
PHYSICAL REVIEW C 91, 014304 (2015)

J = 0, T = 1 pairing-interaction selection rules

Matthew Harper and Larry Zamick
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 22 October 2014; revised manuscript received 11 December 2014; published 6 January 2015)

Wave functions arising from a pairing Hamiltonian E(0), i.e., one in which the interaction is only between
J = 0+, T = 1 pairs, lead to magnetic dipole and Gamow-Teller (GT) transition rates that are much larger than
those from an interaction E(Jmax) in which a proton and a neutron couple to J = 2j . With realistic interactions
the results are between the two extremes. In the course of this study we found that certain M1 and GT matrix
elements vanish with E(0). These are connected to seniority and reduced isospin selection rules. We also relate
our results to the single j scissors mode.
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I. INTRODUCTION

We have recently performed single j shell studies of both
schematic and realistic interactions [1]. They ranged from the
J = 0+, T = 1 to the Jmax, T = 0 interactions. In this work
we focus more on the experimental consequences of choosing
a given interaction. In particular we study Gamow-Teller
(GT) and isovector M1 matrix elements for transitions in Sc
and Ti isotopes. Some of the problems have been addressed
numerically in a previous publication [2], but here we present
analytical proofs.

A. The interactions

For two particles in a single j shell the states of even angular
momentum J have isospin T = 1 and those of odd J have T =
0. For convenience, we define E(J ) as a two-body interaction
that is zero except when the two particles couple to J . Hence,
we have the J = 0+, T = 1 pairing interaction designated
as E(0) and the other extreme E(Jmax), which acts only in
the T = 0 state with Jmax = 2j . The T = 0 odd-J interaction
acts only between a neutron and a proton. We only consider
charge-independent interactions in this work. For a “realistic”
interaction in the f7/2 shell we use the MBZE interaction [3]
in which the two body matrix elements are obtained from the
experimental spectrum of 42Sc. This is based on the works of
Bayman et al. [4] and McCullen et al. [5] but with improved
T = 0 two-body matrix elements [4]. From J = 0 to Jmax = 7,
the matrix elements that were obtained from experiment are

0.0000,0.6111,1.5863,1.4904,2.8153,1.5101,3.2420,

and 0.6163.

Although the J = 0+ matrix element is the most attractive in
MBZE one also has low-lying T = 0 levels with J = 1+ and
J = Jmax = 7+. Indeed, one main thrust of the old articles
is that there is a large probability in, say, an even-even
nucleus that the protons and neutrons do not couple to zero.
Indeed, it has been shown in Ref. [5] that a much better
overlap with the realistic interaction can be obtained with a
quadrapole-quadrapole interaction (QQ) than with a J = 0
pairing interaction. We should also mention here the work on
GT by Lawson [6], who invoked a K selection rule to explain
why GT matrix elements decrease with neutron excess.

II. WAVE FUNCTIONS AND QUANTUM NUMBERS
FOR A J = 0, T = 1 PAIRING INTERACTION

OF A QQ INTERACTION

In this section we present energy levels and wave functions
of 43Sc and 44Ti that have a J = 0, T = 1 pairing interaction
of Flowers and Edmonds [7,8] and a QQ interaction. The
wave functions are presented as column vectors of probability
amplitudes. To identify the higher isospin states we subtracted
3 MeV from all T = 0, two-body matrix elements for the
pairing interaction. Doing so does not affect the wave functions
of the nondegenerate states, but it does remove degeneracies
of states with different isospins. For scandium isotopes we use
a star (∗) to indicate states with T = 3/2. For 44Ti we use a
star for T = 1 and two stars (∗∗) for T = 2. In Tables I and
II we present, for selected angular momenta, the energy levels
and wave functions of 43Sc and 44Ti with the J = 0 T = 1
pairing interaction; Tables III and IV for the QQ interaction.

TABLE I. Energies (MeV) and wave functions of 43Sc with a
J = 0, T = 1 pairing interaction.

I = 5/2
Jp Jn 1.125 1.125 5.625∗

3.5 2.0 0.4210 −0.4600 0.7817
3.5 4.0 0.4695 0.8479 0.2462
3.5 6.0 0.7761 −0.2633 −0.5730

I = 7/2
Jp Jn 0.000 1.125 1.125 4.875∗

3.5 0.0 0.8660 0.000 0.000 0.500
3.5 2.0 0.2152 −0.8924 −0.1358 0.3727
3.5 4.0 0.2887 0.1565 0.8014 0.500
3.5 6.0 0.3469 0.4232 −0.5826 0.6009

I = 9/2
Jp Jn 1.125 1.125 5.625∗

3.5 2.0 −0.1015 0.9416 −0.3212
3.5 4.0 0.4930 0.3280 0.08058
3.5 6.0 0.8641 −0.0766 −0.4975
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TABLE II. Energies (MeV) and wave functions of 44Ti with a J = 0, T = 1 pairing interaction.

I = 0
Jp Jn 0.000 0.750∗∗ 2.25 2.25

0.0 0.0 0.8660 −0.5000 0.000 0.000
2.0 2.0 0.2152 0.3737 0.8863 0.1712
4.0 4.0 0.2887 0.5000 −0.1244 −0.8070
6.0 6.0 0.3469 0.6009 −0.4461 0.5652

I = 1
Jp Jn 1.500∗ 2.250∗ 2.250∗

2.0 2.0 0.1992 0.9258 0.3212
4.0 4.0 0.4879 −0.3780 0.7868
6.0 6.0 0.8498 0.0000 −0.5270

I = 2
Jp Jn 1.000 1.250 1.750 2.250 2.250 2.250 2.250 2.250 2.250

0.0 2.0 0.6455 0.7071 −0.2887 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.0 0.0 0.6455 −0.7071 −0.2887 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.0 2.0 −0.1205 0.0000 −0.2694 0.6032 0.3665 −0.0549 −0.0618 −0.3799 0.5134
2.0 4.0 0.1730 0.0000 0.3869 −0.1407 −0.4053 −0.0033 0.2281 −0.7442 0.1746
4.0 2.0 0.1730 0.0000 0.3869 0.6458 0.1122 0.1532 0.1480 −0.0348 −0.5867
4.0 4.0 −0.0193 0.0000 −0.0431 0.0193 0.0946 −0.5433 0.8105 0.1821 0.0569
4.0 6.0 0.1403 0.0000 0.3138 0.3245 −0.4415 −0.5108 −0.3715 0.3276 0.2746
6.0 4.0 0.1403 0.0000 0.3138 0.0626 −0.0068 0.5991 0.2948 0.3981 0.5230
6.0 6.0 0.2292 0.0000 0.5125 −0.2997 0.6964 −0.2418 −0.2013 −0.0407 0.0973

I = 2 (with shift in energy to remove degeneracies)
Jp Jn 1.000 2.250 2.250 2.250 4.250∗ 5.250∗ 5.250∗ 10.750∗∗ 11.250∗∗

0.0 2.0 0.6455 0.0000 0.0000 0.0000 0.7071 0.0000 0.0000 −0.2887 0.0000
2.0 0.0 0.6455 0.0000 0.0000 0.0000 −0.7071 0.0000 0.0000 −0.2887 0.0000
2.0 2.0 −0.1205 0.1561 0.6065 0.6391 0.0000 0.0000 0.0000 −0.2694 −0.3350
2.0 4.0 0.1730 −0.3895 −0.1445 0.3056 0.0000 −0.6977 0.1151 0.3869 −0.2333
4.0 2.0 0.1730 −0.3895 −0.1445 0.3056 0.0000 0.6977 −0.1151 0.0869 −0.2333
4.0 4.0 −0.0193 0.1797 −0.3647 0.6726 0.0000 0.0000 0.0000 −0.0431 0.6623
4.0 6.0 0.1403 −0.0861 0.4752 −0.0728 0.0000 0.1151 0.6977 0.3138 0.3785
6.0 4.0 0.1403 −0.0861 0.4752 −0.0728 0.0000 0.1151 0.6977 0.3138 0.3785
6.0 6.0 0.2292 0.7906 −0.0757 0.0165 0.0000 0.0000 0.0000 0.5125 −0.2318

TABLE III. Energies (MeV) and wave functions of 43Sc with a QQ interaction.

I = 5/2
Jp Jn 2.8243 3.0148 5.1306∗

3.5 2.0 0.5053 0.7817 −0.3655
3.5 4.0 0.2885 0.2462 0.9253
3.5 6.0 0.8133 −0.5730 −0.1011

I = 7/2
Jp Jn 0.000 3.3016∗ 3.7874 5.4618

3.5 0.0 0.7069 −0.5000 0.4402 0.2376
3.5 2.0 0.6864 0.3727 −0.4393 −0.4439
3.5 4.0 0.1694 0.5000 −0.1549 0.8350
3.5 6.0 0.0216 0.6009 0.7676 −0.2218

I = 9/2
Jp Jn 1.4765 4.1843 5.6367∗

3.5 2.0 0.9032 −0.2847 −0.3212
3.5 4.0 0.4186 0.4188 0.8058
3.5 6.0 0.0949 0.8623 −0.4975
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TABLE IV. Energies (MeV) and wave functions of 44Ti with a QQ interaction.

I = 0
Jp Jn 0.000 6.6031∗∗ 7.5748 10.9236

0.0 0.0 0.7069 −0.5000 0.4402 0.2376
2.0 2.0 0.6864 0.3727 −0.4393 −0.4439
4.0 4.0 0.1694 0.5000 −0.1549 0.8350
6.0 6.0 0.0216 0.6009 0.7676 −0.2218

I = 1
Jp Jn 4.3648 ∗ 7.3405 ∗ 10.5620∗

2.0 2.0 0.9109 −0.2082 −0.3563
4.0 4.0 0.3967 0.2040 0.8950
6.0 6.0 0.1137 0.9566 −0.2684

I = 2
Jp Jn 0.9665 4.6015∗ 6.4691 7.7501 7.7502∗∗ 8.5695∗ 10.4893 10.6179∗∗ 10.7351∗

0.0 2.0 0.5807 −0.5255 0.2263 0.08223 −0.2887 −0.4146 0.1466 0.0000 0.2280
2.0 0.0 0.5807 0.5255 0.2263 0.08223 −0.2887 0.4146 0.1466 0.0000 −0.2280
2.0 2.0 −0.4331 0.0000 0.7001 −0.2689 −0.2694 0.0000 0.2554 −0.3350 0.0000
2.0 4.0 0.2513 −0.4562 0.1629 −0.35010 0.3869 0.3535 −0.2881 −0.2333 0.4085
4.0 2.0 0.2513 0.4562 0.1629 −0.35010 0.3869 −0.3535 −0.2880 −0.2333 0.4805
4.0 4.0 −0.0916 0.0000 0.4892 0.1211 −0.0431 0.0000 −0.5451 0.6623 0.0000
4.0 6.0 0.0403 −0.1255 0.0802 −0.2115 0.3138 0.4507 0.4533 0.3785 0.5302
6.0 4.0 0.0403 0.1255 0.0802 −0.2115 0.3138 −0.4507 0.4533 0.3785 −0.5302
6.0 6.0 −0.0099 0.0000 0.3198 0.75087 0.5125 0.0000 0.1334 −0.2318 0.0000

III. ASSIGNING QUANTUM NUMBERS
FOR J = 0, T = 1 PAIRING

Despite the fact that we have the energies and wave
functions of the J = 0+ and J = 1+ states from an explicit
matrix diagonalization. It is convenient to add a constant so
that the states that are not collective are at zero energy. When
this is done, the energies of the J = 0+ 44Ti states are

−2.25,−1.5,0, and 0 MeV

and the energies of the 1+ states are

−0.75,0, and 0 MeV.

We then fit these with the formula of Flowers and
Edmonds [7,8], as given in Talmi’s book [9],

E = C

{(
n− v

4

)
(4j + 8 − n− v) − T (T + 1) + t(t + 1)

}
.

(1)

TABLE V. Quantum numbers for 43Sc with a pairing interaction.

Energy J T t v

0 5/2 1/2 1/2 3
0 5/2 1/2 1/2 3
0 5/2 3/2 3/2 3
−1.125 7/2 1/2 1/2 1
−0.75 7/2 3/2 1/2 1
0 7/2 1/2 1/2 3
0 7/2 1/2 1/2 3
0 9/2 1/2 1/2 3
0 9/2 1/2 1/2 3
0 9/2 3/2 3/2 3

C is most easily determined by the isospin splitting of the
T = 2 state at −1.5 MeV relative to the −2.25 ground state
(in the shifted energies). We set −0.75 = 2 · 3C, so that
C = −0.125 (in general, C = −1

2j+1 ). The quantum numbers
are shown in Tables V and VI. Previously, Neergaard [10]
used this method to obtain quantum numbers in his study of
N = Z nuclei.

TABLE VI. Quantum numbers for 44Ti with a pairing interaction.

J = 0
Energy T t v

−2.25 0 0 0
−1.5 2 0 0
0 0 0 4
0 0 0 4

J = 1
Energy T t v

0 1 0 2
0 1 1 4
0 1 1 4

J = 2
Energy T t v

−1.25 0 1 2
0 0 0 4
0 0 0 4
0 0 0 4
−1.0 1 1 2
0 1 1 4
0 1 1 4
−0.5 2 1 2
0 2 2 4
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TABLE VII. Gamow-Teller matrix elements for selected scan-
dium isotopes.

7/2-7/2 E(0) MBZE E(7) QQ

43Sc 0.3849 −0.2088 −0.101 60 0.1207
45Sc 0.2666 0.0927 −0.0027 0.0255
7/2-5/2(43) 0 0.2020 0.2902 0.2763
7/2-5/2(45) 0 0.0459 −0.0022 0.000 792
7/2-9/2(43) 0 −0.0818 0.0168 0.008 380
7/2-9/2(45) 0 0.0008 −0.0028 −0.023 99

TABLE VIII. B(M1) values in 44Ti for I = 1 to I = 0 pairing
interaction.

State (v,T ,t) 000 400 400 020

210 2.699 63 8.0995 1.929 94 0.898 554
411 0 7.6793 0.111 74 0
411 0 1.918 66 2.892 21 0

IV. RESULTS

The GT operator is Cσt+. The wave functions for the
scandium isotopes are of the form∑

D(Jnv)[jp,Jn]I , (2)

with jp, the angular momentum of the single proton, equal to
7/2. Here D(Jnv) is the probability amplitude that the neutrons
couple to Jn. The matrix element from McCullen et al. [5] is

Mij =
∑

Di(j,Jn)Df (j,Jn)U (1jJf Jn; jJi). (3)

We put the results of the calculated matrix elements in
Table VII.

The results for the 7/2+ to 7/2− transitions are shown in the
first two rows above. We see that a J = 0, T = 1 pairing gives
the largest matrix element, MBZE is in the middle, and E(Jmax)
is the smallest. Thus, we have the systematic that deviations for
a J = 0, T = 1 pairing lead to reduced Gamow-Teller matrix
elements. It is not surprising that the realistic case, MBZE, is
in the middle because the two-body interaction used in that
calculation has both a low-lying J = 0 part and a low-lying
J = 7 part. Of perhaps greatest interest is the fact that the
matrix elements of GT for the E(0) interaction vanish when
Jf is different than Ji . We have here considered the cases
Ji = (7/2)1 and Jf = 5/2 or 9/2, both for 43Sc and 45Sc. It
was noted in Ref. [4] that the matrix elements from experiment
for the 7/2 to 7/2 decay and the 7/2 to 5/2 decay are almost
the same, in agreement with MBZE here and in disagreement
with E(0).

There is considerable discussion of the pairing interaction
in the 1993 book by Talmi [9]. He has a discussion of odd
tensor operators in space and spin but not isospin. It is there
shown that these operators conserve seniority. In this work on
GT we have a product of an odd tensor operator in spin and an
odd tensor operator in isospin. The general selection rules for
overall isospin are that Tf can be equal to Ti , Ti + 1, or Ti − 1.
We will soon see that in general the GT operator does not
conserve seniority. For the J = 0, T = 1 pairing interaction
the lowest state in 43Sc with Ji = j = 7/2 has seniority v = 1.
All other states for this and all other angular momenta have
v = 3 except the T = 3/2, J = j state which also has v = 1.
In the f7/2 shell the latter state is unique. We see from Table VII
that if our initial state is a v = 1 state with J = j (7/2 in
this case) and isospin T = 1/2 there is a nonvanishing matrix
element to a v = 1, T = 3/2 state and Jf = j . However, with
a J = 0, T = 1 pairing interaction the matrix element from the
v = 1 state to the v = 3 states with J = j + 1 or J = j − 1
vanishes. It should be noted that, although one constructs a
J = j , v = 1 state in say 43Sc by first adding two neutrons
coupled to Jn = 0 to the single proton, that is not the end
of the story. One must introduce isospin wave functions and
antisymmetrize. The values of D(Jn) for the v = 1, J = j ,
T = 1/2 state for Jn = 0, 2, 4, and 6 are, respectively, 0.8660,
0.2152, 2887, and 0.3469. Consider the matrix element

M ′ = N
(
ψJf

∑
σ t+(1 − P12 − P13){j (1)[j (2)j (3)]0}j

×p(1)n(2)n(3)
)
, (4)

where tz = −1/2 for a proton and +1/2 for a neutron. We can
replace

∑
σ t+ by 3σ (1)t+(1). Because t+n = 0 we see that

the (−P12 − P13) terms will not contribute. We are left with
3N (j [σj ]j )(ψJf {j (1)[j (2)j (3)]0}j ) and we can write ψJf =∑

DJf (Jnv)[jp,Jn]Jf . Hence the last factor is simply DJf (0).
However, for a seniority v = 3 final state, DJf (0) is equal
to zero. As mentioned before the only T = 3/2 state with
seniority v = 1 is the one with Jf = j . The J = 5/2 and
9/2 states all have v = 3 and hence the matrix element M ′
vanishes for those cases, but there is a problem. The state
on the right is a mixture of J = 7/2, v = 1, T = 1/2 and
J = 7/2, v = 1, T = 3/2. We next show that the T = 3/2 part
also vanishes and this implies that the T = 1/2 part will also
vanish. Consider a transition from J = 7/2−, v = 1, T = 3/2
in 43Sc to J = 5/2− or 9/2− with v = 3 in 43Ca. There is a
close relation between GT transitions and isovector magnetic
dipole (M1) transitions. If one removes the orbital part of the
M1, keeping only the spin, there is an isospin relation between
the two transitions. We can transform the GT problem to one
of M1 transitions in 43Ca. This is shown in the Appendix. We
note some recent interest in the J = 0 pairing interaction by

TABLE IX. B(M1) values in 44Ti for I = 1 to I = 2 pairing interaction.

State (v,T ,t) 201 400 400 400 211 411 411 221 422

210 1.0286 17.5613 0.0476 2.296 34 0 0 0 5.1433 0
411 0.1819 1.4508 0.0331 1.8904 0 0 0 0.9091 8.2364
411 0.5256 1.4562 2.0713 3.325 67 0 0 0 2.6275 0.4653
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TABLE X. B(M1) values in 44Ti for I = 1 to I = 0 QQ interaction.

I 01 02 03 04

11 1.3174 1.8021 0.1833 0.0414
12 0.0015 6.1454 9.0414 0.0577
13 0.0007 0.1535 0.9530 0.2052

Neergard [10] who studied the symplectic group structure of
various N = Z nuclei.

V. RESULTS IN 44Ti

We show calculated values of B(M1) for 44Ti for the pairing
interaction in Tables VIII and IX; for QQ in Tables X and XI.

We see that with the J = 0 pairing interaction there is a
nonzero transition from a J = 0, v = 0 state to a J = 1, v = 2
state; i.e., the M1 (or GT) operator does not conserve seniority.
We can, in analogy with what we did for scandium, form a
44Ti state [[jj ]0[jj ]0]0 and antisymmetrize. This will be an
admixture of J = 0, v = 0, T = 0 and J = 0, v = 0, T = 2.
We now have to show that the T = 2 part vanishes when we
overlap with a J = 1, v = 4, T = 1 state and this will lead to
the desired result that the T = 0 part vanishes. It is easier to use
an isospin transformation and consider the transition between
a unique J = 0, v = 0, T = 2 state in 44Ca to a v = 4, T = 1
state in 44Sc. The T = 2 state can be obtained by forming
the four neutron state [[jj ]0[jj ]0]0 and antisymmetrizing.
However, as shown before, we do not have to antisymmetrize
in the matrix element. Clearly, the v = 4, T = 1, J = 1+ state
will, even after antisymmetrization, not have any [[jj ]1[jj ]0]1

component. Thus, the T = 2 part vanishes and so will the
T = 0 part. We discuss the selection rules more systematically
in the next section.

VI. MORE RESULTS: A SYSTEMATIC LOOK AT B(M1)
SELECTION RULES FOR 44Ti and 46Ti

We gather the vanishing B(M1) values in 44Ti from
Tables VIII and IX. The selection rules for I = 1 to 0 are
presented in Table XII and for 1 to 2 in Table XIII. The
initial and final quantum numbers (v,T ,t) are shown for these
vanishings.

We next consider 46Ti. In Table XIV we consider 1 to 0 tran-
sitions and the selection rules are discussed in the Table XV. In
Table XVI we show the B(M1)’s from 1 to 2 in 46Ti and show
the seletion rules in Table XVII. Note that for 46Ti each column
correponds to a different I = 1 state.

TABLE XII. Selection rules for vanishing B(M1)’s: 44Ti I = 1
to I = 0.

Selection rule I = 1 I = 0

�v = 4 411 000
�v = 4 411 020

VII. DISCUSSION OF THE TABLES

We observe that B(M1)’s vanish in the following cases:

(a) in 44Ti and only for N = Z nuclei, from T = 1 to T = 1.
For all nuclei here considered 43Sc, 45Sc, 44Ti, 46Ti

(b) �T = 2 or more,
(c) �v = 4 or 6,
(d) �v = 2 and �t �= 0.

The selection rule for case (a) is well known. It is discussed
in several places including the book by Talmi [9]. It can be
explained by the vanishing of the Clebsh-Gordan coefficient
(1,1,0,0|1,0).

Case (b), where the change of isospin is 2 or more units,
is also easy to explain. These B(M1)’s obviously are zero
because the M1 operator is of rank 1 in isospin. Some examples
are (411)2 → (030) and (611)2 → (030).

In case (c) the change of seniority is more that 2 units, i.e.,
4 or 6. The B(M1)’s for these cases are also obviously zero
because the one-body M1 operator can only uncouple one J =
0 pair. Some examples are (411)2 → (010), (421)2 → (010),
(611)2 → (010), (220)2 → (611), and (421)2 → (030).

In case (d) we get vanishing B(M1)’s when seniority and
the reduced isospin simultaneously change. The M1 operator
can attack a J = 0 pair and increase the isospin but that will not
affect the particles not coupled to zero whose isospin is indeed
the reduced isospin. Examples of this are in the Sc isotopes
where J = 7/2, T = 1/2 transitions to J = 5/2 or 9/2 states
with T = 3/2 are forbidden with a pairing interaction. Also
in the Ti isotopes (611)2 → (412),(410)3,(422), and (220) →
(412),(411)2,(422),(421)2.

There is one ambiguity—the case I = 1+ to 2+; there are
two (421) states. One has a nonzero B(M1) to (211) and the
other does not. However, when there is a twofold degeneracy
one can take arbitrary linear combinations of the two states
and so get neither of the two B(M1)’s to be zero. We note
that there are some very large B(M1)’s, e.g., 12.13 for the
transition (410) to (220), I = 1 to 2 in 46Ti.

We mention briefly that Zamick [11] had previously
considered M1 transitions from J = 0+ ground states in Ti
isotopes to J = 1+ excited states in the context of scissor
modes. These transitions are sometimes called spin scissors

TABLE XI. B(M1) values in 44Ti for I = 1 to I = 2 QQ interaction.

I 21 22 23 24 25 26 27 28 29

11 0.885 292 0 5.0018 0.030 127 3 0.053 353 9 0 0.078 158 1 3.36014 0
12 0.012 688 2 0 3.301 66 18.1444 8.086 02 0 0.033 980 1 0.347936 0
13 0.000 092 473 5 0 0.180 103 0.276 92 0.534 714 0 5.13135 8.26883 0
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TABLE XIII. Selection rules for vanishing B(M1)’s: 44Ti I = 1
to I = 2.

Selection rule I = 1 I = 0

T = 1 ⇒ T = 1 210 211
T = 1 ⇒ T = 1 210 411
�v = 2,�t �= 0 210 422
T = 1 ⇒ T = 1 411 211
T = 1 ⇒ T = 1 411 211

excitations and have a fair amount of orbital content—not
just spin. They bear some analogy to the scissors modes in
deformed nuclei such as 156Gd [12].

In the Appendix we give detailed expressions for B(M1)’s
and B(GT). It should be noted that such a relation between
them has been previously discussed by Zamick and Zheng [13],
but not in such a complete way.
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APPENDIX

1. Formulas for B(GT)

The following formulas are

X1 =
∑
JpJn

Df (JpJn)Di(JpJn)U (1JpIf Jn; JpIi)

×√
Jp(Jp + 1), (A1)

X2 =
∑
JpJn

Df (JpJn)Di(JpJn)U (1JnIf Jp; JnI )

×
√

Jn(Jn + 1), (A2)

B(GT) = 0.5
2If + 1

2Ii + 1
f (j )2

[ 〈1Ti1MTi
|Tf MTf

〉
〈1Ti0MTi

|Tf MTi
〉
]2

× [X1 − (−1)If −Ii X2]2, (A3)

TABLE XIV. B(M1)’s in 46Ti: I = 1 to I = 0 pairing interaction.

State 411 411 611 611 220 421 421
(v,T ,t)

010 0 0 0 0 1.0799 0 0
410 2.8794 0.0491 0 0 2.4344 0.5611 0.4150
410 0.7573 5.7648 0 0 0.3947 0.1157 2.0588
611 1.0423 0.0987 2.3989 0.6317 0 3.1539 0.2640
611 0.0049 0.1721 0.0001 1.7267 0 0.0858 0.4450
030 0 0 0 0 9.7201 0 0

TABLE XV. Selection rules for vanishing B(M1)’s: 46Ti I = 1
to I = 0.

Selection rule I = 1 I = 0

�T = 2, �v = 4 411 030
�T = 2, �v = 4 611 030
�v = 4 411 010
�v = 4 421 010
�v = 6 611 010
�v = 4 220 611
�v = 4 421 030?
�v = 2,�t �= 0 611 410

TABLE XVI. B(M1)’s in 46Ti: I = 1 to I = 2 pairing interaction.

State 411 411 611 611 220 421 421
(v,T ,t)

211 0.9874 0.3326 0 0 1.3712 0.0272 0.0019
211 0.4367 0.1472 0 0 0.1715 0 0.3238
412 0.0916 1.5360 0 0 0 0.0607 0.4819
411 0.0847 0.0914 0.4365 0.0065 0 0.0374 0.0261
411 0.0041 0.0186 1.5191 0.0152 0 0.0846 0.0668
410 0.0646 1.6850 0 0 12.1303 0.0832 0.5004
410 3.5617 0.1189 0 0 2.9785 0.6431 0.5838
410 0.4668 2.4445 0 0 5.3986 0.0273 0.9432
611 2.1377 0.2523 2.3618 0.0555 0 2.9801 0.4370
611 0.2654 0.0135 0.1597 0.8390 0 0.0329 0.2333
611 0.0616 0.1344 7.1099 1.4178 0 1.4482 0.5082
611 0.0375 0.0024 0.0873 0.0461 0 0.0123 0.0127
611 0.1215 1.3291 0.0001 5.7321 0 0.0315 4.0036
221 2.2323 0.7524 0 0 2.5716 0.0398 0.0883
422 0.2746 4.6069 0 0 0 0.1821 1.4454
421 0.1804 0.0338 0.6123 0.0630 0 0.3563 0.0188
421 0.0862 0.2962 5.2534 0.0019 0 1.2615 0.2597
231 0 0 0 0 2.0572 0.5125 4.5230

TABLE XVII. Selection rules for vanishing B(M1)’s: 46Ti I = 1
to I = 2.

Selection rule I = 1 I = 2

�T = 2 411 231

�T = 2, �v = 4 611 231

�v = 4 611 211

�v = 4 220 611

�v = 2,�t �= 0 611 412

�v = 2,�t �= 0 611 410

�v = 2,�t �= 0 611 422

�v = 2,�t �= 0 220 412

�v = 2,�t �= 0 220 411

�v = 2,�t �= 0 220 422

�v = 2,�t �= 0 220 421
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where

f (j ) =
{ 1

j
if j = l + 1/2, e.g., f7/2,

−1
j+1 if j = l − 1/2, e.g., f5/2,

(A4)

f t = 6177

B(F ) + 1.583B(GT)
. (A5)

2. Formulas for B(M1)

The following is a formula for B(M1):

B(M1) = 3

4π

2If + 1

2Ii + 1

[
gjp

X1 + (−1)If −Ii gjn
X2

]2
. (A6)

Here

gj = gl ±
{

gs − gl

2l + 1

}
, (A7)

gsp
= 5.586, glp = 1, (A8)

gsn
= −3.826, gsln = 0. (A9)

For the case where Tf is not equal to Ti we find the following:

X1 = (−1)If −Ii+1X2, (A10)

B(M1) = 3

4π

2If + 1

2Ii + 1
(gjp − gjn)2X2

1, (A11)

B(GT) = 2
2If + 1

2Ii + 1
f (j )2

[ 〈1Ti1MTi
|Tf MTf

〉
〈1Ti0MTi

|Tf MTi
〉
]2

(X1)2.

(A12)

With this simplification we see that B(GT) is proportional
to B(M1). Using bare values we find B(GT)/B(M1) = 0.1411
for j = 7/2 in 44Ti. The magnetic moment is

μ

I
= gjp

+ gjn

2
+ gjp

− gjn

2(I + 1)

×
⎡
⎣∑

JpJn

|D(JpJn)|2[Jp(Jp + 1) − Jn(Jn + 1)]

⎤
⎦ .

(A13)
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