫ 2π

0
(cos θ )n+1dθ =

∞∑
k=0

z2k+1

(2k + 1)!

∫ 2π

0
(cos θ )2k+2dθ

= 2π ×
(

z

2

) ∞∑
k=0

1

k!�(k + 2)

(
z

2

)2k

= 2πI1(z). (A28)

Then Eqs. (A22) and (A19) are proved.
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