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A model combining self-consistent mean-field and shell-model techniques is used to study the competition
between particle-like and proton-neutron pairing correlations in fp-shell even-even self-conjugate nuclei. Results
obtained using constant two-body pairing interactions as well as more sophisticated interactions are presented and
discussed. The standard BCS calculations are systematically compared with more refined approaches including
correlation effects beyond the independent quasiparticle approach. The competition between proton-neutron
correlations in the isoscalar and isovector channels is also analyzed, as well as their dependence on the deformation
properties. Besides the expected role of the spin-orbit interaction and particle number conservation, it is shown that
deformation leads to a reduction of the pairing correlations. This reduction originates from the change of the single-
particle spectrum and from a quenching of the residual pairing matrix elements. The competition between isoscalar
and isovector pairing in the deuteron transfer is finally addressed. Although a strong dependence the isovector
pairing correlations with respect to nuclear deformation is observed, they always dominate over the isoscalar ones.
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I. INTRODUCTION

Although the role of pairing correlations in nuclei was
introduced more than 60 yr ago by Bohr, Mottelson, and
Pines [1] and they dictate many nuclear properties [2,3], some
aspects of pairing remain unclear. For instance, the precise role
of the neutron (n)-proton (p) pairing in nuclei still challenges
both theoretical and experimental nuclear physics [4–10] (see
Ref. [11] for a recent review). The effect of correlation between
nucleons of different spin and isospin is expected to be more
pronounced in self-conjugate nuclei. From an experimental
point of view, high-intensity radioactive beams will offer new
possibilities to study the importance of isoscalar (T = 0) and
isovector (T = 1) pairing interaction between protons and
neutrons along the N = Z line. The role of isovector proton-
neutron (p-n) pairing correlations has been recently pointed
out by analyzing the relative energies of the T = 0 and T = 1
states in even-even and odd-odd nuclei [6] and the T = 0 band
in 74Rb [12]. The analysis based on these results provides
evidence of the existence of a neutron-proton isovector pair
field but does not support the existence of the isoscalar one.
Conjointly, recent experiments seem to manifest the possibility
to observe exotic structure of aligned pairs [9] that could be
explained in terms of isoscalar p-n pairing correlations.

From a theoretical point of view, several frameworks
have been proposed to incorporate p-n pairing correlations
in microscopic models. Many works devoted to the study
of the competition between isoscalar and isovector pairing,
have been performed in solvable models (see, for example,
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Refs. [13–19]). Mean-field approaches, generally only in-
corporate particle-like pairing correlations. Extensions to
include p-n correlations have been proposed some time ago
[4] and sometimes applied in the Hartree-Fock Bogolyubov
(HFB) approach [20,21]. Most often, these approaches lead
to a non-coexistence of particle-like and particle-unlike
pairing that is further supported by the analytical work in
Refs. [22,23]. It is worth mentioning that such coexistence
has been found away from stability in some exotic situations
[24]. Alternatively, shell-model calculations starting from a
simplified pairing Hamiltonian can go beyond the independent
quasiparticle picture and provide a particle number conserving
framework able to attack the pairing problem, including all
spin/isospin channels. Beyond mean-field studies have been
recently performed to study the competition between T = 0
and T = 1 pairing in spherical nuclei [25], to understand the
origin of the Wigner energy [26,27], to probe the existence of
quarteting [28–31], and to describe spin-aligned pairs [32] or
deuteron transfer properties in N = Z nuclei [33,34].

It is worth mentioning that deformation has sometimes been
included using a schematic [35] or more realistic Hamiltonian
[36]. The aim of the present work is to make a precise study
of the role of deformation on particle-like and p-n pairing
by using the following strategy. A microscopic mean field is
used to obtain realistic single-particle energies and two-body
residual pairing interactions. Then pairing correlations
are studied in spherical and deformed nuclei through
direct diagonalization of the Hamiltonian in a restricted
space. This framework, which combines the self-consistent
mean-field approach and the full diagonalization of the pairing
Hamiltonian, allows for a realistic description of nuclear
deformation necessary to analyze its influence on the role of
pairing correlations in both channels.
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The paper is organized as follows. In Sec. II, the results
obtained in the Skyrme-Hartree-Fock (HF) + BCS mean-field
calculations for different fp-shell N = Z nuclei are presented
and discussed in terms of the total binding energy, mean
pairing gap, and single-particle energies dependence on the
deformation. In Sec. III, the methodology used to connect the
mean-field and the shell-model (SM) techniques is discussed.
In Sec. IV, some results obtained with a constant residual
interaction in the isovector channel will be shown. In Sec. V,
more realistic interactions are used in the two channels to
study the interplay between deformation and pairing in various
channels. Finally, in Sec. VI some conclusions are drawn.

II. PRELIMINARY STUDY: MEAN-FIELD DESCRIPTION
OF MEDIUM-MASS N = Z NUCLEI

We focus here on fp-shell N = Z even-even nuclei. To
illustrate the importance of deformation in this region of
mass, we have systematically applied the EV8 code [37].
The self-consistent mean-field equations are solved in a three-
dimensional mesh using the zero-range Skyrme energy density
functional (EDF) in the mean-field channel. In addition,
pairing correlations between neutrons or protons are accounted
for using the HF + BCS approximation. In the present work,
the SLy4 parametrization [38] is used in the particle-hole
channel while a density-dependent residual contact interaction,

V (r,r′) = −v0

[
1 − η

ρ(r)

ρ0

]
δ(r − r′), (1)

is used in the pairing channel. Results shown below have
been obtained using a mixed-type interaction (η = 0.5, v0 =
700 MeV fm3, ρ0 = 0.16 fm−3) taken from Ref. [39] that has
been adjusted to reproduce pairing gaps along the nuclear
chart.

An illustration of the total energy evolution for different
even-even N = Z nuclei, with N = 22 to N = 32, as a
function of the quadrupole deformation parameter β, is given
in Fig. 1. The deformation parameter is defined as

β =
(

5π

9

)1
2 〈Q̂2〉

AR2
0

, (2)

where A is the mass number, R0 = 1.2A
1
3 , and Q̂2 the

quadrupole operator. Except the 44Ti and 56Ni that are found to
be spherical, all considered nuclei are predicted to be prolate,
with deformation parameters around 0.2 and more or less
pronounced minima in the potential energy landscape.

Evolution of particle-like pairing with deformation

Already at the mean-field level, significant deformation
effects on the pairing correlation strength are seen. Using stan-
dard notations [2], we denote by (ui,vi) the BCS coefficients.
In Fig. 2 the average proton and neutron gaps defined as

� =
∑

i �iv
2
i∑

i v
2
i

,

where �i = ∑
j V 10

ij uj vj (V 10
ij being the matrix element of the

pairing interaction in the T = 1, S = 0 channel; see below) is
the pairing gap of the single-particle level i, are plotted as
a function of β. It could be first noted that the proton and
neutron pairing gaps are almost identical. This is attributable
to the quasi-isospin symmetry in the N = Z nuclei. Note that
here the isospin symmetry is explicitly broken owing to the
Coulomb interaction.

This figure also illustrates the large fluctuations of the
pairing correlation as a function of deformation. This is a
well-known effect that essentially stems from the evolution of
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FIG. 1. (Color online) Binding energy as a function of the quadrupole deformation parameter obtained in the HF + BCS calculations for
different Z = N nuclei (see text for details).
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FIG. 2. (Color online) Mean proton (blue dashed line) and neutron (red solid line) gaps as a function of the average quadrupole deformation
parameter β. For each nucleus, the black solid circle indicates the equilibrium configuration that minimizes the EDF.

single-particle shells and, more specifically, shell gaps, with
deformation. In the considered nuclei, we see that there are no
systematic rules; deformation could enhance or reduce pairing
compared to the spherical configuration.

This diversity in deformation effect can be directly under-
stood by focusing on the single-particle energies evolution
as a function of β. Such evolutions are shown for 52Fe
(deformed) and 56Ni (spherical) in Figs. 3 and 4, respectively.
For 52Fe (56Ni) a reduction (an increase) of pairing correlation
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FIG. 3. (Color online) Evolution of the neutron single-particle
energies as a function of the deformation β obtained in the mean-field
calculations for 52Fe. The calculations are performed using EV8
with only particle-like pairing. Negative and positive parity states
are plotted with solid and dashed lines, respectively. The dotted
solid green line indicates the Fermi energy. Note that here, the
single-particle quantum numbers have been assigned by continuity
with the spherical case.

is seen when deformation is nonzero compared to the spherical
symmetric case. Such evolution can be understood as follows.
The simplest situation is the 56Ni, where the spherical
configuration is stabilized by the N = Z = 28 shell closure
associated with a completely filled f7/2 shell. This shell
closure induces a pronounced gap between the f7/2 and the
next unoccupied single-particle levels. As a consequence, the
pairing gap vanishes. When deformation increases, the gap
disappears and pairing can build up with neighboring shells.
In 52Fe, the situation is slightly more complex. In the spherical
case, the degenerate f7/2 is partially occupied and therefore
pairing is nonzero owing to the interaction of particles in
the same shell. The reduction of pairing as β increases is
essentially attributable to the splitting of the single-particle
f7/2 states.
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FIG. 4. (Color online) Same as Fig. 3 for 56Ni.
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III. CONSTRUCTION OF A SHELL-MODEL
HAMILTONIAN FROM SELF-CONSISTENT

MEAN-FIELD OUTPUTS

As mentioned above, standard mean-field approaches do
not lead, in general, to a coexistence of particle-like and p-n
pairing. This is mainly attributable to the explicit violations
of the particle number and isospin symmetry. To describe p-n
pairing and, more specifically, its coexistence with particle-like
pairing, it is advantageous to perform a many-body SM
calculation beyond the independent particle or quasiparticle
picture. Starting from the mean-field calculation, we first
construct a two-body pairing Hamiltonian written as

H = Hs.p. + H10 + H01, (3)

where Hs.p. is the independent particle contribution. H10

and H01 correspond to a pairing two-body Hamiltonian
acting, respectively, in the (T = 1, S = 0) and (T = 0, S = 1)
channels.

In the present work, we use the output of the EV8 model
to construct this Hamiltonian that realistically accounts for
deformation. For each deformation, after the minimization
process of the EDF, a set of proton and neutron single-
particle wave functions are obtained. The corresponding
wave function, denoted by |k,τk〉, where τk is the isospin
quantum number, is associated with the proton and neutron
creation operators π

†
k and ν

†
k , respectively (see The Appendix

and Ref. [37]). Note that in EV8 time-reversal symmetry is
assumed. We denote by k̄ the time-reversal state associated
with k.

In N = Z nuclei, we do expect that isospin symmetry is
almost respected. This is illustrated, for instance, in Fig. 2
where the proton and neutron gaps are almost identical. For
the sake of simplicity, the isospin symmetry could be explicitly
enforced. This could be done, for instance, by neglecting
the Coulomb interaction at the mean-field level. However,
because the Skyrme parametrization has been adjusted with
Coulomb, the total energy dependence on deformation might
be unrealistic if Coulomb is completely removed. For this
reason, we preferred to keep the Coulomb interaction and
assume a posteriori that the proton wave functions and
single-particle energies εk are identical to the neutron ones,
i.e., πk ≡ νk . Then each level is 4 times degenerated and the
single-particle Hamiltonian writes

Hs.p. =
∑

k

εk(π †
kπk + π

†
k̄
πk̄ + ν

†
kνk + ν

†
k̄
νk̄),

where εk denote the single-particle energies obtained in the
mean-field solution with the EV8 code. The two-body part
of the Hamiltonian can also be constructed consistently with
the pairing treatment in the EV8 code. In this model, because
only time-reversal pairs (k,k̄) of the same isospin can form a
Cooper pair, only T = 1, Tz = ±1 are approximately treated
in the BCS approximation. To account for all isospin channels
in T = 1, we consider a two-body Hamiltonian H10 that also
includes p-n interaction through

H10 =
∑

i �=j,Tz

V 10
ij P

†
Tz

(i)PTz
(j ). (4)

The different operators PTz
, with Tz = −1,0,+1, denote

the creations operators of S = 0 pairs and different isospin
projections. These states can directly be written in terms of the
time-reversed states provided by EV8 as

P
†
1 (k) = ν

†
kν

†
k̄
, P

†
−1(k) = π

†
kπ

†
k̄
,

P
†
0 (k) = (ν†

kπ
†
k̄

+ π
†
k ν

†
k̄
)/

√
2.

The two-body interaction matrix elements do not depend on the
specific isospin projection Tz owing to the imposed symmetry
between protons and neutrons. In this paper, some applications
using a constant two-body interaction are first considered (see
Sec. IV), and then realistic two-body interactions that account,
in particular, for the influence of deformation in single-particle
states are used (see Sec. V and the Appendix ). In the latter
case, the two-body interaction matrix elements in the T = 1
channel are computed using the same residual interaction as
in the mean-field level.

In our scheme, it is possible to identify pairs of time-
reversed states that enter into the T = 1 channels, as well
as in the (T = 0, Sz = 0) channel. Owing to the specific
space symmetry used in the EV8 code, the interaction matrix
elements in T = 0, Sz = ±1 cannot be easily restricted to
J = 0 and J = 1 channels that are expected to be the dominant
channels [4,40]. For this reason, only the Sz = 0 component
is considered here, leading to a simplified isoscalar pairing
Hamiltonian,

H01 =
∑
i �=j

V 01
ij D

†
0(i)D0(j ), (5)

where the pair creation operator D
†
0 is given by

D
†
0(k) = (ν†

kπ
†
k̄

− π
†
k ν

†
k̄
)/

√
2.

To compute the two-body interaction components V 01
ij , we

use the same effective interaction (1) except that the coupling
strength is replaced by v1 = xv0, where x is a constant. Using
arguments based on SM Hamiltonians, it was shown that a
realistic value for x is around 1.6 [21].

Different types of SM calculations will be performed to
single out specific effects.

(i) Particle-like pairing. In most standard mean-field
approaches, only n-n and p-p pairing are usually
treated self-consistently. This calculation is helpful
for comparison with the mean-field approach and to
see the effect beyond the BCS technique in a particle
conserving approach to pairing. This amounts to use
the Hamiltonian

H = Hs.p. +
∑

i �=j,Tz=±1

V 10
ij P

†
Tz

(i)PTz
(j ), (6)

and the corresponding SM calculations will be denoted
as |Tz| = 1.

(ii) Full isovector pairing. This calculation will make it
possible to understand the interplay between particle-
like and p-n pairing in the isovector channel. Note
that, we always consider p-n symmetry in the inputs
of the SM calculation, leading to equal contributions
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TABLE I. Hamiltonian and corresponding labels used in the paper.

V Label∑
i �=j,Tz=±1 V 10

ij P
†
Tz

(i)PTz (j ) |Tz = 1|∑
i �=j,Tz=0,±1 V 10

ij P
†
Tz

(i)PTz (j ) T = 1∑
i �=j V 10

ij P
†
0 (i)P0(j ) + V 01

ij D
†
0(i)D0(j ) Tz = 0

of the three components. The Hamiltonian writes

H = Hs.p. +
∑

i �=j,Tz=0,±1

V 10
ij P

†
Tz

(i)PTz
(j ) (7)

and the results are labeled as T = 1.
(iii) p-n pairing. This calculation illustrates qualitatively

the competition between isovector and isoscalar p-n
pairing. The isovector p-p and n-n pairing are not con-
sidered and the following Hamiltonian is employed:

H = Hs.p. +
∑
i �=j

V 10
ij P

†
0 (i)P0(j )

+
∑
i �=j

V 01
ij D

†
0(i)D0(j ). (8)

The corresponding SM calculations are denoted as
Tz = 0.

Denoting by V the two-body part used in the Hamiltonian,
a summary of the different cases described above, as well as
their labels, is given in Table I.

IV. SYSTEMATIC ANALYSIS OF T = 1 PAIRING IN N = Z
NUCLEI IN THE f SHELL: THE CONSTANT

PAIRING CASE

As we will see, the correlations obtained through a direct
diagonalization of the pairing Hamiltonian are the results of
a subtle mixing of different effects like spin-orbit, deforma-
tion, beyond-mean-field effects, and fluctuations in two-body
interaction matrix elements. To disentangle the influence
of different contributions, we consider below situations of
increasing complexity. In this section, we only consider T = 1
pairing. We, in addition, first discuss the case of spherical
symmetric nuclei with constant two-body matrix elements.
The spherical symmetry is imposed for nuclei presented in
Fig. 1 by imposing β = 0. The value of the constant pairing
strength has been chosen such as to provide a BCS gap
approximately equal to 1 MeV calculated at β = β0, in average
for all the considered nuclei. This methodology leads to a
pairing interaction V 10 = −0.5 MeV. The diagonalization is
made in the restricted valence space formed by the f 7

2 and
f 5

2 single-particle states (see Figs. 3 and 4 for illustrative
examples) and considering the valence nucleons beyond the
N = Z = 20 saturated core.

A. Pairing correlations beyond the independent
quasiparticle picture

In mean-field approaches, only n-n and p-p pairing are
usually treated self-consistently. Moreover, BCS results are af-
fected by particle-number fluctuations, whose quantitative ef-
fect can be seen by comparing them with the SM calculations,
where the particle number symmetry is preserved. To illustrate
the extra correlations included in the SM description, we first
consider a |Tz| = 1 calculation, (see Table I), where only
like particles can interact. In Fig. 5, the correlation energies
obtained in the HF + BCS approximation with a constant V 10

are shown for different f -shell N = Z nuclei. The correlation
energy is defined with respect to the unperturbed case, i.e.,
V 10 = 0. These results are compared with the equivalent SM
calculation with only |Tz| = 1 pairing correlation. The use of
an exact diagonalization compared to the BCS approach has
several advantages that are illustrated in this figure. First, the
BCS approximation suffers from the so-called BCS-threshold
anomaly, leading to a zero pairing correlation energy if the
single-particle shell gap is large compared to the residual
interaction strength. This is illustrated in the N = 28 nucleus,
where the pairing vanishes. A SM calculation leads to nonzero
pairing correlation in this case. In addition, it is known that
BCS underestimates the pairing correlation. We see indeed
that the pairing correlations obtained with the SM case are
sensibly larger in all nuclei.

20 24 28 32
N

-4

-2

0

E
co

rr
[M

eV
]

BCS
|T

z
|=1

FIG. 5. (Color online) Correlation energy obtained assuming
only pairing between like particles. The BCS (black circles) and
|Tz| = 1 SM results (blue squares) are shown for different N = Z

f -shell nuclei. Spherical symmetry is imposed for all the nuclei and
a constant pairing interaction is used (see text).
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B. Competition between particle-like and p-n pairing
in spherical nuclei

Another drawback of mean-field approaches is that most
often it cannot describe the coexistence of pairing in different
isospin channels. Usually, when p-n symmetry is assumed,
BCS or HFB approximations lead to degenerate solutions
(either to a particle-like-type condensate or a p-n pair
condensate [21–23]). Such a non-coexistence seems, however,
to be an artifact of the theory. Indeed, it is, for instance, in
contradiction with schematic models where exact solution of
the pairing problem can be obtained. The full diagonalization
of the pairing Hamiltonian, by going beyond the independent
picture also cures this problem.

Here the SM calculation has been performed again in
spherical nuclei with constant pairing interaction including all
channels in the S = 0 and T = 1. In particular, the p-n pairing
is accounted for in the T = 1 channel. Results obtained in this
case are compared in Fig. 6 with the previous SM calculation
where only the |Tz| = 1 pairing was considered. It is seen
that the inclusion of the p-n pairing in the T = 1 slightly
increases the total correlation energy. Because we consider
here explicitly p-n symmetry, the correlation energy exactly

20 24 28 32
N

-6

-4

-2

0

E
co

rr
[M

eV
]

|T
z
|=1

T=1

FIG. 6. (Color online) Correlation energy obtained in SM calcu-
lation including all channels in T = 1 (red solid circles) compared
to the case where only |Tz| = 1 are included (blue solid squares). In
the former case, the red open circles indicates the correlation energy
associated to one Tz component. Note that owing to the assumed
symmetry between protons and neutrons the three components leads
to the same contribution equal to 1/3 of the total energy. The blue open
squares correspond to the correlation energy associated to n-n pairs
for the |Tz| = 1 calculation. Again, owing to the isospin symmetry,
this correlation energy is half of the total energy and equals the one
associated to the p-p contribution.

splits into three equal components associated with each Tz

projection. The correlation energy in one of the Tz’s, which
is equal to 1/3 of the correlation, is also shown by dashed
blue lines in Fig. 6. This energy is compared to the equivalent
correlation energy obtained when only particle-like pairing is
included (1/2 of the total energy obtained in the |Tz| = 1 case).
While the total correlation energy is globally increased, we
observe that the correlation associated to n-n and p-p pairing is
decreased when p-n channel is included compared to the case
where it was neglected. The interpretation of this quenching is
rather intuitive. When a neutron (a proton) already contributes
to a pair with a proton (a neutron), it cannot anymore be used to
form a pair with a neutron (a proton). This effect can therefore
be understood as an indirect pair-breaking effect induced by
the addition of an extra channel.

C. Spin-orbit effect in spherical nuclei

Owing to its effect on single-particle energies, it is known
that the spin-orbit interaction affects globally pairing. As a
quantitative illustration of the spin-orbit influence, we compare
in Fig. 7 two T = 1 SM calculations. The first one (red solid
circles) is the one described above and includes the effect
of spin-orbit on single-particle energies with the presence
of the N = 28 magic number. In the second one (blue solid
squares), the spin-orbit interaction has been artificially set to
zero, leading to a completely degenerated f shell. This figure
gives quantitative information on the reduction resulting from

20 24 28 32
N

-15

-10

-5

0

E
co

rr
[M

eV
]

T=1 [S.O.=0]

T=1 [S.O.=1]

FIG. 7. (Color online) Correlation energy in the T = 1 case
with (red solid circles) and without (blue solid squares) spin-orbit
interaction in the mean-field calculations. The results are obtained
assuming a spherical symmetry for all nuclei and a constant pairing
interaction.
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the spin-orbit interaction and serves in the following as an
element of comparison for the effect of deformation.

D. Deformation effect: Constant pairing case

In this section, still using a constant pairing interaction,
we show and discuss SM results for deformed cases. For
all considered nuclei, in Fig. 8(a), we have systematically
compared the correlation energy in spherical configurations
(solid black symbols) with the results obtained when the
deformation is equal to the equilibrium deformation value β0

(solid red symbols). The β0 values correspond to the minima
of the energy landscapes displayed in Fig. 1 and are reported
in Fig. 8(b). Compared to the spin orbit, we can see that defor-
mation has a less impressive effect. However, in all considered
nuclei, a significant reduction of the T = 1 correlation energy
is observed in deformed nuclei compared to the reference
spherical case. Because the interaction is kept constant here,
this reduction is a direct consequence of the single-particle
shell evolution. Such a reduction was observed in most cases
already at the mean-field level. For instance, in Fig. 2, in all

-6
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0

E
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rr
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eV
]

T=1 [S]

T=1 [D]

20 24 28 32
N

0

0.1

0.2

β 0

(a)

(b)

FIG. 8. (Color online) (a) Correlation energy in the (S=0, T =1)
obtained with SM calculation in spherical (black solid circles) and
deformed (red solid triangles) N = Z nuclei. In the latter case, the
equilibrium deformation value β0 obtained with EV8 was used. Open
symbols are obtained by considering states in a window of ±5 MeV
around the Fermi energy allowing thus for the possible mixing of the
f and p shells.

non-closed-shell nuclei except 64Ge, the pairing gap in the
spherical configuration is always larger than the one in the
equilibrium deformed configuration. When SM calculations
are performed instead of HF + BCS, the effect of deformation
seems much stronger. In all deformed nuclei, the correlation
energy is reduced by more than 60%. This is an important
effect that points out that deformation plays a major role that
should definitively be included in quantitative studies. It is
finally worth mentioning that the effect of N = 28, which was
clearly seen in spherical nuclei, is almost completely washed
out when deformation is accounted for. The calculation with
deformation leads to an almost constant, rather weak, T = 1
pairing correlation from N = 24 to N = 32.

E. Effect of the mixing of the f and p shells

Up to now, we have considered the simplified case where
correlations can only build up between nucleons in the f
shell. However, for the nuclei we are considering here, a
non-negligible effect of the p shell is anticipated. To account
for this effect, we perform a new set of SM calculations
considering eight (proton and neutron) single-particle states
(four hole and four particle states) around the Fermi energy and
eight valence particles for each kind of nucleon. This amounts
to adopting a pairing window around the Fermi energy of
about 5 MeV, which is consistent with the one employed in the
EV8 calculations. In such a way, at variance with the previous
section, where only the f shell was considered, a mixing of
f and p shells is now allowed, taking thus in account in a
more reliable way the shell evolution as a function of the
deformation. The effect of this mixing can be seen in Fig. 8,
where the results obtained in the f shell (solid symbols) are
compared with those allowing the pf mixing (open symbols).
We see that the inclusion of the p shell induces an increase of
the pairing energy. This increase is of the order of 1 MeV for
N < 30. Not surprisingly, the effect of the p shell is maximum
for N = 30 and 32 cases where the pairing energy increases by
�2 MeV. This increase stems from the fact that pairing cannot
build up in the f shell because of the absence of particle
states. The inclusion of p-shell nucleons opens new channels
on which the hole states can scatter.

As discussed above, the results shown in this section
are obtained using quite strong approximations on both the
interaction and only qualitative conclusion can be drawn from
them. We analyzed here the interplay between different effects,
i.e., pairing, deformation, f/p-shell mixing, and spin orbit. In
the following section, we see that these effects persist even if
a more realistic analysis is made using an improved two-body
pairing interaction.

V. RESULTS WITH REALISTIC
RESIDUAL INTERACTIONS

In the previous section, deformation effects were con-
sidered only in the single-particle energies employed as
input quantities in the subsequent SM calculations. Moreover,
only the T = 1 channel has been considered in the residual
interaction. A more realistic and consistent description can be
reached by calculating the two-body pairing matrix elements
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for interaction (1) consistently with the mean-field properties.
In such a way, two-body pairing matrix elements are affected
by deformation through its effect on the single-particle states
topology. In addition, by using standard projection techniques
as explained in the Appendix, the two different channels
of the pairing interactions can be accounted for and the
interplay between p-n isovector and isoscalar correlations
analyzed. This is a merit of the strategy used in this work,
because common studies employing constant pairing strength
interactions in the two channels are not able to describe
important effects as for example the stronger quenching of
the isoscalar matrix elements with respect to the isovector
ones owing to the spin-orbit interaction [25,41,42].

A. Effect of deformation on the residual interaction

To analyze the role that deformation can have on the residual
interaction, the evolution of the average T = 1 two-body
matrix elements (black solid line) and T = 0 ones (red dashed
line) obtained between four particles and four holes around
the Fermi energy are shown in Fig. 9 as a function of β for the
two nuclei 56Ni (top panel) and 52Fe (bottom panel).

Note that we do not include in the average and in the SM
calculations the diagonal part of the matrix elements V 10

ii .
Indeed, including this part would induce a double counting
of the interaction owing to the mean-field term entering
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FIG. 9. (Color online) Averages of the pairing matrix elements
in the T = 1 (black solid lines) and T = 0 (red dashed lines)
channels as functions of the deformation for 56Ni (top panel) and
52Fe (bottom panel) are plotted. The diagonal part of the interaction
is not considered in the calculations and not shown here (see the text
for more details). The matrix elements are computed here using the
same strength in the two channels, i.e., v1 = v0 (x = 1) parameter in
Eq. (1).
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FIG. 10. (Color online) Pairing matrix elements in the T = 1
(black points) and T = 0 (red points) channels for eight single-
particle states (four hole and four particle states) around the Fermi
energy as a function of the deformation for 56Ni (top panel) and 52Fe
(bottom panel) are plotted. The index I (i,j ) = 1, . . . ,28 enumerates
the pair indices of the matrix elements Vij , with i = 1, . . . ,8 and
j > i. The wave functions used correspond to the β equilibrium
value. The matrix elements are computed here for v1 = v0 (x = 1).

implicitly in the calculation of the single-particle energies. It is
finally worth mentioning that the calculated two-body matrix
elements are far from the constant coupling limit especially in
deformed nuclei. In Fig. 10, the fluctuations of pairing matrix
elements in the T = 1 (black points) are shown for 56Ni (top
panel) and 52Fe (bottom panel). In each case, the configuration
shown is the equilibrium value, i.e., spherical for the 56Ni and
deformed with β = 0.25 for 52Fe.

B. Comparison between constant and realistic
pairing interactions

In all SM calculations presented previously, the interaction
was taken to be constant with a strength compatible with the
average strength obtained using realistic residual interaction
(see Fig. 9). In spherical nuclei (top panel of Fig. 10), the
fluctuations of two-body matrix elements around the average
values are rather small. In deformed nuclei, the fluctuations
seem to be enhanced. This behavior might directly be attributed
to the effect of deformation on the spatial localization of
the single-particle wave packet. This can further modify
the pairing correlation itself. In the following, we use the
state-dependent matrix elements of the pairing interaction in
the two different channels (see the Appendix ).

As already discussed, a rather strong dependence of the
single-particle states as a function of the deformation comes
out from the mean-field description (see Fig. 3 and 4).
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FIG. 11. (Color online) Correlation energies obtained in T = 1
SM calculations with residual pairing interaction computed directly
from EV8. For deformed nuclei, see panel (b); the results obtained
using the spherical mean-field EV8 solution (black solid circles) and
the deformed one (red solid triangles) are shown. The results obtained
by using a constant pairing interaction and same valence space (open
symbols) are also shown for comparison.

Moreover, because the rotational symmetry is explicitly
broken, their identification through angular quantum numbers
is not possible. To study the effect of deformation and allow for
the mixing of f and p shell through all the energy landscape we
follow the same strategy explained in Sec. IV E and two-body
matrix elements state dependent.

In Fig. 11, the correlation energies reported for a constant
coupling and the enlarged single-particle space, i.e., open
symbols in Fig. 8, are systematically compared with the SM
results (solid symbols), where the two-body matrix elements
are calculated from the EV8 outputs. Several interesting
aspects can be seen in this figure. First, the flattening of the
correlation energy associated with the reduction of pairing
induced by deformation around the 56Ni is also seen. This
effect seems to be generic and does persist even if the residual
interaction also accounts for deformation. Besides this effect,
we also observe mainly two differences between the new
results and the constant interaction case. For systems with
N < 26, we see that the constant pairing approximation works
quite well. For N = 22 and N = 26, the constant interaction
case leads to a slightly lower pairing energy. However, such
difference cannot be attributed really to the fluctuations of the
two-body matrix elements compared to the case of constant
interaction. Indeed, by slightly increasing the strength of the
constant interaction, results on top of the calculation with a
realistic interactions would be easily obtained. From this study,
we cannot really conclude that the use of realistic interaction

that eventually accounts for the deformation effect leads to
a significant change of the SM results. Therefore, the main
effect of deformation remains the change of single-particle
state energy.

However, it is worth noting that the use of realistic matrix
elements, where mean-field effects are taken into account
through the use of consistently calculated single-particle
wave functions, allow us to study also the effect of the
isoscalar correlations whose quenching owing to the spin-orbit
interaction is stronger than in the isovector channel [25,41,42]
and it can be clearly seen in Figs. 9 and 10.

C. Global study of deformation and T = 1 pairing
on the energy landscape

Although the correlation energy can easily be obtained
from SM calculation, a complete potential energy landscape
deduced by combining a mean-field and a SM calcula-
tion is less straightforward. In particular, because EV8 is
a fully self-consistent calculation it already contains the
effect of pairing in both the mean-field and anomalous
contributions.

To construct an energy landscape associated with the SM
results, we follow the strategy of Ref. [39]. We systematically
performed an equivalent BCS calculation using the same EV8
inputs and compute the energy by subtracting the BCS pairing
part to the energy using the formula

E = EMF + ESM − EBCS. (9)

Here EMF is the total (mean-field + pairing) energy directly
obtained from EV8. ESM is the total SM energy deduced
from the calculation and EBCS is the BCS energy calculated
by solving the BCS equations using the same inputs and
constraints of the SM case [i.e., sp states, active particles,
and Hamiltonian (6)]. In Fig. 12, the energy E computed
from Eq. (9) is shown for the six considered nuclei as a
function of the deformation parameter. The results obtained
in the (S = 0, T = 1) channel are shown either including all
channels or only particle-like pairing. In all cases, the results
are compared with the energy landscape obtained directly from
EV8.

Considering first the SM model results with only particle-
like pairing, i.e., |Tz| = 1 (dotted red lines), we see that addi-
tional correlation energy is systematically gained compared
to the original EV8 case, owing to the use of a complete
diagonalization in a particle-conserving SM approach. In most
cases, the better treatment of pairing leads to a global shift
of the energy landscape by few (�2) MeVs. In the case of
60Zn, a transition from prolate to oblate shape occurs in the
energy landscape. It should be noted that the original BCS
energy landscape in that case was rather flat over a wide
range of deformation parameter values, although a prolate
minima was predicted. It turns out that the preservation of
the particle-number symmetry, which is spontaneously broken
in BCS, allows to gain some extra correlation energy. For 60Zn,
this energy gain is bigger in the oblate configuration compared
to the prolate case leading to the observed transition. In the
same figure, the SM results obtained considering also the p-n
pairing in the T = 1 channels are plotted as dashed black
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FIG. 12. (Color online) The total energy (9) as a function of the deformation parameter calculated in the mean-field (MF) approach (red
solid line) is compared with different kind of SM calculations: |Tz = 1| results (red dotted line), where only particle-like pairing is considered,
and T = 1 (black dashed line), where all the components of the isovector pairing are included. See the text and Table I for more details.

lines. Compared with the |Tz| = 1 results, we see that the
inclusion of p-n correlations provide some extra correlation
energy, typically of the order of few hundreds of keV. Also
in this case, the effect is more pronounced for 60Zn, and the
p-n correlation seems to enhance the transition from prolate
to oblate.

D. Competition between T = 0 and T = 1
proton-neutron pairing

As we mentioned previously, only the Sz = 0 component
of the T = 0 channel can use the direct output from the EV 8
code. Here we concentrate on the p-n pairing correlation and
study its competition in the two pairing channels. Therefore,
the pairing between particles of same isospins is neglected. To
calculate the interaction matrix elements in the isoscalar case,
we follow Refs. [21,36] and use the same residual interaction
(1), where v0 is replaced with v1 = xv0. The resulting average
interactions as well as fluctuations around the average are
shown in Figs. 9 and 10, respectively, for x = 1. We already
see in these figures that the interaction matrix elements in
the T = 0 channel are systematically smaller compared to
the T = 1 case. It has been mentioned above that a realistic
value of x is 1.6. This value will only partially compensate
for the fact that higher pairing interaction strength exists in
the isovector channel. In Fig. 13, the potential energy curve
obtained including only isovector p-n pairing (dashed black
line), i.e., x = 0, is compared with the results where isoscalar
correlation are included also for different x values. It is clear
from this figure that the addition of the isoscalar channel gives
a gain in correlation energy that is almost negligible. It is,
however, worth mentioning that this does not necessarily mean

that the two channels do not mix. Using the same argument
as before, i.e., that isovector p-n pairs can be broken to
form isoscalar p-n pairs, the reduction of isovector pairing
energy would eventually be compensated by an increase of
the isoscalar pairing energy. We also see, comparing the
results with x = 1.0 and x = 1.6 that the dependence of
the isoscalar correlation energy on the x value is rather
weak. To study the competition between isoscalar and isovec-
tor correlations, we plot in Fig. 14 the expectation values of
the two-body interactions corresponding to the two different
channels appearing in the Hamiltonian (8) evaluated in the
ground state obtained in a Tz = 0 calculation. More precisely,
we calculate the following quantities:

E10 =
〈∑

i �=j

V 10
ij P

†
0 (i)P0(j )

〉
, (10)

E01 =
〈∑

i �=j

V 01
ij D

†
0(i)D0(j )

〉
. (11)

From the figure we cannot see a common and regular depen-
dence on the deformation of these quantities. However, for
all nuclei, the expectation value of the isoscalar Hamiltonian
is generally smaller than the isovector one, although a value
x = 1.6 has been used. For the 48Cr nucleus, and to a lesser
extent for the 52Fe nucleus, we see that at equilibrium deforma-
tion values, the two pairing channels (isoscalar and isovector)
contribute significantly, showing the possible coexistence of
both pairing. While absent in most quasiparticle approaches
to p-n pairing except in some extreme cases in the nuclear
chart [24], a SM approach always leads to nonzero pairing
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FIG. 13. (Color online) Total energy (9) as a function of the deformation obtained using only p-n pairing in the T = 1 channel (black
dashed line, Tz[x = 0]), including also the isoscalar one with equal strength (red thin solid line, Tz[x = 1]) and using the more realistic value
x = 1.6 (blue dot-dashed line, Tz[x = 1.6]). The results obtained in the mean-field (MF) calculations are plotted for comparison.

correlations in both channels. However, we see in Fig. 14 that
the isoscalar energy is rather weak and, in most cases, almost
cancels out at β = 0. We have, however, here a clear evidence
that deformation can favor, in some cases, the coexistence of
isoscalar and isovector p-n condensates.

E. Competition of isoscalar and isovector pairing
on deuteron transfer

In this section, we focus on the Tz = 0 calculation. The
role of different pairing channels on the deuteron transfer
cannot directly be inferred from the energy consideration given
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respectively, and the sum of them (black solid line) are plotted as a function of the deformation and corresponding to a (|Tz| = 0) calculation
with x = 1.6.
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FIG. 15. (Color online) Isovector (red dashed lines) and isoscalar (blue dotted lines) total deuteron transfer probability obtained for x = 1.6,
corresponding, respectively, to the Q and R quantities defined in the text.

above. To get information on this aspect, we consider the two,
respectively, isovector and isoscalar operators:

Q̂10 =
∑
ij

P̂
†
0 (i)P̂0(j ),

R̂01 =
∑
ij

D̂
†
0(i)D̂0(j ).

These two operators differ from the two-body part of the Tz=0
Hamiltonian by the absence of the two-body interaction.

Starting from the ground-state wave-function of a nucleus
with N neutrons and Z protons, denoted generically |N,Z〉,
the expectation value of the operator Q̂10 is given by

Q ≡ 〈N,Z|Q̂10|N,Z〉
=

∑
α

|〈N + 1,Z + 1,α|
∑

i

P̂
†
0 (i)|N,Z〉|2

=
∑

α

|〈N − 1,Z − 1,α|
∑

i

P̂0(i)|N,Z〉|2,

where we have introduced a complete basis of the nucleus
(N − 1,Z − 1) or (N + 1,Z + 1), with states labeled by α. A
similar expression can be obtained for R = 〈N,Z|R̂01|N,Z〉.
Such expression clearly demonstrates that the quantity P or
Q gives global quantitative information on the probability
to transfer or remove a deuteron from the initial ground
state.

In Fig. 15, these two quantities are shown as a function
of the deformation parameter. Comparing Figs. 15 and 14,
not surprisingly, we observe a strong correlation between
the deuteron pair transfer probabilities and the corresponding
correlation energy in a given channel. In all considered nuclei

and whatever is the deformation, the isovector channel always
dominates over the isoscalar channel. However, in some
specific cases, again owing to the quenching of the isovector
pairing with deformation, the two contributions might start to
compete.

We mention that the quantities R and Q, besides containing
a compacted information on the pair transfer probabilities,
also provide the average value of the p-n pair number in
the T = 1 and T = 0 channels. Indeed, in the absence of
correlations, single-particle occupation numbers are equal to
1 or 0. Then, because we consider eight valence nucleons
for each type, Q = R = 4 in the absence of correlations. We
see that the value of R is very close to this limit even if
correlations are plugged in, showing again the quite weak
role of the isoscalar pairing. This conclusion is different from
the one drawn in Ref. [34]; however, the quantities P and Q
given here contain the transition from ground state to ground
state. The work of Ref. [34] focuses on transition to excited
states.

VI. CONCLUSION

In the present work, we investigate particle-like and p-n
correlations and their dependence on nuclear deformation.
This is done in a framework that combines self-consistent
mean-field calculations and the diagonalization techniques for
the treatment of the pairing Hamiltonian. The self-consistent
mean-field calculations provide the main ingredients, single-
particle shells and residual two-body matrix elements, that are
used in the subsequent SM calculations. In particular, in such
a way, deformation effects are realistically and microscopi-
cally described through the Skyrme-HF + BCS self-consistent
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calculations. Several kinds of calculations, including different
pieces of the T = 0 and T = 1 pairing channels, have been
performed to study and single out different effects. The
SM-like approach corresponds to a framework beyond the
independent quasiparticle picture. It has the advantage to
explicitly conserve the number of neutrons and protons. The
resulting approach can give a precise description of pairing
correlations and eventually treats the coexistence of different
condensates formed of pairs with different spin or isospin.
This framework is here used to systematically investigate
fp-shell even-even N = Z nuclei from 44Ti to 64Ge. We
found that, in addition to the important spin-orbit effects,
deformation plays also an important role. When isovector
pairing only is included, we observe that deformation can
lead to a quenching of the pairing correlations compared
to the spherical case. This quenching is particularly visible
around N = Z = 28 and tends to wash out the pronounced
effect of this magic number that was observed at the BCS
level. This behavior originates mainly from the evolution
of single-particle shell energies with deformation (i.e., the
appearance or disappearance of shell gaps). However, the
possibility to calculate the matrix elements of the residual
interaction in the two different channels consistently with the
mean-field solution makes it possible to study in a realistic
way (with respect to the case when schematic constant pairing
interactions are employed) the interplay of the isoscalar and
isovector correlations and their quantitative role in the binding
energies. It is found that the isoscalar p-n pairing is generally
much weaker than the isovector contribution. However, in
some cases, we observed that large deformation can favor the
coexistence of isoscalar and isovector p-n condensates. We
finally analyzed the competition of isoscalar and isovector
p-n pairing and its possible influence on deuteron pair
transfer. Also in this case, it is found that the isoscalar p-n
pairing is generally much weaker than the isovector one.
Recently, experiments aiming at disentangling both origins
of p-n pairing have been proposed. Although we found that
isovector pairing effects are small on deuteron transfer, it
should, however, be kept in mind that, experimentally, the
transfer associated with isovector or isoscalar correlation can
a priori be measured separately because they correspond to
different total spin-transfer channels. Therefore, with the ratio
of pair transfer probabilities one could remove the part of the
uncertainty on the relative strength of the residual isoscalar
and isovector interactions, i.e., the x parameter value. In
this respect, pair transfer probabilities corresponding to the
different channels can be calculated using the many-body wave
functions (of ground state and low-lying excited states) ob-
tained with the present framework. Work in this direction is in
progress.

The main limit of the present calculations concerns
the treatment of the isoscalar correlations. Although the
isoscalar matrix elements of the pairing residual interaction
are calculated, as well as for the isovector one, consistently
with the mean-field single-particle wave functions, only part
of the T = 0 correlations are here considered. In particular,
the Sz = 1 and Sz = −1 components are not included because
some of the symmetries used in the EV8 code make nontrivial
the calculation of the corresponding matrix elements. Finally,

we stress that a more quantitative and accurate study would
require to couple self-consistently the mean-field and SM
calculations, i.e., diagonalizing the pairing Hamiltonian inside
the iterative HF procedure. A similar task is feasible for the
treatment of the particle-like pairing, as done, for example, in
Ref. [43]. When also proton-neutron correlations are included,
the diagonalization procedure becomes very time consuming
and strong approximations (valence space and particles, SM
wave function) should be made and tested, for example,
by using other techniques like the one recently presented
in Ref. [30].
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APPENDIX: MATRIX ELEMENTS
OF THE PAIRING HAMILTONIAN

Let us consider the single-particle state labeled by the index
k1 and by the isospin quantum number τk ,

|kτk〉 =
∫

d3r
∑
σk

φk(σk,r)|rσkτk〉, (A1)

where φk(σk,r) is the single-particle wave function with spin
projection σk . We can introduce the two-body states,

|kτk,k̄τk̄〉 =
∫

d3r1d
3r2

∑
σk,σk̄

φk(σk,r1)φk̄(σk̄,r2)

× |r1σkτk; r2σk̄τk̄〉. (A2)

For a given interaction V we can define the corresponding
two-body matrix elements in the spin-isospin channels as

〈iτi īτī |V T,S |jτj j̄ τj̄ 〉 = 〈iτi īτī |V PSPT |jτj j̄ τj̄ 〉,
where PS,PT are the standard spin-isospin projection operators

PS = 1
2 [1 − (−1)SPσ ], PT = 1

2 [1 − (−1)T Pτ ],

where Pσ and Pτ exchange the spin and isospin between two
particles,

Pσ = 1
2 (1 + 	σ1 · 	σ2), Pτ = 1

2 (1 + 	τ1 · 	τ2).

For a zero-range interaction,

V (r1,r2) = V (|r1 − r2|)δ(r1,r2), (A3)

1Note that for a deformed nucleus, the single-particle wave functions
are, in general, not eigenstates of the angular momentum operators.
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the matrix elements in the two different channels (S = 0, T = 1) and (S = 1, T = 0) read as

〈iτi,īτī |V T =1,S=0|jτj ,j̄ τj̄ 〉 = 1

4

(
δτiτj

δτī τj̄
+ i ↔ ī

) ∫
d3rV (r)ρi(r)ρj (r),

〈iτi,īτī |V T =0,S=1|jτj ,j̄ τj̄ 〉 = 1

4

(
δτiτj

δτī τj̄
− i ↔ ī

) ∫
d3rV (r)Fi,j (r),

where

Fi,j (r) = 2Re[φ∗
i (+,r)φi(−,r)φj (+,r)φ∗

j (−,r)] + [(φ∗
i (+,r)φi(+,r) − φ∗

i (−,r)φi(−,r)][φj (+,r)φ∗
j (+,r) − φj (−,r)φ∗

j (−,r)].

(A4)

[1] A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936
(1958).

[2] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 1980).

[3] D. M. Brink and R. A. Broglia, Nuclear Superfluidity: Pairing in
Finite Systems (Cambridge University Press, Cambridge, UK,
2005).

[4] A. L. Goodman, Nucl. Phys. A 186, 475 (1972).
[5] A. L. Goodman, Phys. Rev. C 60, 014311 (1999).
[6] A. O. Macchiavelli et al., Phys. Rev. C 61, 041303(R) (2000).
[7] A. O. Macchiavelli et al., Phys. Lett. B 480, 1 (2000).
[8] A. F. Lisetskiy et al., Phys. Rev. C 68, 034316 (2003).
[9] B. Cederwall et al., Nature (London) 469, 68 (2011).

[10] A. V. Afanasjev, in Isoscalar and Isovector Neutron-Proton
Pairing, Fifty Years of Nuclear BCS: Pairing in Finite Systems,
edited by R. A. Broglia and V. Zelevinsky (World Scientific,
Singapore, 2013), pp. 138–153.

[11] S. Frauendorf and A. O. Macchiavelli, Prog. Part. Nucl. Phys.
78, 24 (2014).

[12] C. D. O’Leary, C. E. Svensson, S. G. Frauendorf, A. V.
Afanasjev, D. E. Appelbe, R. A. E. Austin, G. C. Ball, J. A.
Cameron, R. M. Clark, M. Cromaz, P. Fallon, D. F. Hodgson,
N. S. Kelsall, A. O. Macchiavelli, I. Ragnarsson, D. Sarantites, J.
C. Waddington, and R. Wadsworth, Phys. Rev. C 67, 021301(R)
(2003).

[13] J. C. Parikh, Nucl. Phys. 63, 214 (1965).
[14] J. A. Evans, G. G. Dussel, E. E. Maqueda, and R. P. J. Perazzo,

Nucl. Phys. A 367, 77 (1981).
[15] G. G. Dussel, E. Maqueda, R. P. J. Perazzo, and J. A. Evans,

Nucl. Phys. A 460, 164 (1986).
[16] J. Engel, S. Pittel, M. Stoitsov, P. Vogel, and J. Dukelsky,

Phys. Rev. C 55, 1781 (1997).
[17] J. Dobes and S. Pittel, Phys. Rev. C 57, 688 (1998).
[18] S. Lerma, H. B. Errea, J. Dukelsky, and W. Satula, Phys. Rev.

Lett. 99, 032501 (2007).
[19] A. A. Raduta, M. I. Krivoruchenko, and A. Faessler, Phys. Rev.

C 85, 054314 (2012).
[20] J. Terasaki, R. Wyss, and P.-H. Heenen, Phys. Lett. B 437, 1

(1998).
[21] G. F. Bertsch and Y. Luo, Phys. Rev. C 81, 064320 (2010).

[22] J. N. Ginocchio and J. Weneser, Phys. Rev. 170, 859 (1968).
[23] N. Sandulescu, B. Errea, and J. Dukelsky, Phys. Rev. C 80,

044335 (2009).
[24] Alexandros Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev.

Lett. 106, 252502 (2011).
[25] H. Sagawa, Y. Tanimura, and K. Hagino, Phys. Rev. C 87,

034310 (2013).
[26] I. Bentley and S. Frauendorf, Phys. Rev. C 88, 014322 (2013).
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