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Emergence of rotational bands in ab initio no-core configuration interaction
calculations of the Be isotopes
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The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the
Be isotopes (7 � A � 12), as evidenced by rotational patterns for excitation energies, electromagnetic moments,
and electromagnetic transitions. Yrast and low-lying excited bands are found. The results indicate well-developed
rotational structure in NCCI calculations, using the JISP16 realistic nucleon-nucleon interaction within finite,
computationally accessible configuration spaces.
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I. INTRODUCTION

Nuclei exhibit a wealth of collective phenomena, including
clustering, rotation, and pairing [1–3]. Collective dynamics
have been extensively modeled in macroscopic phenomeno-
logical descriptions [1,3–5]. Aspects of collectivity may also
be obtained microscopically in the conventional shell model,
with an inert core and effective valence interactions, e.g.,
Elliott SU(3) rotation [6,7] or rotation in large-scale nuclear
structure calculations of medium-mass nuclei [8]. However,
recent developments in large-scale calculations have brought
significant progress in the ab initio description of light nuclei
(e.g., Refs. [9–14]). We may now, therefore, hope to observe
the emergence of collective phenomena directly from first
principles, that is, in a fully ab initio calculation of the nucleus,
as a many-body system in which all the constituent protons and
neutrons participate, with realistic interactions.

In ab initio no-core configuration interaction (NCCI)
approaches—such as the no-core shell model (NCSM) [14,15],
no-core full configuration (NCFC) [16], importance-truncated
NCSM (IT-NCSM) [17,18], no-core Monte Carlo shell
model (MCSM) [19], and symmetry-adapted NCSM (SA-
NCSM) [20,21] methods—the nuclear many-body bound-
state eigenproblem is formulated as a Hamiltonian matrix
diagonalization problem. The Hamiltonian is represented with
respect to a basis of antisymmetrized products of single-
particle states, generally harmonic oscillator states. (For the
lightest nuclei, an antisymmetrized basis in Jacobi coordinates
has also been used.) The problem is solved for the full system
of A nucleons, i.e., with no inert core. In practice, such
calculations must be carried out in a finite space, typically
obtained by truncating the many-body basis according to
a maximum allowed number Nmax of oscillator excitations
above the lowest oscillator configuration (e.g., Ref. [22]). With
increasing Nmax, the results converge towards those which
would be achieved in the full, infinite-dimensional space for
the many-body system.

Computational restrictions limit the extent to which con-
verged calculations can be obtained for the observables needed
to identify collective phenomena. In particular, the observables
most indicative of rotational collectivity—E2 moments and
transition strengths—present special challenges for conver-

gence in an NCCI approach [23,24], owing to their sensitivity
to the large-radius asymptotic portions of the nuclear wave
function. Nonetheless, signatures of collective phenomena,
e.g., deformation and clustering, have already been obtained
in ab initio calculations of various types [13,25–29].

In this work, we observe the emergence of collective
rotation in ab initio NCCI calculations for the Be isotopes,
with 7 � A � 12, using the realistic JISP16 nucleon-nucleon
interaction [30]. Evidence for rotational band structure is
found in the calculated excitation energies, electric quadrupole
moments, E2 transition matrix elements, magnetic dipole
moments, and M1 transition matrix elements. In calculations
of the even-mass Be nuclei, yrast or near-yrast sequences of
angular momenta 0,2,4, . . . arise with calculated properties
suggestive of K = 0 rotational bands. However, the most
distinctive, well-developed, and systematic rotational band
structures are observed in calculations for odd-mass nuclei.
Given the same range of excitation energies and angular
momenta, the low-lying �J = 1 bands in the odd-mass nuclei
provide a richer set of energy and electromagnetic observables.
Bands are identified in both the natural (or valence-space) and
unnatural parity spaces.

First, the properties expected in nuclear rotational structure
are reviewed for the observables under consideration (Sec. II).
Then the results for rotational bands in NCCI calculations of
these Be isotopes are presented (Sec. III): The calculations
are outlined, results for energies and electromagnetic matrix
elements are presented, and convergence is explored. Finally,
the calculated energies and electromagnetic observables are
examined in the context of rotational band structure, and
the calculated rotational bands are compared with experiment
(Sec. IV). Preliminary results were reported in Refs. [29,31].

II. BACKGROUND: ROTATION

A. Rotational states

We first review the nature and expected signatures of
nuclear rotation [1,3,32]. Under the assumption of adiabatic
separation of the rotational degree of freedom, a rotational
nuclear state may be described in terms of an intrinsic state,
as viewed in the noninertial intrinsic frame, together with the
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rotational motion of this intrinsic frame. Here we consider, in
particular, axially symmetric structure, for which the intrinsic
state |φK〉 is characterized by definite angular momentum
projection K along the intrinsic symmetry axis. The full
nuclear state |ψJKM〉, with total angular momentum J and
projection M , then has the form

|ψJKM〉 =
[

2J + 1

16π2(1 + δK0)

]1/2 ∫
dϑ

[
DJ

MK (ϑ)|φK ; ϑ〉

+ (−)J+KDJ
M−K (ϑ)|φK̄ ; ϑ〉], (1)

where ϑ represents the Euler angles for rotation of the intrinsic
state, and |φK̄〉 is the R2-conjugate intrinsic state (the R2

operator induces a rotation by π around the intrinsic-frame y
axis), which has angular momentum projection −K along the
symmetry axis.

The most recognizable features in the spectroscopy of
rotational states reside not in the states taken individually but in
the relationships—relative energies and electromagnetic mul-
tipole operator matrix elements—among different rotational
states |ψJKM〉 sharing the same intrinsic state |φK〉. These
states constitute members of a rotational band, with angular
momenta J = K,K + 1, . . . , except that, for K = 0 bands,
only even J are present, in the case of positive R2 symmetry
(or only odd J , in the case of negative R2 symmetry).

B. Energies

Within a rotational band, energies follow the pattern

E(J ) = E0 + AJ (J + 1), (2)

where, in terms of the moment of inertia J about an axis
perpendicular to the symmetry axis, the rotational energy
constant is A ≡ �

2/(2J ). For K = 1/2 bands, deviation
from the adiabatic rotational energy formula (2) is generally
substantial, owing to the influence of the Coriolis contribution
to the kinetic energy. If one assumes that the intrinsic state may
be well described as a single nucleon coupled to an axially
symmetric core, the result is an energy staggering given by

E(J ) = E0 + A
[
J (J + 1) + a(−)J+1/2

(
J + 1

2

)]
, (3)

where a is the Coriolis decoupling parameter.

C. Quadrupole matrix elements

Reduced matrix elements 〈ψJf K‖Q2‖ψJiK〉 of the electric
quadrupole (E2) operator Q2 between states within a band1

are entirely determined by the intrinsic matrix elements and
the rotational structure. These reduced matrix elements are

1We follow the reduced matrix element normalization and phase
conventions of Edmonds [33,34]. Therefore, quadrupole moments
are related to reduced matrix elements by eQ(J ) ≡ (16π/5)1/2

〈JJ |Q2,0|JJ 〉 = (16π/5)1/2(2J + 1)−1/2 (JJ20|JJ )〈J‖Q2‖J 〉, and
reduced transition probabilities are related to reduced matrix elements
by B(E2; Ji → Jf ) = (2Ji + 1)−1|〈Jf ‖Q2‖Ji〉|2.

given by [1]

〈ψJf K‖Q2‖ψJiK〉

= (2Ji + 1)1/2

1 + δK0
[(JiK20|Jf K)〈φK |Q2,0|φK〉

+ (−)Ji+K (Ji,−K,2,2K|Jf K)〈φK |Q2,2K |φK̄〉], (4)

where Ji and Jf are the initial and final angular momenta,
respectively. The second (or cross) term in Eq. (4), involving
〈φK |Q2,2K |φK̄〉, contributes only for 0 � K � 1, in which
case the quadrupole operator can connect the intrinsic state
|φK〉 with its conjugate state |φK̄〉. For K = 0, the contribution
of this term is identical to that of the first term, and it therefore
simply enters into the normalization of the expression, its effect
canceling that of the 1 + δK0 factor. Let us set aside, for the
moment, the possible contribution of this cross term for bands
with K = 1/2 or 1.

Then all reduced matrix elements within a band are
proportional to the intrinsic quadrupole moment eQ0 ≡
(16π/5)1/2〈φK |Q2,0|φK〉, i.e., the quadrupole moment of the
intrinsic state, as calculated with respect to the intrinsic
symmetry axis. The spectroscopic quadrupole moments of
band members are obtained in terms of Q0 as

Q(J ) = 3K2 − J (J + 1)

(J + 1)(2J + 3)
Q0, (5)

and reduced transition probabilities within a band are obtained
as

B(E2; Ji → Jf ) = 5

16π
(JiK20|Jf K)2(eQ0)2. (6)

However, in the present work, rather than considering these
reduced transition probabilities, we find it more informative to
consider the signed reduced matrix elements,

〈ψJf K‖Q2‖ψJiK〉 =
√

5

16π
(2Ji + 1)1/2(JiK20|Jf K)(eQ0),

(7)

to retain further meaningful phase information as we ex-
amine the rotational structure. The values of Q(J ) and
〈ψJf K‖Q2‖ψJiK〉 within a rotational band, normalized to Q0,
are shown for reference in Fig. 1.

In obtaining these results for rotational matrix elements,
Q2 may be taken to be any operator of the form Q2μ =∑A

i=1 eir
2
i Y2μ(r̂i), where ei is a “charge” for the ith nu-

cleon, and ri its position [35]. Depending on the choice
of the coefficients ei for protons and neutrons, Q2 may
therefore variously represent the proton quadrupole—or phys-
ical electric quadrupole—tensor Qp = e

∑Z
i=1 r2

p,iY2(r̂p,i) (for
ep = e and en = 0), the neutron quadrupole tensor Qn =
e
∑N

i=1 r2
n,iY2(r̂n,i) (for ep = 0 and en = e), or the mass

quadrupole tensor Qm (i.e., their sum).2 While matrix el-
ements of the electric quadrupole operator Qp are most

2For consistency with common notation in the context of elec-
tromagnetic transitions [1], we retain the electron charge e in the
normalization for both Qp and Qn. To the extent that isospin symmetry
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FIG. 1. Rotational predictions for (a) electric quadrupole moments and (b) electric quadrupole transition reduced matrix elements, within a
rotational band, normalized to the intrinsic quadrupole moment Q0, following from Eq. (4). Predictions are shown for bands with 0 � K � 5/2,
as indicated. The staggering induced in transitions within a K = 1/2 band, taking 〈φK |Q2,2K |φK̄〉/〈φK |Q2,0|φK〉 = +0.1 for illustration, is
indicated by the dotted lines.

immediately accessible in experiment, through electromag-
netic observables, matrix elements of Qn may be viewed
on an equal footing in the rotational analysis of calculated
wave functions. Therefore, these neutron matrix elements are
considered alongside the proton matrix elements throughout
Sec. III. They provide a valuable complementary set of ob-
servables for the purpose of investigating whether the nuclear
wave functions satisfy the conditions of adiabatic rotational
separation.

Let us now return to the cross term in the rotational
expression (4) for the reduced matrix element. In the analysis
of K = 1/2 or 1 bands in well-deformed rotor nuclei, in
heavier mass regions, this cross term is commonly neglected,
because Q0 ∼ 〈φK |Q2,0|φK〉 is strongly enhanced, while
〈φK |Q2,2K |φK̄〉 is presumed to be of typical single-particle
strength [1]. However, it may have greater significance
for the light nuclei considered here, where the number of
nucleons participating in collective motion is more limited, and
rotational quadrupole strengths for candidate rotational states
can therefore be expected to be less dramatically enhanced
over single-particle strengths.

The alternating sign of the cross term, for successive
Ji values, may therefore be expected to introduce a non-
negligible staggering in matrix elements for bands with K =
1/2 or 1. That said, for the particular case of quadrupole
moments (diagonal matrix elements) in K = 1/2 bands, of
principal interest in the present work, it should be noted
that the cross term does not actually contribute to the rota-
tional predictions, because the Clebsch-Gordan coefficients
(J,− 1

2 ,2,1|J 1
2 ) vanish identically, and thus no staggering is

is maintained, calculations of neutron quadrupole matrix elements in
the Be isotopes are equivalent to calculations of electric quadrupole
matrix elements for isospin partner states in the N = 4 isotones.

obtained. The cross term can still induce staggering in the
transition matrix elements within these K = 1/2 bands. For il-
lustration, the staggering induced by intrinsic matrix elements
in the ratio 〈φK |Q2,2K |φK̄〉/〈φK |Q2,0|φK〉 = +0.1 is indicated
in Fig. 1(b) (see dotted curves). Staggering of approximately
this scale may be suggested by (or is at least not inconsistent
with) some of the calculated results for matrix elements
in Sec. III C.

D. Dipole matrix elements

The standard rotational analysis for magnetic dipole (M1)
matrix elements [1,3] relies upon the assumption that the
nucleus may be divided into a “core” rotor and extracore
particles. First, we recall that the magnetic dipole operator
may be written as

M1 =
√

3

4π
μN

A∑
i=1

(g�,i�i + gs,isi), (8)

where μN is the nuclear magneton, g�,i and gs,i are the orbital
and spin g factors for the ith nucleon, �i and si are the
dimensionless orbital and spin angular momentum operators,
and we have adopted Gaussian units [35]. Then a decompo-
sition of the dipole operator into core and particle terms is
accomplished as M1 = [3/(4π )]1/2gRμNJ + M′

1, where gR is
an effective gyromagnetic ratio for the core rotor, J is the
dimensionless total angular momentum operator, and M′

1 =
[3/(4π )]1/2μN

∑A
i=1[(g�,i − gR)�i + (gs,i − gR)si]. The ma-

trix elements of the first term include the entire contribution
of the core rotor. Matrix elements of the second, residual term
M′

1 receive contributions only from the extracore particles.
The rotational predictions for these latter matrix elements may
be expressed in terms of intrinsic matrix elements, much as
for the quadrupole operator in Eq. (4).
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FIG. 2. Rotational predictions for each of the terms contributing, in Eqs. (10) and (11), to (a) magnetic dipole moments and (b) magnetic
dipole transition reduced matrix elements, within a rotational band: the core rotor term for dipole moments (dashed line), direct term (solid
lines, K � 1/2 only, as indicated), and cross term (dotted lines, K = 1/2 only). For purposes of comparison, these terms are shown with equal
coefficients, i.e., with a1 = a2 = a3 = μN . Predictions are shown for bands with 0 � K � 5/2.

Reduced matrix elements3 of the full magnetic dipole
operator between states within a band are given by [1]
〈ψJf K‖M1‖ψJiK〉

=
√

3

4π
gRμN 〈Jf ‖J‖Ji〉δJiJf

+ (2Ji + 1)1/2
[
(JiK10|Jf K)〈φK |M ′

1,0|φK〉

+ δ
K,

1
2

(−)Ji+ 1
2
(
Ji,− 1

2 ,1,1
∣∣Jf

1
2

)〈φ1/2|M ′
1,1|φ1/2〉

]
. (9)

The first (rotor) term contributes only to the diagonal matrix
elements, i.e., with Jf = Ji , for which case we may use
the standard identity for the reduced matrix element of
the angular momentum operator within a state of angular
momentum J,〈J‖J‖J 〉 = [J (J + 1)(2J + 1)]1/2. The first (or
direct) term within the brackets, involving the matrix element
〈φK |M ′

1,0|φK〉, contributes in general (except for K = 0 dipole
moments), while the second (or cross) term within the brackets,
involving the matrix element 〈φ1/2|M ′

1,1|φ1/2〉 between conju-
gate intrinsic states, contributes only for K = 1/2. In this case,
the cross term may contribute with a strength comparable to
that of the direct term [3].

For later reference, in Sec. III C, we note the explicit forms
of the rotational predictions which are obtained from Eq. (9),
after evaluating the Clebsch-Gordan coefficients (e.g., Sec. 8.5
of Ref. [34]). For dipole moments,

μ(J ) = a0J + a1
K

J + 1
+ a2δ

K,
1
2

(−)J−1/2

2
√

2

2J + 1

J + 1
, (10)

3Under the present reduced matrix element convention (see
footnote 1), dipole moments are related to reduced matrix elements
by μ(J ) ≡ (4π/3)1/2 〈JJ |M1,0 | JJ 〉 = (4π/3)1/2 (2J + 1)−1/2

(JJ10|JJ )〈J‖M1‖J 〉, and reduced transition probabilities by
B(M1; Ji → Jf ) = (2Ji + 1)−1|〈Jf ‖M1‖Ji〉|2.

and, for the reduced matrix elements for �J = 1 transitions,

〈ψJ−1,K‖M1‖ψJK〉

= −
√

3

4π

√
J 2 − K2

J

[
a1 + a2δK,1/2

(−)J−1/2

√
2

]
, (11)

where a0 = gRμN , a1 = (4π/3)1/2〈φK |M ′
1,0|φK〉, and a2 =

(4π/3)1/2〈φ1/2|M ′
1,1|φ1/2〉. The terms contributing to μ(J ) in

Eq. (10) are shown in Fig. 2(a), while those contributing to
〈ψJ−1,K‖M1‖ψJK〉 in Eq. (11) are shown in Fig. 2(b).

In obtaining these results for rotational matrix elements,
M1 may be any operator of the form (8). The structure
of this operator is more apparent if it is decomposed into
proton/neutron and orbital/spin contributions, as

M1 = g�,pD�,p + g�,nD�,n + gs,pDs,p + gs,nDs,n, (12)

where we define the dipole terms4

D�,p =
√

3

4π
μN�p, D�,n =

√
3

4π
μN�n,

Ds,p =
√

3

4π
μN sp, Ds,n =

√
3

4π
μN sn, (13)

where �p is the total proton orbital angular momentum
operator [�p ≡ ∑Z

i=1 �p,i], �n is the total neutron orbital
angular momentum operator [�n ≡ ∑N

i=1 �n,i], sp is the total
proton spin angular momentum operator [sp ≡ ∑Z

i=1 sp,i],

4In, e.g., Ref. [35], the expression dipole term is used to refer to each
of the contributing proton/neutron and orbital/spin matrix elements,
when the M1 operator is applied at the one-body level, i.e., between
single-particle orbitals. Here we generalize the use of dipole term
to refer to each of the contributing proton/neutron and orbital/spin
operators and to the application of these operators at the many-body
level.
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and sn is the total neutron spin angular momentum operator
[sn ≡ ∑N

i=1 sn,i]. The electromagnetic M1 operator is obtained
for the particular choice g�,p = 1, g�,n = 0, gs,p ≈ 5.586, and
gs,n ≈ −3.826. However, the rotational results (10) and (11)
apply more generally to matrix elements of any linear
combination of these terms, including, as we consider in
Sec. III, each of the four dipole terms individually.

These different dipole operators provide complementary
probes of the proton/neutron and orbital/spin contributions to
the rotational structure.5 Thus, while matrix elements of the
traditional electromagnetic M1 operator are most immediately
accessible in experiment, they do not exhaust the available
structural information for calculated wave functions. For
instance, the electromagnetic operator is blind to the neutron
orbital motion, which may be expected to be a dominant
contributor to total angular momentum in a neutron-rich
rotational nucleus.

III. RESULTS

A. Calculations

We consider here the results of NCCI calculations for the
Be isotopes with 7 � A � 12. In practice, nuclear many-body
calculations must be carried out in a truncated space. A
conventional harmonic oscillator basis is used for the present
calculations, with truncation according to the Nmax scheme,
that is, by the number of oscillator excitations relative to
the lowest Pauli-allowed configuration. The eigenvalues and
wave functions, and thus calculated observables, obtained in
such calculations are, in general, dependent both upon the
basis truncation Nmax and on the oscillator length for the
basis, which is specified by the oscillator energy �	. Detailed
illustrations may be found in, e.g., Refs. [16,23,24,36,37],
including calculations for some of the isotopes and observables
under consideration here. In the present calculations, basis
truncations Nmax = 10 or 11 have been used, depending on
the parity under consideration, as discussed further below.
The basis �	 parameters have been chosen near the vari-
ational minimum for the ground-state energy (specifically,
�	 = 20 MeV for 7,8Be and �	 = 22.5 MeV for 9–12Be).
The calculations are carried out in the proton-neutron M
scheme [38], using the code MFDn [39–41].

These calculations are based on the JISP16 interaction [30],
which is a charge-independent two-body interaction derived
from nucleon-nucleon scattering data and adjusted via a
phase-shift equivalent transformation to describe light nuclei
without explicit three-body interactions. The bare JISP16
interaction is used, without renormalization to the truncated
space (see Ref. [16]). The Coulomb interaction has been
omitted from the Hamiltonian, to ensure exact conservation of
isospin, thereby simplifying the spectrum (we consider states
of minimal isospin T = Tz). However, the primary effect of

5In particular, the diagonal matrix elements, or dipole moments,
calculated using each of the individual dipole terms are proportional
to the �p, sp, �n, and sn contributions, respectively, to the total angular
momentum of the nuclear state [36] (see also Sec. IV B).

the Coulomb interaction, if included, is simply to induce a
shift in the overall binding energies, which is irrelevant to the
analysis of rotational band observables.

Owing to the parity conserving nature of the nuclear
interaction in these calculations, the eigenproblem separates
into positive and negative parity sectors. The parity of the
lowest allowed oscillator configuration may be termed the
natural parity, and that obtained by promoting one nucleon
by one shell the unnatural parity. Thus, the natural parity is
negative for the odd-mass isotopes 7,9,11Be and positive for the
even-mass isotopes 8,10,12Be. While the lowest unnatural parity
states normally lie at significantly higher energy than those of
natural parity, they are calculated to lie within a few MeV
of the lowest natural parity states in the isotopes 9,11Be [29]
and are thus included in the present discussion of these nuclei.
Note that parity inversion arises for 11Be; i.e., the ground
state is experimentally [42] in the unnatural parity space, and
both spaces are near degenerate in calculations at finite Nmax

(see Ref. [22]). The NCCI basis states with an even number
of excitations above the lowest oscillator configuration span
the natural parity space, while the basis states with an odd
number of excitations span the unnatural parity space—hence
the application of even and odd Nmax truncations to these
spaces, respectively.

Diagonalization of the large Hamiltonian matrices encoun-
tered in these NCCI calculations relies upon the Lanczos
algorithm [43]. For a given number of Lanczos iterations,
only a limited set of energy eigenvalues (and corresponding
eigenvectors) are converged, starting from the bottom of
the spectrum, giving the lowest energies within the given
many-body space. Within the framework of an M-scheme
calculation, where many-body basis states are restricted to
a given value of the total angular momentum projection M , all
states with J � M are included in the space (e.g., Ref. [38]).
Thus, in practice, to address the entire yrast region, results
of calculations in spaces with different M values must be
aggregated. For example, the yrast state of a given J might be
too high in the energy spectrum to be practically obtained from
calculations in the M = 0 space (or M = 1/2 for odd-mass
nuclei). However, in the M = J − 2 space, this lowest state
of angular momentum J might be one of the highest states
actually converged (the 20th, say). In the M = J space, it may
be expected to be one of the lowest states obtained (albeit not
necessarily the lowest, because the yrast line is not necessarily
monotonic, particularly in the presence of Coriolis staggering).

B. Energy levels

Identification of candidate rotational band members relies
not only on recognizing rotational energy patterns, but also on
identifying collective enhancement of quadrupole transition
strengths and verifying rotational patterns of electromagnetic
moments and transition matrix elements. Nonetheless, it is
natural to begin the discussion of band structure by considering
energies.

The calculated energy eigenvalues for low-lying states of
the odd-mass Be isotopes (with 7 � A � 11) are shown in
Fig. 3. Where both natural and unnatural parity spaces have
been calculated (see Sec. III A), these are shown separately.
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FIG. 3. Energy eigenvalues obtained for states in the natural (left) and unnatural (right) parity spaces of the odd-mass Be isotopes
(7 � A � 11). Energies are plotted with respect to an angular momentum axis, which is scaled to be linear in J (J + 1), to facilitate
identification of rotational energy patterns. Solid symbols indicate candidate yrast band members, and shaded symbols indicate candidate
excited band members. The lines indicate the corresponding best fits for rotational energies (see text). Where quadrupole transition strengths
indicate significant fragmentation, more than one state of a given J may be indicated as a band member. The vertical dashed lines indicate the
maximal angular momentum accessible within the lowest harmonic oscillator configuration (or valence space).

Low-lying states of even-mass Be isotopes (with 8 � A � 12)
are shown in Fig. 4. To facilitate identification of rotational
bands, it is helpful to plot the calculated excitation energies
against an angular momentum axis which is scaled as J (J + 1),
so that energies within an ideal rotational band lie on a straight
line or, for K = 1/2 bands, staggered about a straight line. For
the candidate bands in Figs. 3 and 4, a straight-line fit (2) to all
band members is shown, except that, for K = 1/2 bands, an
energy fit is obtained by adjusting the parameters of (3) to the
lowest three band members (the remainder of the line is thus
an extrapolation).

The yrast states are noticeably isolated in energy from
the remaining states at low angular momentum, though not
necessarily at the higher angular momenta shown in Figs. 3
and 4. This separation is by ∼20 MeV for the ground state

of 8Be [Fig. 4(a)]. The yrast and near-yrast states therefore
yield the most immediately recognizable sets of candidate
band members. Candidate yrast band members, in particular,
are indicated by the solid black squares in Figs. 3 and 4.
The yrast band members can, for the most part, be identified
simply from the rotational pattern of their energies, although
in the present analysis the energy is taken only as a basis
for identification of candidate band members, pending further
analysis of electromagnetic observables. “Yrast” bands may be
identified separately in the natural [Figs. 3(a), 3(b), and 3(d)]
and unnatural [Figs. 3(c) and 3(e)] parity spaces. In the odd-
mass Be isotopes considered (Fig. 3), yrast rotational bands are
found with K = 1/2 or 3/2. In the even-mass Be isotopes, the
yrast states (Fig. 4) constitute prospective K = 0 ground-state
rotational bands, albeit in some instances severely truncated.
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FIG. 4. Energy eigenvalues obtained for states in the natural
parity spaces of the even-mass Be isotopes (8 � A � 12). See Fig. 3
caption for discussion of the plot contents and labeling.

The density of states rapidly increases off the yrast line,
leading to the possibility of fragmentation of rotational states
by mixing with nearby states and, in general, hindering the
identification of band members. For the yrast K = 1/2 bands,
alternate band members are raised in energy into this region of
higher density of states, as a result of the Coriolis staggering
in energies. Any excited bands must also be sought in this
region of higher density of states. Nonetheless, several excited
candidate bands can be identified,6 once electromagnetic

6We focus, in the present discussion, on the most clearly identifiable
yrast or near-yrast bands. However, this should not be taken to exclude

TABLE I. Maximal angular momenta accessible for the Be
isotopes in the valence, or Nmax = 0 space, i.e., lowest oscillator
configurations of natural parity. For 9,11Be, the maximal angular
momenta accessible in the Nmax = 1 space, or lowest oscillator
configurations of unnatural parity, are also shown.

Parity 7Be 9Be 11Be 8Be 10Be 12Be

Natural 7/2 9/2 7/2 4 4 2
Unnatural 13/2 13/2

moments and transition matrix elements have been taken into
account, as indicated by shaded squares in Figs. 3 and 4.
Excited candidate bands are identified in the natural parity
spaces of 9Be [Fig. 3(b)], 11Be [Fig. 3(d)], 10Be [Fig. 4(b)], and
12Be [Fig. 4(c)], again with K = 1/2 or 3/2 for the odd-mass
isotopes or K = 0 for the even-mass isotopes. Examples
of fragmentation of rotational candidate band members, as
indicated by quadrupole transition strengths, may be seen in
the present calculations at J = 2 in the excited band of 10Be
[Fig. 4(b)] and at J = 11/2 in the unnatural parity yrast band
of 11Be [Fig. 3(e)].

A basic question to be addressed (taken up in view of the
full set of calculated data in Sec. IV A) is whether the rotational
bands exhibit termination. If so, we then wish to understand
the relation between the terminating angular momentum and
the angular momenta accessible in a traditional valence shell
description for these nuclei. In general, the maximal angular
momentum available in the Nmax = 0 space, i.e., the lowest
oscillator configuration, of the NCCI scheme is, equivalently,
the maximal angular momentum possible in a traditional shell-
model description using the last partially occupied oscillator
shell (here the p shell) as the valence space. This maximal
valence angular momentum is indicated by the dashed vertical
lines in Figs. 3 and 4. For the unnatural parity spaces [Figs. 3(c)
and 3(e)], the maximal angular momentum accessible in the
Nmax = 1 space, i.e., the lowest oscillator configuration of
unnatural parity, is indicated instead. This angular momentum
is, in general, higher than for the corresponding natural parity
space, because promotion of a nucleon to a higher shell relaxes
Pauli constraints on the allowed angular momentum couplings,
while also making higher-j orbitals accessible. The maximal
angular momenta are summarized in Table I.

Candidate yrast bands in Figs. 3 and 4 exhibit some form
of discontinuity in the evolution of the energies with J , or else
clear termination, at the maximal valence angular momentum.
In contrast, several of the excited candidate bands extend
to higher angular momentum without apparent disruption to
the rotational energy pattern. These observations are revisited
below (Sec. IV A) in light of electromagnetic observables.

C. Electromagnetic matrix elements

For each candidate rotational band highlighted in Figs. 3
and 4, we now compare the calculated electric quadrupole

the possibility of additional excited bands, suggestions of which may
be found in the calculated spectra and matrix elements. See, e.g.,
Fig. 2(b) of Ref. [31], for a low-lying example.
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FIG. 5. Dipole and quadrupole matrix element observables for the 7Be natural parity yrast band: (a) quadrupole (E2) moments, (b)
quadrupole transition reduced matrix elements, (c) dipole (M1) moments, and (d) dipole transition reduced matrix elements. For quadrupole
moments and matrix elements, values calculated using both proton and neutron operators are shown. Similarly, for dipole moments and matrix
elements, values calculated using all four dipole terms (i.e., proton/neutron and orbital/spin contributions) are shown. Quadrupole moments
and matrix elements are normalized to Q0, obtained from the lowest band member’s quadrupole moment. The curves indicate the rotational
values for the quadrupole moments and matrix elements (normalized to Q0) and for the dipole moments and matrix elements (using band
best-fit parameters obtained from the dipole moments). The vertical dashed lines indicate the maximal angular momentum accessible within
the lowest harmonic oscillator configuration (or valence space).

and magnetic dipole matrix elements—that is, moments and
transition matrix elements—with the rotational predictions.
The calculated results are shown in Figs. 5–11 for the odd-mass
Be isotopes and in Figs. 12–15 for the even-mass Be isotopes.7

Let us for now focus on defining the contents of these figures,
while deferring analysis to Sec. IV.

In each of Figs. 5–15, the quadrupole moments for all
states within the considered band are shown in panel (a). The
values are normalized to Q0, to facilitate uniform comparison
with the rotational predictions for Q(J )/Q0 from (5), which
are shown as a curve in each plot, appropriate to the K
quantum number of the given band. The value of Q0 used
for normalization has in each case been obtained simply
from the quadrupole moment of the lowest-energy band
member with nonvanishing quadrupole moment. Thus, for
K = 1/2 bands, because the quadrupole moment of the
J = 1/2 bandhead vanishes identically, either the J = 3/2 or
the 5/2 band member is used for normalization, according
to the energy staggering. Similarly, for K = 0 bands, the

7The radically truncated K = 0 yrast band of 12Be, which terminates
at J = 2, as indicated in Fig. 4(c), is not included among these figures
but does appear in Sec. IV.

quadrupole moment of the J = 2 band member is used for
normalization. The exceptions are the excited K = 0 bands in
10Be [Fig. 14(a)] and 12Be [Fig. 15(a)], for which the J = 4
band member is found to be less fragmented and therefore
used for normalization. Quadrupole moments in Figs. 5–15
are calculated using both the proton (solid symbols) and
neutron (open symbols) quadrupole tensors (as discussed in
Sec. II C). (In some cases, data points for the neutron results
may not be separately visible in these figures, when they
are indistinguishable from the corresponding proton results.)
The proton and neutron quadrupole moments are normalized
separately, because no a priori relation exists between the
intrinsic matrix elements of the Qp and Qn operators (except
in 8Be, where isospin symmetry makes the proton and neutron
quadrupole moments trivially identical).

In-band quadrupole transition reduced matrix elements are
shown in panel (b) of each of Figs. 5–15, again as obtained
for both proton (solid symbols) and neutron (open symbols)
quadrupole operators, and for �J = 2 transitions (upper
curves) and �J = 1 transitions (lower curves), with the latter
not being applicable to K = 0 bands (Figs. 12–15). The matrix
elements are shown normalized as 〈J − �J‖Q2‖J 〉/(eQ0),
for comparison with rotational values from Eq. (7). The same
Q0 values are used as in panel (a) of each of the figures, i.e.,
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FIG. 6. Dipole and quadrupole matrix element observables for the 9Be natural parity yrast band. See Fig. 5 caption for discussion of the
plot contents and labeling.

FIG. 7. Dipole and quadrupole matrix element observables for the 9Be natural parity excited band. See Fig. 5 caption for discussion of the
plot contents and labeling.
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FIG. 8. Dipole and quadrupole matrix element observables for the 9Be unnatural parity yrast band. See Fig. 5 caption for discussion of the
plot contents and labeling.

FIG. 9. Dipole and quadrupole matrix element observables for the 11Be natural parity yrast band. See Fig. 5 caption for discussion of the
plot contents and labeling.
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FIG. 10. Dipole and quadrupole matrix element observables for the 11Be natural parity excited band. See Fig. 5 caption for discussion of
the plot contents and labeling.

FIG. 11. Dipole and quadrupole matrix element observables for the 11Be unnatural parity yrast band. See Fig. 5 caption for discussion of
the plot contents and labeling.
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FIG. 12. Dipole and quadrupole matrix element observables for the 8Be natural parity yrast band. See Fig. 5 caption for discussion of the
plot contents and labeling. Proton and neutron observables are identical owing to isospin symmetry for 8Be.

FIG. 13. Dipole and quadrupole matrix element observables for the 10Be natural parity yrast band. See Fig. 5 caption for discussion of the
plot contents and labeling.
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FIG. 14. Dipole and quadrupole matrix element observables for the 10Be natural parity excited band. See Fig. 5 caption for discussion of
the plot contents and labeling.

FIG. 15. Dipole and quadrupole matrix element observables for the 12Be natural parity excited band. See Fig. 5 caption for discussion of
the plot contents and labeling.
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deduced from the quadrupole moment of a suitable low-lying
band member. Therefore, no free normalization parameter
remains for the transition matrix elements in panel (b). For
K = 1/2 bands, recall that the quadrupole moments are
insensitive to the cross term connecting R2-conjugate intrinsic
states in Eq. (4) and therefore cannot be used to extract
the corresponding intrinsic matrix element 〈φK |Q2,2K |φK̄〉.
No attempt is made to “fit” any possible staggering in the
calculated quadrupole transition matrix elements to determine
this matrix element. Rather, the rotational values of matrix
elements from Eq. (7) are simply shown, without the cross
term, as a baseline for any possible staggering.

The four distinct “dipole moments” for each band member,
calculated using each of the separate dipole term operators
D�,p, D�,n, Ds,p, and Ds,n (defined in Sec. II D) are shown
in panel (c) of each of Figs. 5–15. Similarly, for the odd-
mass Be isotopes, the four distinct �J = 1 dipole transition
matrix elements, calculated using each of the dipole term
operators, are shown in panel (d) of each of Figs. 5–11.
(No dipole transitions are possible in the K = 0 bands of
the even-mass Be isotopes, owing to the �J = 2 angular
momentum difference between levels.) The magnetic dipole
moment or magnetic dipole transition matrix element pertinent
to physical electromagnetic transitions can, of course, be
recovered as a particular linear combination (12) of these
values, as determined by the physical g factors (Sec. II D).
However, for purposes of rotational analysis, we retain the
more complete information provided by the matrix elements
of the four physically distinct dipole terms.

The rotational predictions for the dipole moments from
Eq. (10) involve up to three parameters (a0, a1, and a2), repre-
senting the different core rotor and intrinsic matrix elements,
in contrast to the situation for the quadrupole moments, for
which the rotational predictions have as their only parameter a
simple overall normalization. As noted in Sec. II D, the cross
term may contribute with a strength comparable to that of the
direct term, so no simplification can be obtained through its
omission. Similarly, the rotational predictions for the dipole
transitions involve up to two parameters (a1 and a2). Therefore,
the calculated values are shown directly in Figs. 5–15, without
normalization to any fitted intrinsic matrix element.

The curves representing the rotational predictions are thus
not uniquely determined by the K quantum number but
rather are determined by a simultaneous global fit of the
parameters a0, a1, and a2 (as applicable, depending upon the
K quantum number) to the dipole moments and transition
matrix elements (again, as applicable) within the band. For
K = 0 bands, the expected angular momentum dependence
for the dipole moments is indeed simply linear, and the fit
consists of determining the core rotor normalization parameter
a0. For K = 1/2 bands, all three terms (involving a0, a1,
and a2) are involved, introducing staggering, while, of these,
only the two involving a1 and a2 enter into the expected
transition matrix elements. Finally, for bands with K > 1/2,
only two terms (involving a0 and a1) are in play, while only
the term involving a1 enters into the expected transition matrix
elements. These parameters for the rotational predictions are
fitted independently for each of the dipole term operators,
within a band, as there is no a priori relation among the

intrinsic matrix elements for the different dipole terms. These
fits give equal weights to all moments and transitions, where all
levels within the band are considered up to the point at which
substantial anomalies (band termination) or fragmentation
effects are found to occur.

Recall that our purpose is to determine the extent to which
the calculated eigenstates in the ab initio calculation conform
to the expectation of an adiabatic rotational scheme, i.e., one
yielding wave functions of the form (1), and that, to do
so, we are relying upon the indirect evidence provided by
energies and matrix elements of electromagnetic operators,
these latter, the matrix elements, being concretely related to
the hypothesized form (1) for the wave functions. Because
signed reduced matrix elements 〈Jf ‖Tλ‖Ji〉, rather than
unsigned reduced transition probabilities B(T λ; Ji → Jf ), of
a transition operator Tλ, are considered—for both quadrupole
and dipole transitions—in Figs. 5–15, it is necessary for
us to elaborate on the extraction of the signs on these
quantities and their interpretation in the rotational context.
The rotational predictions for the matrix elements—as given
in Eqs. (4) and (9)—entail definite relations among the signs
of the transition matrix elements (which are also related to
the signs of the moments). These signs are lost (through
taking the square) in going from matrix elements to transition
probabilities. When comparing with experiment, such loss
of sign information is inconsequential because the signs of
transition matrix elements are impossible to extract experi-
mentally (a possible exception, in principle, being through
interference between different excitation pathways in multi-
step Coulomb excitation [44]). However, the relevant matrix
elements are fully accessible for the present ab initio calculated
wave functions.

In considering the signs of calculated matrix elements,
it must be borne in mind that the eigenfunctions of the
Hamiltonian are determined only to within an overall phase
(i.e., sign, for real wave functions). Thus, if the state |ψJKM〉
of (1) is characterized by a rotational wave function, then
−|ψJKM〉 is an equally valid rotational state, the choice of
one over the other being simply a matter of convention,
implicitly embodying also the arbitrary choices of convention
entailed in the definitions of the D functions and Clebsch-
Gordan coefficients [33]. Numerical diagonalization of the
many-body Hamiltonian will arbitrarily select either sign for
the eigenvector (in general, irreproducibly, depending upon
the choice of initial Lanczos trial states or other variations in
algorithmic details). Diagonal matrix elements (or moments)
are insensitive to the sign of the wave function. The sign
choices on two states of angular momenta J and J ′—which
we may denote by σJ and σJ ′ , respectively—enter into the
transition reduced matrix elements 〈J ′‖Tλ‖J 〉 between these
states as the product σJ ′σJ .

In comparing the results for matrix elements from the
calculated eigenvectors with the values expected from the
rotational model formulas, one must therefore attempt to
choose the phases on the calculated eigenvectors to best
correlate with the phase convention embodied in Eq. (1). The
present analysis considers matrix elements of a multitude of
operators among the states within a band, which suffice to
fully determine (or, rather, overdetermine) the comparatively
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few arbitrary phase choices arising from the signs on the
states. For instance, if we consider specifically the transitions
among three adjacent band members of angular momenta
J − 2, J − 1, and J , there are 14 independent transition
reduced matrix elements considered in this work, namely,
four from the �J = 1 transitions for the two independent
quadrupole operators (Qp and Qn), two more from the �J = 2
transitions for these quadrupole operators, and eight from the
�J = 1 transitions for the four independent dipole operators
(D�,p, D�,n, Ds,p, and Ds,n):

J−2
© 2 E2 + 4 M1←−−−−−−

J−1
© 2 E2 + 4 M1←−−−−−−

J

©
←−−−−−−−−−−−−−−−−−

2 E2

.

The transition matrix elements are insensitive to a global
reversal of sign, i.e., of σJ−2, σJ−1, and σJ simultaneously.
Thus, effectively, only two arbitrary sign degrees of freedom
are present—these may be taken as the choices of the relative
phases σJ−2/σJ and σJ−1/σJ of the band members—among
the signs of the 14 transition matrix elements. The two
arbitrary signs may be determined by matching the signs of
two transition matrix elements to the signs expected from
the rotational formulas: e.g., once the sign of Q0,p has been
determined from the quadrupole moments, we may choose the
two relative phases σJ−2/σJ and σJ−1/σJ so that the �J = 2
and �J = 1 proton quadrupole transition matrix elements
from the state J to the lower band members match those of
the rotational predictions. Then, the signs of the remaining
12 matrix elements serve as unambiguous predictions from
the many-body calculation, to be tested against the rotational
expectations. To allow consistent presentation of signs over
the different sets of calculations in Figs. 5–15, the free signs
in the transition analysis are chosen to enforce consistency with
the positive sign of Q0,p from the quadrupole moment anal-
ysis, i.e., to make 〈J − 1‖Q2,p‖J 〉/(eQ0,p) negative and/or
〈J−2‖Q2,p‖J 〉/(eQ0,p) positive [see Fig. 1(b)], as applicable.

D. Convergence

The calculations presented in the preceding sections are
obtained at a particular level of truncation (Nmax = 10 or 11)
of the many-body configuration space and therefore represent
a snapshot along the path to convergence, i.e., to the actual
predictions of the many-body Schrödinger eigenproblem with
the JISP16 interaction. Therefore, in interpreting the results, it
is important to have insight into the nature of the dependence
on Nmax exhibited by observables for the rotational states and
therefore into the impact of incomplete convergence on the
rotational features observed in the calculations.

We focus on 9Be for illustration, beginning with the energies
within rotational bands. Let us first consider the energy
eigenvalues (these eigenvalues represent the total binding of
the nuclear system). The calculated eigenvalues for several
successive values of Nmax are shown at top in Fig. 16, both for
the natural parity space (Nmax = 6, 8, and 10) [Fig. 16(a)]
and for the unnatural parity space (Nmax = 7, 9, and 11)
[Fig. 16(b)]. For each of these Nmax values, the curves indicate
rotational formula fits to the energies, obtained as described
in Sec. III B. For each step in Nmax, it may be observed that

the energies shift lower by several MeV, an amount which is
large compared to the rotational energy scale. Thus, naively,
the energies would seem inadequately converged to permit an
analysis of rotational properties.

Nevertheless, the energies of different members of the same
band may be observed to converge at similar rates, and thus the
relative energies of levels within a band are far less dependent
upon the truncation than are the energy eigenvalues them-
selves. Excitation energies for 9Be are shown at the bottom
in Fig. 16. (These are calculated separately for each parity,
i.e., relative to the “ground state” of that parity.) In examining
the unnatural parity band [Fig. 16(d)], it may be noted that
there are candidate band members at J = 15/2 and 17/2,
based on electromagnetic observables, beyond the maximal
angular momentum permitted by the valence configuration
(Sec. III B), with energies that lie substantially above the
rotational energy predictions (by ∼10 MeV, for Nmax = 11).
However, if we consider the Nmax dependence, we see that
these band members are also falling rapidly in energy relative
to lower band members. Thus, as convergence continues, the
discontinuity in the behavior of the energies at the maximal
valence angular momentum may be substantially altered,
perhaps even disappearing, representing a qualitative change
in band properties from those observed at lower Nmax values.

While the excitation energy of the excited natural parity
band of 9Be [Fig. 16(c)], as measured relative to the yrast band,
decreases with Nmax, this relative motion is less rapid than
that of the eigenvalues themselves. The change in excitation
energy for successive steps in Nmax is decreasing, suggesting
that the excitation energy of the band might be approaching a
converged value.

The calculated quadrupole matrix elements are highly
dependent on both Nmax and �	,8 and at present no defini-
tive procedure is available for extracting estimates for the
true, converged values. Nonetheless, ratios of calculated
quadrupole matrix elements within a band are sufficiently
stable with respect to Nmax to permit identification of the
rotational patterns. Again, 9Be is taken for illustration, at top
in Fig. 17, where the quadrupole moments of the natural parity
[Fig. 17(a)] and unnatural parity [Fig. 17(b)] yrast bands are
shown, for successive values of Nmax. As in Figs. 5–15, these
values are taken in ratio to the intrinsic quadrupole moment,
which is calculated from the quadrupole moment of the lowest
possible band member in each case (see Sec. III C). The
calculated ratios are extremely stable with respect to Nmax

for the lowest band members. Note especially the proton and
neutron quadrupole moments of the natural parity J = 5/2
band members in Fig. 17(a). These values remain stable
with Nmax even though they deviate noticeably from the
rotational predictions, so stability is not to be taken to be
uniquely associated with strict adiabatic rotation. Greater Nmax

dependence is found for some of the band members at higher
angular momentum.

8For representative examples of the Nmax and �	 dependence
of calculated quadrupole moments and transition strengths in a
neighboring nuclide, see Fig. 9 of Ref. [36]. Results are shown for
states in 7Li, the mirror nucleus to 7Be.
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FIG. 16. Dependence of calculated energies for 9Be on the basis truncation Nmax: absolute energies E (top) and excitation energies Ex

(bottom). Low-lying states in the natural (left) and unnatural (right) parity spaces are shown. Calculations are for 6 � Nmax � 10 for natural
parity or 7 � Nmax � 11 for unnatural parity (calculations of increasing Nmax are indicated by pluses, crosses, and diamonds, respectively).
Excitation energies are taken separately for each parity. See Fig. 3 caption for discussion of other aspects of the plot contents and labeling.

Convergence of magnetic dipole matrix elements is much
more rapid than for electric quadrupole matrix elements. The
magnetic dipole moments and transition matrix elements are
much less sensitive to the basis �	.9 The calculated magnetic

9For the Nmax and �	 dependence of the calculated dipole moments
for several states in 9Be, see Fig. 6 of Ref. [36]. The quantities labeled
in that figure as spin contributions are equivalent to the dipole terms
considered here.

dipole matrix elements for successive values of Nmax are
shown in Fig. 17 (bottom). Note that these dipole moments
are virtually insensitive to Nmax, at the Nmax values shown.
In the unnatural parity band [Fig. 17(d)], recall that the
energy convergence properties change markedly for the band
members above the maximal valence angular momentum,
but no such discontinuity is observed for the magnetic
dipole moments, for which good convergence—and agreement
with the rotational fit—is maintained for all candidate band
members.
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FIG. 17. Dependence of calculated electromagnetic moments for 9Be on the basis truncation Nmax: quadrupole moments (top) and dipole
moments (bottom) of the natural (left) and unnatural (right) parity yrast bands. Calculations are for 6 � Nmax � 10 for natural parity, or
7 � Nmax � 11 for unnatural parity (calculations of increasing Nmax are indicated by pluses, crosses, and circles, respectively). See Fig. 5
caption for discussion of other aspects of the plot contents and labeling.

Finally, let us return to the quadrupole moments, but
consider them now on an absolute scale (i.e., not as ratios or
normalized to an intrinsic quadrupole moment), despite their
lack of convergence. Because the ratios within the bands have
already been seen to be largely independent of Nmax, the abso-
lute values may be summarized by the overall normalization,
as given by the intrinsic quadrupole moment. The intrinsic
quadrupole moments, as extracted for each of the bands we
are considering in the Be isotopes, from calculations with
successive values of Nmax (again, Nmax = 6, 8, and 10 for nat-
ural parity bands, or Nmax = 7, 9, and 11 for unnatural parity
bands) are indicated in Fig. 18. Successive Nmax calculations
for a given band are joined by a line, and the value calculated
at the highest Nmax is indicated by the largest symbol.

While the absolute magnitudes of Q0,p and Q0,n are far
from converged in these calculations, they are increasing with
Nmax (as is typically the case for NCCI calculations carried out
near the variational minimum in �	), and they may, therefore,
be interpreted, at least heuristically, as providing a lower
bound on the true converged values. The calculated values
are already ∼2 to 10 times a single-particle estimate for the
intrinsic quadrupole moment obtained following Weisskopf’s
approach [45] (see the Appendix for the derivation). This
single-particle estimate varies from ∼2.8 e fm2 for A = 7 to
∼4.1 e fm2 for A = 12, as indicated by the shaded bands in
Fig. 18.10

10In considering the present enhancements, one should note that
these comparisons are of matrix elements. Comparisons of nuclear

By comparison, although the available experimental elec-
tromagnetic moment and transition data for the Be iso-
topes [42,46,47] are limited, we may estimate values for the
electric (i.e., proton) intrinsic quadrupole moment eQ0,p for
the yrast bands of 8–10Be from the data, using the rotational re-
lations (5) and (6). The low-lying states in 8Be decay primarily
to α particles, and the 2+ → 0+ γ -ray branch in the 8Be yrast
band is not observed [47]. However, the measured 4+ → 2+
γ width [48] implies a reduced matrix element which corre-
sponds to eQ0,p = 23.0(15) e fm2 for this band.11 The mea-
sured 3/2− ground-state quadrupole moment in the 9Be yrast
band [47] similarly corresponds to eQ0,p = 26.44(19) e fm2

for this band. (The 5/2− → 3/2− and 7/2− → 3/2− γ
widths [47] are then approximately consistent with the
expected rotational values. Specifically, taking the evaluated
widths and E2/M1 division for the transitions in 9Be [47]

transition data with Weisskopf estimates are often carried out for
B(E2) values, i.e., proportional to squared matrix elements. Taking
the present matrix elements in square would, of course, significantly
amplify the quoted ratios of the calculated value to the single-particle
value.

11The γ width must first be transformed to a B(E2) value, which
is then simply related to the intrinsic quadrupole moment by Eq. (6).
However, the conversion involves a factor or E5

γ , where Eγ is the
transition γ -ray energy. Thus, the deduced B(E2) and, hence, eQ0,p

is highly sensitive to the energy taken for the 4+ resonance. While we
have used the evaluated energy [47] to deduce Eγ , Datar et al. [48] use
the resonance parameters from α scattering, yielding a larger B(E2)
value, from which one obtains eQ0,p = 27.2(13) e fm2.
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FIG. 18. Intrinsic quadrupole moments plotted as eQ0,p vs eQ0,n for all bands considered in the present work. Bands are distinguished as
natural parity yrast (circles, solid), natural parity excited (circles, shaded), and unnatural parity yrast (diamonds). Data points are labeled by the
mass number of the Be isotope. Values are shown for successive Nmax values (6 � Nmax � 10 for natural parity or 7 � Nmax � 11 for unnatural
parity) to provide an indication of convergence (the larger symbols indicate higher Nmax values) and of the stability of the ratio Q0,p/Q0,n. The
line Q0,p/Q0,n = 1 is marked (dashed diagonal line), as is the range of Weisskopf estimates as A ranges from 7 to 12 (shaded bands).

yields B(E2; 5/2− → 3/2−)/(eQ0,p)2 = 4.0(3)×10−2, com-
pared to the rotational value ≈3.41×10−2, and B(E2; 7/2− →
3/2−)/(eQ0,p)2 = 1.4(6)×10−2, compared to the rotational
value ≈1.42×10−2). The measured 2+ → 0+ γ width in the
10Be yrast band [47] implies a reduced matrix element which
corresponds to eQ0,p = 23.0(11) e fm2 for this band.

Note that, as Nmax increases, the ratio of the proton and
neutron intrinsic quadrupole moments remains approximately
constant, as may be seen by observing that successive
calculated points move approximately radially outward from
the origin of the plot, along a line of fixed Q0,p/Q0,n. The ratio
Q0,p/Q0,n may therefore be examined as a stable observable
of the band (considered further in Sec. IV B).

IV. BAND DISCUSSION

A. Rotational patterns

We are now in a position to examine the energies and
electromagnetic observables, as laid out Sec. III, in the context
of rotational structure and, in particular, to survey the patterns
emerging in the rotational bands along the Be isotopic chain.
We are interested not only in the agreement of the calculated
observables with a rotational picture but also in the nature of
the deviations from rotational behavior. While some of these
discrepancies may simply be numerical artifacts of incomplete
convergence, as explored in Sec. III D, others indicate physical
deviations from the simplest picture of adiabatic rotation. Such

deviations are to be expected from the various reasonable
physical scenarios, e.g., that the eigenfunctions reflect valence
shell physics, or that they involve α clusters surrounded by
weakly coupled neutrons. It is perhaps more remarkable not
that these deviations arise, but that they are not so large as to
overwhelm the underlying rotational signatures.

Although rotational band structure is robustly apparent,
persisting across calculations of varying basis sizes, the
rotational patterns are being observed in incompletely
converged values of observables. Many of the details—
certainly many of the quantitative measures and also likely, to
some extent, qualitative features of the bands—are therefore
still in flux, i.e., dependent upon the basis truncation parameter
Nmax and the oscillator length scale. Therefore, our interest in
the following discussion principally resides in examining the
qualitative properties of the rotational patterns which emerge
from these ab initio calculations and recognizing the different
varieties of band structure which are found, rather than in
extracting definitive numerical predictions for comparison
with experiment. Detailed quantitative comparisons with
experimentally identified rotational bands in the Be isotopes
will likely require the application of basis extrapolation
methods [16,37,49,50] to deduce the converged values for
energies and electromagnetic observables.

Recall that candidate band members are identified based on
both energies and electric quadrupole strengths (Sec. III B).
The general pattern of agreement between the energies of
these band members and the expected rotational values for

014310-18



EMERGENCE OF ROTATIONAL BANDS IN AB . . . PHYSICAL REVIEW C 91, 014310 (2015)

the different bands (Figs. 3 and 4) broadly falls into one of
three qualitatively different categories:

(i) The band terminates at (or below) the maximal angular
momentum permitted within the valence space (see
Sec. III B), i.e., no further candidate band members
are identified beyond this angular momentum, and
good agreement in energies is obtained for all band
members. This category includes the 9Be natural parity
yrast and excited bands [Fig. 3(b)], 11Be natural parity
yrast band [Fig. 3(d)], 11Be unnatural parity yrast
band [Fig. 3(e)], and 10Be yrast band [Fig. 4(b)]. The
severely truncated yrast “band” of 12Be [Fig. 4(c)] may
also be associated with this category, to the extent that
it can meaningfully be interpreted as a rotational band.

(ii) Further candidate band members are identified above
the maximal valence angular momentum, but, while
good agreement in energies is obtained up to this
angular momentum, the band members above this
angular momentum deviate from rotational energies.
In particular, the band members above the valence
cutoff are found to lie high in energy relative to the
rotational formula. This category includes the 7Be
natural parity yrast band [Fig. 3(a)], 9Be unnatural
parity yrast band [Fig. 3(c)], and 8Be yrast band
[Fig. 4(a)].

(iii) Further candidate band members are identified above
the maximal valence angular momentum, and good
agreement in energies is obtained for all band mem-
bers, persisting above the maximal valence angular
momentum with no noticeable discontinuity. This
category includes the 11Be natural parity excited band
[Fig. 3(d)], 10Be excited band [Fig. 4(b)], and 12Be
excited band [Fig. 4(c)].

For bands in the second category, the discontinuity at the
maximal valence angular momentum might not necessarily
reflect a true difference in the ab initio description of the
band members below this angular momentum and above it—as
would be obtained in a fully converged calculation—but rather
may, at least in part, reflect the difference in convergence
rates of these levels, as already noted in Sec. III D. The dis-
continuity will clearly be modified as convergence continues
with increasing Nmax, and it could conceivably disappear for
sufficiently large Nmax. Therefore, the distinction between
bands in the second and third categories is not necessarily
rigid. Similarly, it is conceivable that some bands which, in
the present analysis, are classified into the first category, i.e.,
terminating at the maximal valence angular momentum, could
develop further identifiable band members in more completely
converged calculations and therefore be reclassified into the
second or third category.

For the K = 1/2 bands, as a result of the Coriolis contribu-
tion to the kinetic energy, alternate band members are raised
into a region of higher density of states (Sec. III B). This may
result in fragmentation, as in the 11Be unnatural parity yrast
band at J = 11/2 [Fig. 3(e)], or in a disturbance in energy for
a raised band member relative to the rotational expectation but
without manifest mixing, as in the 9Be unnatural parity yrast

band at J = 11/2 [Fig. 3(c)]. However, comparatively close
spacing in energies between levels (<1 MeV) is also possible,
without obvious fragmentation or perturbation arising, as at
J = 5/2 for the 7Be natural parity yrast band [Fig. 3(a)].
It must be realized that these specifics are of interest only
as examples of what can happen in the calculation, not
as necessarily robust predictions for fragmentation in these
particular rotational bands. Owing to the differences in
convergence rates of different levels, chance proximities of
the band members with background states may arise at specific
Nmax values. The disturbances to individual levels are therefore
highly ephemeral features of the calculations, appearing and
disappearing as Nmax increases.

Further considering the energies within these K = 1/2
bands, recall that the expected rotational curves shown in
Fig. 3 are based on a simple estimate of the rotational band
energy parameters in Eq. (3), extracted from just the lowest
three band members. This simple fit suffices to reproduce the
energies of higher band members to a remarkable degree, when
compared, e.g., to the energy spacings between successive
levels within the band (tens of MeV) or to the changes in the
calculated energies with each step in Nmax owing to incomplete
convergence (several MeV). For instance, for the 9Be natural
parity excited K = 1/2 band [Fig. 3(b)], the NCCI calculation
for the energy of the J = 7/2 band member matches the
rotational estimate, based on the J = 1/2 through 5/2 band
member energies, to within ∼0.2 MeV.

The 9Be natural parity bands [Fig. 3(b)] merit special
comment, among the candidate bands considered here, in
that both natural parity bands are confined to the angular
momenta permitted within the valence space. The excited
band terminates at J = 7/2, while the yrast band extends to
the maximal valence angular momentum, that is, J = 9/2.
Although the terminating J = 9/2 band member is most
closely identified with the yrast band, on the basis of
quadrupole transitions, there is also significant B(E2) strength
from this state to the excited band members: mainly to the
J = 5/2 member of the excited band (at ∼0.4 times the
in-band strength), but also somewhat to the J = 7/2 member
(at ∼0.1 times the in-band strength). In contrast, the second
J = 9/2 state does not appear to be significantly connected to
the excited band, despite being near the energy which would be
expected from the rotational formula for a J = 9/2 member of
the excited band, instead primarily decaying to the remaining
(second) low-lying J = 7/2 state.

The agreement between the calculated electric quadrupole
matrix elements and the expected rotational values, as laid out
in Figs. 5–15 (at top), while certainly not exact, nonetheless
suggests a remarkably clean separation of rotational and
intrinsic degrees of freedom in the ab initio NCCI calculations.
This agreement is typically found to be best at lower angular
momentum, deteriorating for higher angular momentum band
members, but to an extent which varies greatly among the
bands. Several patterns may be noted:

(i) For the bands in the first category above, i.e., which
terminate at (or below) the maximal valence angular
momentum, there is a tendency for the quadrupole
observables involving the terminating band member
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to exhibit larger deviations from the rotational expec-
tations: consider the J = 9/2 band member of the
9Be natural parity yrast band [Fig. 6 (top)], J = 7/2
band member of the 11Be natural parity yrast band
[Fig. 9 (top)], and J = 4 band member of the 10Be
natural parity yrast band [Fig. 13 (top)]. However,
the quadrupole observables do not exhibit noticeable
termination effects at J = 7/2 in the 9Be natural parity
excited band [Fig. 7 (top)]. It is worth noting that
termination effects are to be expected in the Elliott
SU(3) shell-model description of nuclear rotation, in
which quadrupole strengths within a band decline
as band termination is approached (see discussion in
Ref. [7]). A similar falloff can be obtained in Sp(3,R)
symplectic calculations [51] of rotational bands (see
Fig. 6 of Ref. [52]). However, it is difficult to isolate
signs of such systematic mechanisms for band ter-
mination phenomena from the possible confounding
effects of mixing, because the yrast states also become
less well isolated in energy at these higher angular
momenta.

(ii) For the bands in the second and third categories
above, i.e., which extend beyond their corresponding
maximal valence angular momenta, there may (or may
not) be a discontinuity in the quadrupole observables
at the maximal valence angular momentum. This
behavior is somewhat, but not entirely, correlated
with that of the energies. Recall that there is a
discontinuity in energies in the 7Be natural parity
yrast band [Fig. 3(a)], 9Be unnatural parity yrast band
[Fig. 3(c)], and 8Be natural parity yrast band [Fig. 4(a)]
at the maximal valence angular momentum. There
is a corresponding discontinuity in the quadrupole
moments for these bands in 7Be [Fig. 5(a)], possibly
9Be [Fig. 8(a)], and 8Be [Fig. 12(a)]. However, there is
no apparent discontinuity in the quadrupole transition
matrix elements in 7Be [Fig. 5(b)] and 9Be [Fig. 8(b)].
For 8Be [Fig. 12(b)], a significant deviation arises
only at J = 8, by which point the band has moved
off the yrast line, although a change in curvature
might putatively already be evident at J = 6. The
deviations of the calculated quadrupole moments and
transition matrix elements, for the band members
above the maximal valence angular momentum, are
uniformly toward larger magnitudes relative to the
rotational values. For the bands in the third category
above, i.e., for which the energies continue to follow
the rotational expectation past the maximal valence
angular momentum—namely, the 11Be natural parity
excited band [Fig. 3(d)], 10Be natural parity excited
band [Fig. 4(b)], and 12Be natural parity excited band
[Fig. 4(c)]—the quadruple moments and transition
matrix elements are similarly consistent with the
expected rotational values (Figs. 10, 14, and 15, re-
spectively), with the exception that reduced strengths
are found for the highest identified band member, at
J = 8, in 12Be.

(iii) Not unexpectedly, states in regions of higher level
density are susceptible to fragmentation (or mixing)

effects, which are reflected in the quadrupole moments
of those states and in transitions involving those states,
as either the initial or final state. For instance, for the
unnatural parity yrast band of 11Be [Fig. 11 (top)], note
that it is the band members which have been raised
in energy by the Coriolis staggering—with J = 7/2
and 11/2 [Fig. 3(e)]—for which the values for the
quadrupole moments and transition matrix elements
deviate from the rotational values (or, rather, for the
J = 11/2 band member, significant fragmentation
over two states precludes unambiguous comparison).

For the K = 0 bands, in the even-mass isotopes, it is
natural to consider the calculated E(4+)/E(2+) energy ratios
(e.g., Ref. [53]). Specifically, we must restrict our attention to
the yrast bands, in 8Be and 10Be, owing to fragmentation of
the J = 2 state in the excited band. The expected rotational
ratio is E(4+)/E(2+) = 10/3 ≈ 3.33. For both 8Be and 10Be,
the energy ratios are somewhat higher, at 3.41 and 3.50,
respectively. The experimental values [47] similarly lie above
the rotational ratio, at 3.75(5) and 3.49, respectively.12

Similarly, for these bands, it is natural to compare the
quadrupole moment of the J = 2 state and the 2 → 0
transition matrix element, or, customarily, the B(E2; 2 → 0)
reduced transition probability, against a rotational description.
This is essentially the comparison already being made by com-
parison of the data point at J = 2 with the rotational curve in
the plots of the 8Be yrast band [Fig. 12(b)] and 10Be yrast band
[Fig. 13(b)] transition matrix elements. The normalization of
the curve indicating rotational values is, for these bands, deter-
mined from Q(2), so the proximity of the calculated data points
to the rotational curve indicates agreement between Q(2) and
B(E2; 2 → 0). Specifically, Q0 is obtained from Q(2) via the
rotational relation Q(2)/Q0 = −2/7, and the rotational expec-
tation for the transition strength is, in turn, given in terms of
this Q0 by B(E2; 2 → 0)/(eQ0)2 = 1/(16π ) ≈ 1.99×10−2.
In the present calculations, the yrast band of 8Be [Fig. 12(b)]
has B(E2; 2 → 0)/(eQ0)2 = 1.96×10−2, in agreement with
the rotational value to within ∼1.3%.13 The yrast band of
10Be [Fig. 13(b)] has B(E2; 2 → 0)/(eQ0)2 = 2.10×10−2

for the proton quadrupole operator, in agreement with the
rotational value to within ∼6%, but 3.13×10−2 for the neutron
quadrupole operator, deviating more substantially (as already
apparent from Fig. 13). However, even the severely truncated
yrast band in 12Be yields ratios B(E2; 2 → 0)/(eQ0)2 =
3.7×10−2 for the proton quadrupole operator and 3.2×10−2

for the neutron quadrupole operator, still within a factor of
two of the rotational values. For the excited K = 0 bands
in 10Be and 12Be, recall that Q(4) is used instead of Q(2)

12The E(4+)/E(2+) ratio indicated for 10Be is based on a tentative
spin-parity assignment of 4+ for the 11.7-MeV level [47].

13Note that considering the square of the transition matrix element,
to obtain the B(E2) strength, approximately doubles the relative
deviation between the calculated and rotational values; e.g., for 8Be
the agreement of the transition matrix element itself with the rotational
value is at the ∼0.6% level.
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for normalization, owing to fragmentation of the J = 2 band
member, and the same comparison cannot directly be made.

The magnetic dipole moments and transition matrix ele-
ments bring a physically complementary set of observables to
the problem of identifying rotational structure in these bands,
with more robust convergence properties than the quadrupole
observables (Sec. III D). For the odd-mass isotopes, the
analysis of the dipole observables is more complicated than
for the quadrupole observables, owing to the greater number
of relevant parameters (as discussed in Sec. III C). However,
the dipole observables are the most cleanly rotational, even
at high angular momenta. Recall that the curves indicating
the expected rotational values for these observables, shown
at bottom in Figs. 5–15, are based on a simultaneous fit to
moments and transition matrix elements, generally restricted
to the lower angular momentum band members.

For the odd-mass isotopes, let us consider the behavior
of the magnetic dipole observables under the three different
band termination scenarios. In the bands in the first category,
with termination at (or below) the maximal valence angular
momenta, deviations from the expected rotational values arise
in roughly the same terminating states as for the electric
quadrupole matrix elements. There are modest deviations
at the terminating J = 9/2 state in the 9Be natural parity
yrast band [Figs. 6(c) and 6(d)], but not for the terminating
J = 7/2 state of the excited band [Figs. 7(c) and 7(d)],
consistent with the pattern for the quadrupole observables.
Similarly, deviations occur at the J = 7/2 termination for
the 11Be natural parity yrast band [Figs. 9(c) and 9(d)],
and fragmentation again obscures the situation for the 11Be
unnatural parity yrast band [Figs. 11(c) and 11(d)]. For the
remaining bands, in the second and third categories, i.e., which
continue through the maximal valence angular momentum, the
calculated dipole term moments and transition matrix elements
are consistent with rotational values to the highest angular
momentum considered. This agreement holds regardless of the
deviations found earlier for quadrupole moments or transition
matrix elements (Figs. 5, 8, and 9).

B. Observables reflecting intrinsic structure

So far we have focused on the existence of rotational
structure rather than the intrinsic structure underlying this
rotation. That is, we have been concerned with the extent to
which the observable patterns are consistent with an adiabatic
separation of the wave function as in Eq. (1), into rotational
and intrinsic factors, rather than exploring the the nature of
the intrinsic state itself. Nonetheless, some of the observables
we are considering do have the potential to shed light on the
intrinsic state.

Although the intrinsic quadrupole moment itself, taken on
an absolute scale, is an obvious choice for an intrinsic structural
indicator, as a measure of deformation, it is rendered largely
uninformative by its incomplete convergence (Sec. III D). In
contrast, as noted in Sec. III D, the ratio Q0,p/Q0,n (Fig. 18)
appears to be relatively converged and thus provides a stable
measure comparing the proton and neutron structure within
the intrinsic state. For instance, in Fig. 18, consider the
behavior of Q0,p and Q0,n as functions of Nmax for the

natural parity yrast and excited bands of 9Be. As noted earlier,
these two bands both terminate at angular momenta consistent
with valence-space structure. From Fig. 18, it is apparent
that these bands have Q0,p values which closely track each
other as the basis Nmax increases, and similarly for Q0,n

values, resulting also in closely matching ratios Q0,p/Q0,n.
This is consistent with—though hardly a conclusive indicator
of—related underlying intrinsic structures for these two bands,
at least as far as quadrupole correlations are concerned.

More generally, there is a clear separation of the bands
into two clusters in the (Q0,p,Q0,n) space of Fig. 18. The
natural parity yrast bands (plus the 9Be natural parity excited
band) all have ratios Q0,p/Q0,n � 1, i.e., lying just above
the diagonal dashed line in Fig. 18. (These bands all fall
into either the first or the second category, according to
band termination.) The remaining natural parity excited bands
and the unnatural parity bands (which fall into the second
and third categories) are instead clustered well below (or,
equivalently, to the right of) the diagonal dashed line. For
each of these bands, Q0,n is about twice Q0,p. Incomplete
convergence makes it unreliable to compare Q0,p and Q0,n

values directly across different bands in Fig. 18, because the
quadrupole observables for these different bands may exhibit
different convergence rates. Nonetheless, comparison of bands
within the same nucleus, in calculations at the same Nmax, are
suggestive. They indicate that change in the ratio of Q0,p and
Q0,n between the two clusters of bands arises primarily from an
approximate doubling in Q0,n, rather than from any significant
change in Q0,p.

It is interesting to consider the present results for Q0,p

and Q0,n in light of the results of antisymmetrized molecular
dynamics (AMD) calculations, in particular, for 10Be, from
Ref. [54]. In the AMD framework, a cluster structure arises
consisting of an α + α dimer plus two “valence” neutrons. In
the yrast band, the two valence neutrons are predominantly
in π orbitals, extending perpendicular to the symmetry axis
of the α + α dimer. In the excited band, the two valence
neutrons are predominantly in σ orbitals. These latter orbitals
extend along the symmetry axis, giving rise to a more
pronouncedly prolate mass distribution. Such a change in
neutron distribution between bands is at least qualitatively
consistent with the increased neutron intrinsic quadrupole
moment for the excited band in the present calculations. It
also provides an explanation for the lower rotational constant
(higher moment of inertia) of the excited band, as arising
from a more prolate mass distribution induced by the valence
neutrons. The AMD calculations also indicate that the yrast
π -orbital states are largely p-shell in character, while the
σ -orbital states display enhanced clustering and draw heavily
on 2�	 and higher excitations in a shell-model picture. This
proposed difference in structure is consistent with the differing
termination behaviors identified for the 10Be yrast and excited
bands in the present calculations.

The magnetic dipole observables likewise are capable
of providing insight into the underlying structure, through
comparison of the strengths of the different dipole terms.
(The dipole strengths taken individually, on an absolute scale,
could also yield insight through comparisons with appropriate
models of the intrinsic structure.) In particular, the dipole
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TABLE II. Magnetic dipole best-fit coefficients for the calculated bands in the odd-mass Be isotopes, as obtained with Nmax = 10 for
natural parity or Nmax = 11 for unnatural parity, corresponding to the rotational curves in Figs. 5–11. Natural parity bands (upper table) and
unnatural parity bands (lower table) are shown separately. Coefficients are in units of μN .

D�,p D�,n Ds,p Ds,n

K a0 a1 a2 a0 a1 a2 a0 a1 a2 a0 a1 a2

7Be 1/2 +0.620 −0.304 +0.460 +0.345 −0.129 +0.143 +0.022 +0.000 +0.013 +0.012 +0.432 −0.615
9Be 3/2 +0.558 −0.860 − +0.361 +0.480 − +0.024 −0.031 − +0.057 +0.412 −

1/2 +0.541 −0.281 +0.105 +0.442 +0.656 −0.108 +0.030 +0.003 +0.022 −0.012 −0.377 −0.019
11Be 1/2 +0.702 −0.319 −0.160 +0.162 +0.849 +0.221 +0.079 −0.067 −0.016 +0.057 −0.463 −0.044

3/2 +0.230 −0.304 − +0.690 −0.041 − +0.012 −0.003 − +0.067 +0.348 −
9Be 1/2 +0.319 −0.196 −0.380 +0.642 −0.197 −0.175 +0.010 −0.008 −0.013 +0.029 +0.401 +0.569
11Be 1/2 +0.404 −0.124 −0.585 +0.528 −0.243 +0.190 +0.016 −0.003 −0.020 +0.052 +0.370 +0.415

observables obtained with the different dipole term operators
D�,p, D�,n, Ds,p, and Ds,n allow the proton and neutron, as well
as orbital and spin, contributions to the angular momentum
structure of the band members to be probed independently.

Let us therefore examine the moments and transition matrix
elements arising from the individual dipole terms in greater
detail, beginning with the odd-mass isotopes. Recall that, in
a rotational interpretation, the moments [Figs. 5(c)–11(c)]
receive contributions from the core rotor—yielding a term
linear in J—as well as intrinsic matrix elements (the direct
and cross terms), while only these latter contribute to the
transition matrix elements [Figs. 5(d)–11(d)]. The numerical
values of the a0,a1, and, for K = 1/2 bands, a2 coefficients
extracted from the rotational fits for the odd-mass isotopes are
summarized in Table II.

The dipole terms yielding the largest moments are generally
the proton and neutron orbital operators D�,p and D�,n, as
evident both from the values of the individual moments in
the plots and the magnitudes of the overall fit coefficients in
Table II. The moments from the orbital operators are generally
linearly increasing in J , suggesting that the moments primarily
arise from a core rotor contribution [see Fig. 2(a)]. Note that
the core rotor term rapidly outstrips the intrinsic terms, with
increasing J , if the values of a0 and of the intrinsic coefficients
a1 or a2 are comparable in magnitude. A substantial but
subordinate contribution from the intrinsic direct term appears
as a modification of the slope of the moment curve at low J ,
together with a displacement of the intercept to a nonzero value
when the curve is extrapolated to J = 0.14 A contribution from
the intrinsic cross term appears as staggering in the moment
curve.

Let us take the 9Be natural parity bands (Figs. 6 and 7) for
illustration. As a starting point for interpretation, it is helpful
to keep in mind the model of 9Be as an α + α dimer, which
may be taken as the core rotor, plus an additional neutron,
which may be taken as the extracore particle. Recall that the

14However, care must be taken in attempting to identify such
a displacement simply from inspection of the figures. A nonzero
intercept is especially hard to identify for the K = 3/2 bands, because
the J axes of the plots start at J ≈ K , not at the origin. The coefficients
in Table II should be relied upon instead.

coefficient a0 describing the contribution of the core rotor
term represents the effective gyromagnetic ratio of the core,
that is, except for inclusion of the dimensionful factor μN

(Sec. II D). The core rotor contributions for protons are nearly
the same, at a0 ≈ 0.54 μN and 0.56 μN , for the ground and
excited bands, respectively (see Table II), differing by only
∼3%. The core rotor for 9Be need not be identical to that of
8Be, owing to possible modifications of the α + α dimer by the
presence of the additional neutron. However, these 9Be results
are loosely consistent with the value a0 ≈ 0.49 μN obtained
for the yrast band of 8Be. The core rotor gyromagnetic ratios
for the neutrons show greater variation between the two bands,
at a0 ≈ 0.36 μN and 0.44 μN , respectively, perhaps indicating
that, contrary to the simplest interpretation, the last neutron
does modify or contribute to the “core” neutron structure.
Note that these results lie below the 8Be value. It would be
reasonable, in the picture where the core rotor is the α + α
dimer, and under the basic assumption that only the extracore
particles should contribute to the intrinsic matrix elements [1],
to expect the proton orbital observables to result entirely
from the core gyromagnetic contribution, with no intrinsic
contribution, while the neutron orbital observables would have
an intrinsic contribution from the extra-core neutron. However,
from the a1 and a2 coefficients in Table II, it is apparent that
both the proton and the neutron orbital operators yield sizable
intrinsic matrix elements, e.g., for the ground-state band, the
values are a1 ≈ −0.86 μN for the protons and +0.48 μN for
the neutrons, so the intrinsic matrix element for the proton
operator is actually larger in magnitude than that for the
neutron operator, though, incidentally, of opposite sign.

Considering the spin dipole terms, if the protons are all
confined to α particles, their spins should be pairwise coupled
to zero, and we would expect vanishing spin dipole matrix
elements for the protons. The Ds,p observables in these
bands are indeed essentially vanishing, compared to the other
magnetic dipole observables, as apparent from Figs. 6 and 7
(or Table II). For the neutron spin operator, the extra-core
neutron can contribute. The neutron spin dipole observables
are dominated by the intrinsic contribution (specifically, the
direct term, even for the excited band, where the cross term
could contribute), with negligible core contribution.

Indeed, across the Be isotopes, the dipole moments and
transition matrix elements for the proton spin operator Ds,p
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are consistently suppressed, as evident both from the compar-
atively small values of the individual moments in the plots
and from the coefficients in Table II, all �0.1 μN . The largest
values arise in the 11Be yrast band terminating state [Fig. 9(c)],
for which sizable deviations from rotational expectations
for the calculated electromagnetic observables have already
been noted. The intrinsic matrix element contributions, for
the various dipole term operators, may be more cleanly
examined in the calculations for transition matrix elements
[Figs. 5(d)–11(d)], where they are not obscured by the core
rotor contribution. The neutron spin operator Ds,n never
generates a sizable core rotor contribution (a0 coefficient)
but does give rise to substantial intrinsic matrix elements,
comparable to those obtained for the orbital dipole operators.
The only dipole term with consistently negligible intrinsic
matrix elements is the proton spin term, as already noted. The
intrinsic matrix elements for the remaining dipole terms—
proton orbital, neutron orbital, and neutron spin—variously
take on greater or lesser strengths for the different bands under
consideration.

For the even-mass isotopes [Figs. 12(c)–15(c)], in a
rotational picture, the dipole moments arise exclusively from
the core rotor contribution. The calculated moments do indeed
generally follow the expected linear behavior with respect to J .
The exception is the 10Be natural parity yrast band [Fig. 13(c)],
for which the moments of the J = 2 and 4 states do not follow
a simple linear relation. However, the quadrupole observables
also deviated markedly from rotational relations for these
states. For the bands which continue past the maximal valence
angular momentum—namely, the 8Be natural parity yrast band
[Fig. 12(c)], the 10Be natural parity excited band [Fig. 14(c)],
and the 12Be natural parity excited band [Fig. 15(c)]—the
dipole moments closely follow the expected linear dependence
on J (aside from fragmentation at J = 2 in 10Be). Note
that there is no discontinuity at the maximal valence angular
momentum. The spin dipole terms are negligible compared
to the orbital dipole terms, consistent with the small core
rotor contributions found for these terms in the bands of the
odd-mass isotopes.

We may finally compare gyromagnetic ratios for the proton
and neutron orbital dipole operators in these K = 0 bands
of the even-mass isotopes. They are strictly identical in 8Be
[Fig. 12(c)] by isospin symmetry. For the two remaining
natural parity yrast bands, meaningful comparison is difficult:
Recall the deviation from rotational behavior in the yrast
band of 10Be [Fig. 13(c)] and the severely truncated nature of
the yrast “band” in 12Be, for which we can only consider
the dipole moments for the J = 2 state (only the moment
for the proton orbital dipole term is substantial, at ∼1.5 μN ,
while those for all other dipole terms are �0.3 μN ). In the 10Be
[Fig. 14(c)] and 12Be [Fig. 15(c)] excited bands, the moments
for the neutron orbital dipole term are more than twice those
for the proton orbital dipole term, ostensibly reflecting the
neutron excess in these nuclei. Recall that the individual
dipole terms (D�,p, D�,n, Ds,p, and Ds,n) are proportional to
the different angular momentum operators (�p, �n, sp, and
sn), which together add up to the total angular momentum
operator. Consequently, the dipole moments calculated for
these different dipole terms are proportional to the contribution

of the corresponding angular momentum operator to the
total angular momentum.15 Thus, e.g., for the 12Be excited
band, the values a0 ≈ +0.27 μN,+0.66 μN , +0.012 μN , and
+0.07 μN , obtained for these dipole terms, respectively,
indicate that the angular momenta of the band members all
receive approximately proportionate contributions, of ∼27%
from proton orbital motion, ∼66% from neutron orbital
motion, ∼1% from proton spin, and ∼7% from neutron spin.

C. Rotational energy parameters

Let us finally now focus on the global properties of the
rotational spectra, namely, the band energy parameters. Our
purpose is both to explore what these parameters may indicate
about the structure of the calculated bands and to obtain points
of comparison to the experimental data for proposed rotational
bands in the Be isotopes.

Recall that the parameters appearing in the rotational energy
relations (2) and (3) are the band energy E0, the rotational
constant A, and, for K = 1/2 bands, the Coriolis decoupling
parameter a. In a plot of energies vs J (J + 1) (as in Figs. 3
and 4), these parameters represent the “height” or energy inter-
cept of the band (this is not simply the band head energy unless
K = 0), the “slope” of the band, and the “staggering” of the
band, respectively. The values of these parameters, as extracted
from the energies of the calculated band members (as described
in Sec. III B), are shown in Fig. 19, with the odd-mass isotopes
at left and even-mass isotopes at right. The band energy
[Figs. 19(d) and 19(e)] is presented as a band excitation energy
Ex , obtained by taking the band energy E0 for the given band
relative to that of the natural parity yrast band. Results obtained
from calculations with successive values of Nmax (Nmax =
6, 8, and 10 for natural parity bands or Nmax = 7, 9, and 11 for
unnatural parity bands) are represented by symbols of increas-
ing size. Note that the band parameters at the highest Nmax are
determined by the same energy fits as shown in Figs. 3 and 4.

Ideally, comparison of the calculated and experimental
band parameters provides a direct test of the degree to which
the nuclear many-body problem with the chosen internucleon
interaction (here JISP16) reproduces the rotational dynamics
actually occurring in the physical Be isotopes. However, this
comparison is subject to limitations from both calculational
and experimental considerations.

From the calculational side, we must consider the extent to
which the values for band parameters obtained from the present
truncated calculations are converged. The Nmax dependence of
the relative energies of calculated band members was already
explored in 9Be (Sec. III D), providing some insight into what

15In general, if a total angular momentum operator is obtained as a
sum of components J = ∑

i Ji , then the fractional contribution of any
particular component operator Ji to the total angular momentum of a
state |ψJ 〉 is given by fi ≡ 〈Ji · J〉/〈J · J〉 = [J (J + 1)(2J + 1)]−1/2

〈ψJ ‖Ji‖ψJ 〉. This latter reduced matrix element 〈ψJ ‖Ji‖ψJ 〉 also
defines the dipole moment, calculated taking Ji as the dipole operator,
to within geometrical factors involving J . Note that the angular
momentum fractions fi necessarily sum to unity, by the definition
of J as the sum of the Ji .
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FIG. 19. Band energy parameters for all bands considered in the present work, for the odd-mass Be isotopes (left) and even-mass Be
isotopes (right). Parameters considered are the rotational energy constant A (top), the Coriolis decoupling parameter a (middle), and the band
excitation energy Ex (bottom), which is defined as the band energy E0 for the given band [see Eqs. (2) and (3)] relative to that of the natural
parity yrast band. Bands are distinguished as natural parity yrast (solid circles), natural parity excited (shaded circles), and unnatural parity
yrast (diamonds). Values are shown for successive Nmax values (6 � Nmax � 10 for natural parity or 7 � Nmax � 11 for unnatural parity) to
provide an indication of convergence (the larger symbols indicate higher Nmax values). The parameter values extracted from experimental bands
are indicated by horizontal lines. The KP assignments for the bands are indicated at bottom.

type of evolution with Nmax may be expected. The dependence
of the parameter values on Nmax shown in Fig. 19 more directly
provides an indication of the robustness of these results with
respect to the Nmax truncation (as discussed in further detail
for each of the parameters below).

From the experimental side, clear-cut identification of
rotational band members in the Be isotopes is challenging,
because prospective band members may include wide or poorly
resolved resonances, spin-parity assignments are missing or
uncertain for many of the known states, and electromagnetic
transition data are largely unavailable [42,46,47], although
reaction amplitudes or decay widths (e.g., Refs. [55–57]) can
provide structural indicators relevant to band identification.
Experimental candidates for rotational bands in the Be isotopes
(8 � A � 12) are surveyed by Bohlen et al. [58]. Only
two or three low-lying band members need be identified to
extract an estimate of the band parameters. However, the
parameter values obtained for the experimental bands are,
naturally, sensitive to the choice of included band members
and the energies adopted for these. Values obtained from
fits to the experimentally observed bands are shown in

Fig. 19 (indicated by horizontal lines). In generating these
fits, we have used the band members and energies indicated
in Table III.

The values for the rotational parameter A extracted from the
calculations [Figs. 19(a) and 19(b)] appear to be sufficiently
stable with respect to Nmax to warrant at least a qualitative anal-
ysis for all the bands. Recall the convergence pattern observed
for the band members of 9Be in Fig. 16. Although the energies
of the band members shift by several MeV with increasing
Nmax, the relative energies within the band, which determine
the slope A, remain comparatively unchanged. The largest
Nmax dependence of A is found for the 8Be, 9Be, and 10Be
natural parity yrast bands. However, each successive step in
Nmax brings a change which is smaller by a factor of at least 1.5,
suggesting a reasonably rapid approach to a converged value.

The value of the rotational parameter varies by a factor of
∼2 across the different calculated bands. Indeed, this variation
is apparent by inspection of Figs. 3 and 4, from the range of
slopes of the energy fit lines. We may observe that the variation
in A across the bands follows a trend which correlates with the
clustering of bands according to Q0,p/Q0,n ratios (see Fig. 18)
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TABLE III. Experimental band members used for the rotational
energy fits yielding the experimental rotational parameter values in
Fig. 19. For each band member, the nominal angular momentum and
parity (assignments are not all definite, as discussed in the indicated
references) and excitation energy (in MeV) are indicated.

Band Levels References

7Be 1/2−
1 1/2− 0.429, 3/2− 0, 7/2− 4.570 [46]

9Be 3/2−
1 3/2− 0, 5/2− 2.429, 7/2− 6.380 [47,58]

1/2−
1 1/2− 2.78, 3/2− 5.59, 5/2− 7.94 [47]

1/2+
1 1/2+ 1.684, 3/2+ 4.704, 5/2+ 3.049 [47,58]

11Be 1/2−
1 1/2− 0.320, 3/2− 2.654, 5/2− 3.889 [42,58,59]

3/2−
1 3/2− 3.955, 5/2− 5.255 [42,58,60]

1/2+
1 1/2+ 0, 3/2+ 3.400, 5/2+ 1.783 [42,58,59]

8Be 0+
1 0+ 0, 2+ 3.03, 4+ 11.35 [47,58]

10Be 0+
1 0+ 0, 2+ 3.368, 4+ 11.760 [47,58,61]

0+
2 0+ 6.179, 2+ 7.542, 4+ 10.150 [47,57,58,62]

12Be 0+
1 0+ 0, 2+ 2.102 [42,58]

0+
2 0+ 2.24, 2+ 4.560 [42,58,63–65]

discussed in Sec. IV B: into bands with approximately equal
proton and neutron quadrupole moments (Q0,p/Q0,n � 1)
and those with an enhanced neutron quadrupole moment
(Q0,p/Q0,n ∼ 0.5). From Figs. 19(a) and 19(b), the former
bands are seen to be the “steep” bands (A � 0.5 MeV),
while the latter bands are seen to be the “shallow” bands
(A � 0.5 MeV). The distinction is particularly clear if one
compares the yrast and excited bands within a single isotope
in Figs. 19(a) and 19(b). Although the connection between
quadrupole deformation (measured by Q0) and rotational
moment of inertia (hence, A) is only uniquely defined if model
assumptions about the nature of the rotational motion are
imposed (e.g., Refs. [3,5]), the observed correlation between
Q0,p/Q0,n and A is reasonable from simple arguments. If
the enhanced neutron quadrupole moment represents a greater
extension of the neutron distribution along the symmetry
axis (e.g., owing to neutrons in σ orbitals) as interpreted in
Sec. IV B, this may be expected to lead to a greater moment of
inertia for rigid rotation, and thus a reduced rotational energy
scale A (Sec. II B).

A wide range in values for the rotational parameter A is
also found experimentally in the Be isotopes, as surveyed by
Bohlen et al. [58]. Comparing the parameter values for the
calculated and experimental bands, and excluding the bands in
12Be from this discussion (to be considered further below), we
observe that the values for A extracted from the highest Nmax

calculation lie within ∼0.1 MeV of the experimental values.
Qualitatively, the pattern of which bands fall into the steep
vs shallow clusters is consistent between the calculations and
experiment. With increasing Nmax, the A parameters for the
calculated bands (still excepting 12Be) are decreasing. Except
in the case of the 9Be natural parity excited band, this brings
the calculated values further toward the experimental values.

The Coriolis staggering for the calculated K = 1/2 bands,
measured by the decoupling parameter a [Fig. 19(c)], varies

in both amplitude and sign. The values obtained for a
are sufficiently stable with respect to Nmax to permit an
examination of the trends in its value across the bands.
The energy staggering in the calculated 7Be natural parity
yrast band [Fig. 3(a)] is such that the J = 1/2,5/2, . . .
levels are raised in energy, and the J = 3/2,7/2, . . . levels
are lowered. This corresponds to a negative value of the
decoupling parameter (a ≈ −1.4 at Nmax = 10). Note that the
staggering is sufficiently pronounced that the two lowest-J
band members are inverted, as is experimentally observed for
this nucleus [46]. Positive values of the decoupling parameter
are obtained for all other candidate K = 1/2 bands. Of these,
the natural parity bands (namely, in 9Be [Fig. 3(b)] and
11Be [Fig. 3(d)]) exhibit lesser staggering (a � 1), while
the unnatural parity bands (namely, in 9Be [Fig. 3(c)] and
11Be [Fig. 3(e)]) exhibit more marked staggering (a ≈ 2).
This categorization of the bands by sign and magnitude of
staggering is consistent with the experimentally observed
pattern.16 Furthermore, with increasing Nmax, the calculated
values are all decreasing in magnitude, which serves to bring
them closer to the experimental values.

The excitation energies Ex for the calculated bands
[Figs. 19(d) and 19(e)] vary considerably in their rates
of convergence. For instance, the excitation energy of the
unnatural parity band in 11Be decreases by less than 0.1 MeV,
as Nmax increases from 7 to 11, while that of the natural parity
excited band in 10Be decreases by ∼9 MeV, as Nmax increases
over a comparable range, from 6 to 10. However, the rate
of convergence of Ex follows a pattern consistent with the
classification of the bands by the nature of their termination
in Sec. IV A. In particular, the bands which either terminate
or depart from the rotational energy formula at the maximal
valence angular momentum (i.e., bands in either of the first
two categories defined in Sec. IV A) have excitation energies
which exhibit the least dependence on Nmax; specifically, these
are the 9Be natural parity excited band, 9Be unnatural parity
band, and 11Be unnatural parity band. These may be thought
of as bands which, at least to some extent, respect the p-shell
closure. Note that all excitation energies are being taken with
respect to the natural parity yrast band, which likewise falls
into one of the first two categories, so the convergence of
these excitation energies serves to compare the convergence of
two bands with ostensibly similar shell structures. In contrast,
bands that exhibit no discontinuity in energies at the maximal
valence angular momentum (i.e., bands in the third category)
have excitation energies with the largest Nmax dependence;
specifically, these are the remaining natural parity excited
bands, in 10Be, 11Be, and 12Be.

In comparing the excitation energies with experiment, let
us first consider the bands with the smaller Nmax dependence,
for which a more concrete comparison can be made. The

16See also the discussion in Ref. [31] for a comparison to the
Coriolis staggering expected from the Nilsson model [66,67], i.e.,
based on a single unpaired particle in an axially symmetric deformed
mean field. A more detailed and realistic mean-field analysis might
be carried out by estimating the signature splitting from a cranked
Nilsson model [68].
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near degeneracy of the natural and unnatural parity yrast
bands in 11Be is qualitatively reproduced. Quantitatively,
the experimental excitation energy of the unnatural parity
band is ∼0.22 MeV,17 while the excitation energy for this
band from the ab initio calculations appears to be robustly
∼1.9 MeV. In 9Be, the calculated natural parity excited band
and unnatural parity band lie within ∼1.2 MeV of each other,
at the highest Nmax considered, approximately reproducing
the near degeneracy found in experiment. These calculated
energies are ∼3–4 MeV above the experimental values, but
are descending toward the experimental values with increasing
Nmax.

Moving on to the bands with larger Nmax dependence,
the calculated excitation energies still lie ∼4–10 MeV above
the experimental excitation energies, at the highest Nmax

considered, but are rapidly falling with Nmax. It is therefore
difficult to make a concrete comparison. For 12Be, in particular,
the excitation energy of the calculated excited band is nearly
halved—from ∼11 to ∼6 MeV—as Nmax increases from 6 to
10. It is therefore reasonable to expect the calculated excited
band to fall to near degeneracy with the calculated ground-state
band. The experimental excited band in 12Be is likewise
low lying, at ∼2.2 MeV.18 Strong mixing may therefore
be expected—for both the calculated and the experimental
bands—which could significantly affect the extracted values
for the band parameters. Recall that the calculated yrast band
for 12Be [Fig. 4(c)] is radically truncated, terminating at the
maximal p-shell valence angular momentum J = 2. Although
experimental candidate states for 4+ and even 6+ members
of both the yrast band [64,71] and excited band [65] have
been proposed (see Ref. [58]), these identifications are not
based on firm spin-parity assignments and therefore do not
provide definitive grounds for comparison. In the shell-model
framework, the ground state and excited 0+ states in 12Be
have been interpreted as being mixtures of 0�	 closed p-shell
configurations and 2�	 configurations involving promotion
of two neutrons to sd-shell orbitals (e.g., Refs. [64,72]). At
least schematically, such shell-model configurations may be
associated with the p-shell terminating and nonterminating
bands in the present calculations. Experimental results from,
e.g., knockout [73,74], transfer [75], and charge exchange [76]
reactions have been interpreted as suggesting significant
mixing of these 0�	 and 2�	 configurations in both the
ground and the excited 0+ states.

17Although the experimental 1/2+ ground state of 11Be has
unnatural parity [42], a situation described as “parity inversion”
(Sec. III A), the lowest energy band (as defined by comparing E0

parameters) is actually the natural parity KP = 1/2− yrast band.
The perhaps counterintuitive distinction between “ground-state band”
and “lowest energy band” arises from the difference in staggering
between the bands: The larger staggering of the unnatural parity band
depresses the energy of the 1/2+ bandhead state below that of the
1/2− bandhead state, despite the higher overall band energy.

18More highly excited 0+ bands in 12Be, with E0 ≈ 6.4 MeV [69]
and E0 ≈ 10.8 MeV [70], have also been reported.

V. CONCLUSION

The emergence of rotational patterns is observed in ab
initio NCCI calculation with realistic interactions, despite
the principal challenge in identifying collective structure in
NCCI calculations—namely, the weak convergence of many
of the relevant observables. Eigenvalues and other calculated
observables are dependent upon both the truncation Nmax

and the oscillator length parameter (or �	) for the NCCI
basis. Although it may be possible to extrapolate the values
of calculated observables to their values in the full, infinite-
dimensional space [16,49,50], such methods are still in their
formative stages and have not been developed for the crucial
electric quadrupole observables. It is therefore particularly
notable that quantitatively well-developed and robust signa-
tures of rotation may be observed in the present results. That
this is possible reflects the distinction between convergence
of individual observables, taken singly, and convergence of
relative properties, such as ratios of excitation energies or
ratios of quadrupole matrix elements. It is these latter relative
properties that are essential to identifying rotational dynamics
and which are found to be sufficiently converged to yield stable
rotational patterns at currently achievable Nmax truncations,
along with the well-converged magnetic dipole observables.

We find that rotational structure is pervasive in the NCCI
calculations of the yrast and near-yrast regions of the p-shell
Be isotopes. (Comparable results for 12C are reported in
Ref. [77].) With suitable basis extrapolation methods, we may
hope to determine the extent to which ab initio calculations
can provide quantitatively precise predictions of rotational
band properties (e.g., the rotational formula energy parameters,
including Coriolis decoupling). Even the present calculations,
unconverged and unextrapolated, suggest a notable degree
of qualitative consistency with the experimentally observed
bands (Fig. 19).

While the emergence of rotation appears to be robust
across different ab initio interactions [78], it remains to be
seen in what ways the quantitative details of the rotation
may be sensitive to the interaction. More broadly, different
ab initio computational approaches can more or less readily
access different correlations within the nuclear wave functions.
Therefore, it is of particular interest to examine the emergence
of rotation in approaches other than the NCCI framework.
For instance, taking 7Be (or its mirror nucleus 7Li) as an
example, quantum Monte Carlo calculations readily reproduce
the 3/2–1/2–7/2–5/2 yrast angular momentum sequence [9],
reflective of a K = 1/2 band with strong negative Coriolis
staggering. Electromagnetic observables of the type consid-
ered in the rotational analysis can also readily be calculated by
such methods for this nucleus [79].

Although the presence of rotational patterns suggests the
separation of the wave function into rotational and intrinsic
factors, it leaves open the question of the underlying structure
of the intrinsic state, as noted in Sec. IV. Hints to this intrinsic
structure may be obtained from the intrinsic observables
(Sec. IV B), as well as the rotational parameters of the bands
(Sec. IV C). For the Be isotopes, we may seek to determine
the extent to which aspects of the rotational structure may be
understood within different physical frameworks, including
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cluster structure (e.g., α + α, α + n + α, etc.), Nilsson-like
single-particle motion in a mean field, and valence shell struc-
ture (as suggested by the termination effects). Elliott SU(3)
symmetry [6,7] provides the classic theoretical explanation
of the emergence of rotation within the valence shell, while
Sp(3,R) symmetry [52] provides a natural context for the
emergence of collective deformation and rotational degrees
of freedom in the full multishell configuration space.

One may observe that the present discussion represents
a phenomenological rotational analysis, in the traditional
experimental sense, but of a large set of observables taken
from calculations of the ab initio nuclear many-body problem.
Having full access to the calculated wave functions permits
analysis of an extended set of rotational observables, many
of which are difficult or impossible to access experimentally.
For example, we have presented results independently probing
proton and neutron degrees of freedom and orbital and spin
degrees of freedom, through multipole operators involving the
corresponding contributions individually.

Furthermore, having direct access to the calculated wave
functions, we may also hope to extract information on the
collective structure of the rotational nuclear eigenstates from
other measures of the wave function correlations, such as
density distributions [24], spin and orbital angular momentum
contributions [80], and symmetry decompositions [27]. In
this regard, it is important to note that collective SU(3)
correlations, consistent with the nuclear symplectic model,
have been clearly demonstrated in calculations for 6Li, 6He,
and 8Be, carried out directly in a symmetry-adapted SU(3)-
based coupling scheme [21].
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APPENDIX: SINGLE-PARTICLE ESTIMATE
FOR INTRINSIC QUADRUPOLE MOMENT

In heavier mass regions, rotational collectivity is commonly
measured (e.g., Refs. [3,53]) by comparison of rotational
transition strengths to the Weisskopf single-particle estimate.
This is more properly a measure of the number of participating
nucleons and of the quadrupole deformation of the intrinsic
wave function, rather than of its rotational nature per se, i.e.,
the separation of degrees of freedom embodied in Eq. (1).
Nonetheless, it is worthwhile to keep the single-particle scale
of transition strengths in mind, as this also provides a natural
scale for the deviations from rotational strengths to be expected
from noncollective admixtures in rotational states.

Briefly, Weisskopf [45] estimates a typical scale A ≈
e 3

5 (4π )−1/2R2, for the matrix element 〈ϕb|Q2μ|ϕa〉 of the
electric quadrupole operator for a single-particle transition
between two states ϕa and ϕb, where we use R = r0A

1/3 with
r0 = 1.2 fm. This suggests the Weisskopf estimate BW ≡ A 2

for B(E2) strengths, commonly termed the Weisskopf unit
(W.u.).

However, quadrupole moments and E2 transition strengths
vary greatly within a rotational band simply owing to the
angular momentum factors in Eq. (4) (see Fig. 1). Therefore,
while one could choose one particular quadrupole moment
Q(J ) or transition strength B(E2; J → J − �J ) within a
band for comparison to Weisskopf’s estimate (e.g., the 2 → 0
transition strength is commonly quoted for K = 0 bands [81]),
this comparison cannot be made consistently across bands of
different K .

We therefore find it more meaningful to apply Weisskopf’s
estimate directly to the intrinsic matrix element of the
quadrupole operator, i.e., taking this to be of single-particle
strength and seeing what magnitude this would imply for
the intrinsic quadrupole moment Q0, thereby defining a
single-particle scale relative to which enhancement can be
judged.19 Taking 〈φK |Q20|φK〉 ≈ A in Eq. (4) gives a single-
particle estimate,

Q0,W = 3
5

(
4
5

)1/2
r2

0 A2/3. (A1)

For the Be isotopes considered here, the value of Q0,W

ranges from ∼2.8 e fm2 for A = 7 to ∼4.1 e fm2 for A = 12.
Of course, the traditional nuclear radius formula embodied in
Weisskopf’s estimate, and thus in Eq. (A1), is of only limited
validity in these light nuclei.
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[15] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84,
5728 (2000).

[16] P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C 79, 014308
(2009).
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