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We develop a method for calculating the bound and continuum energy spectrum of three particles interacting
through both short-range and Coulomb potentials. Our method combines hyperspherical coordinates with the
slow variable discretization approach. A complex absorbing potential is employed to describe accurately the
continuum wave functions. The method is well known in atomic and molecular physics. It is extended here to
nuclear physics, with a special emphasis on the long-range Coulomb interaction. The method is applied to compute
the energy spectrum of 12C in a 3α-particle model, focusing on an accurate calculation of the Hoyle resonance
width of the narrow near-threshold J π

n = 0+
2 state, which plays an important role in stellar nucleosynthesis.

We employ an effective α-α interaction potential which reproduces both the energy and width of 8Be, while a
three-body force is added in order to fix the 12C energy levels at the experimental values. We also analyze the
structure of the bound and resonance states by calculating the wave functions and one-dimensional distribution
functions.
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I. INTRODUCTION

Systems involving three particles interacting through the
Coulomb potential are complicated problems that have not
yet been completely solved or understood. The main difficulty
when solving the Schrödinger equation for three charged par-
ticles resides in describing reliably the three-body continuum
wave function. The treatment of the three-body continuum
wave function for such systems is of great importance in
nuclear, atomic, and molecular physics. One such problem
is the description of the astrophysically important continuum
states in 12C as a system of three α particles [1,2]. The 0+

2 state
(Hoyle state) lies above the three-body dissociation threshold
and therefore requires correct continuum conditions of the
three-body Coulomb problem. It has been intensively studied
in the past [3–9]. This near-threshold three-body resonance,
together with the low-energy α-α resonance of 8Be, is thought
to be of key importance for the description of the famous
triple-α reaction as the only explanation for the observed
abundance of 12C in the universe [10].

In the present work, we develop a method for calculating
the bound and continuum energy spectrum of three α particles
interacting through the Coulomb potential. Our method has
been extensively used in atomic and molecular three-body
problems [11,12]; it combines the hyperspherical coordinates
[13] with the slow variable discretization (SVD) approach.
The boson permutation symmetry is enforced using a modified
version of the Smith-Whitten coordinate system [14,15]. The
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SVD approach was introduced by Tolstikhin et al. [11] to
overcome the difficulties arising from the adiabatic expansion
scheme—the hyper-radial coupled-channel equations become
stiff to integrate when very sharp avoided crossings take
place between potential curves, as will be seen between the
α + 8Be channel and the α + α + α three-body continuum
channels in the three-α system. A complex absorbing potential
(CAP) is introduced in the asymptotic region in order to
absorb the dissociating flux [16,17], allowing us to obtain
resonance positions and widths as real and imaginary parts
of complex eigenenergies from the resulting system’s Hamil-
tonian without knowledge about the asymptotic form of the
adiabatic potential curves. For low-energy resonances, the
approach is more efficient than the complex scaling method
[18], where physical resonances cannot be clearly separated
from the continuum, especially when they have very narrow
widths.

Our method will be applied to calculate the continuum
(and bound) spectra for three α particles in 12C. The main
attention is focused on an accurate calculation of the resonance
width of the narrow Jπ

n = 0+
2 state. Convergence of the

resonance properties with respect to the basis size and the
CAP parameter will be carefully checked. A modified version
of the Ali-Bodmer potential [19] is adopted to describe the α-α
interaction while the three-body potential is employed to adjust
the bound and resonance energy levels at the experimental
values.

The organization of this paper is as follows: Section II
presents the theoretical approach. In Sec. III, we discuss the
results and analyses of the system under study. We finally
conclude and summarize in Sec. IV.
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II. METHOD

A. Slow variable discretization (SVD) approach

We solve the Schrödinger equation for three interacting
particles combining the hyperspherical coordinates [13] with
the SVD approach [11]. The method employed here was
applied to atomic three-body systems like Ne3 and HeNeH
in Refs. [20,21]. Since the method is described in details
in those references, we give mainly an outline here. Af-
ter the usual separation of the center-of-mass motion, we
describe the three-body problem using a modified version
of the Smith-Whitten democratic hyperspherical coordinates
(R,�) ≡ (R,θ,ϕ,α,β,γ ) [14,15,22–25]. We first introduce the
mass-scaled Jacobi coordinates [26,27] for three identical
particles:

�ρ1 = 31/4

21/2
(�r2 − �r1), �ρ2 = 21/2

31/4

(
�r3 − �r1 + �r2

2

)
, (1)

with �ri being the position coordinate of particle i. The hyper-
radius R = (ρ2

1 + ρ2
2 )1/2, R ∈ [0,∞), describes the global

size of the three-particle system (we can also write R2 =√
3

∑3
i=1(�ri − �Rcm)2 with �Rcm being the center-of-mass coor-

dinate), while the Euler angles (α,β,γ ) specify the orientation
of the body-fixed frame in space. The axes of this frame lie
along the principal axes of inertia: The z axis is parallel to
�ρ1 × �ρ2 and the x axis is associated with the smallest moment
of inertia. The two hyperangles (θ,ϕ) describe the shape of the
triangle formed by the three particles and are defined by

( �ρ1)x = R cos(π/4 − θ/2) cos(ϕ/2 + π/3),

( �ρ1)y = R sin(π/4 − θ/2) sin(ϕ/2 + π/3),

( �ρ2)x = −R cos(π/4 − θ/2) sin(ϕ/2 + π/3),

( �ρ2)y = R sin(π/4 − θ/2) cos(ϕ/2 + π/3).

(2)

The hyperangles θ and ϕ span the ranges [0,π/2] and [0,2π ],
respectively, after requiring the wave function to be single
valued [15]. As we will see below, the hyperangle ϕ can be
further restricted to the range [0,π/3] when the three particles
are indistinguishable.

In terms of a rescaled wave function ψ = R5/2�, with
� being the usual wave function, the Schrödinger equation
for three particles interacting through the potential V (R,θ,ϕ)
reads[

− �
2

2μ

∂2

∂R2
+ 2 + 15

4 �
2

2μR2
+V (R,θ,ϕ)

]
ψ(R,�)=Eψ(R,�),

(3)

where μ is the three-body reduced mass (μ = m/
√

3 for three
identical particles of mass m). 2 is the squared “grand angular
momentum operator” [15,23] and is given by

2 = − 4�
2

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+ 4

sin2 θ

(
i�

∂

∂ϕ
− cos θ

Jz

2

)2

+ 2J 2
x

1 − sin θ
+ 2J 2

y

1 + sin θ
+ J 2

z . (4)

The operators (Jx,Jy,Jz) are the body-fixed frame components
of the total angular momentum �J . The Schrödinger equa-

tion (3) must be solved for a given set of quantum numbers
(J,M,π ): J is the total angular momentum, M its projection on
a space-fixed axis, and π the parity with respect to the inversion
of nuclear coordinates. The interaction potential V (R,θ,ϕ) in
Eq. (3) is taken to be a sum of two-body potentials and a
three-body interaction, i.e.,

V (R,θ,ϕ) = v(r12) + v(r23) + v(r31) + w(r12,r23,r31), (5)

where rij are the interparticle distances. In terms of the
hyperspherical coordinates, they are

r12 = 3−1/4R[1 + sin θ cos(ϕ + 2π/3)]1/2,

r23 = 3−1/4R[1 + sin θ cos ϕ]1/2,

r31 = 3−1/4R[1 + sin θ cos(ϕ − 2π/3)]1/2.

(6)

The motion in R is first treated by introducing a set
of finite-element methods–discrete variable representation
(FEM-DVR) points and weights (rl,ωl) (l = 1,2, . . . ,L).
These are generated by dividing the hyper-radial range with
a set of N grid points and by further subdividing each of the
intervals with Mth-order shifted and scaled Gauss-Lobatto
quadrature points [28]. The total number of grid points
then equals L = (M − 1)(N − 1) + 1 with any two repeated
points being merged into a single point. The FEM-DVR
basis functions χl(R) (l = 1,2, . . . ,L) are constructed from
the FEM-DVR points and weights using the Lobatto shape
functions [29] and satisfy χl(rl′) = ω

−1/2
l δll′ . For details, see

Ref. [20].
Combined with the FEM-DVR basis, the SVD approach

consists of seeking for solutions of the Schrödinger equation
in the form

ψ(R,�) =
∞∑

ν=1

L∑
l=1

clνχl(R)�ν(rl ; �), (7)

where �ν(rl ; �) are the channel functions, which are solutions
of the adiabatic equation at a fixed hyper-radius R = rl :[

2 + 15
4 �

2

2μR2
+ V (R,θ,ϕ)

]
�ν(R; �) = Uν(R)�ν(R; �),

(8)

with Uν(R) being the adiabatic eigenenergies, or adiabatic
hyperspherical potential curves. The SVD approach in Eq. (7)
is adopted instead of the adiabatic expansion approach since
the latter approach cannot describe accurately the nonadiabatic
couplings when very sharp avoided crossings take place
between the potential curves. In standard hyperspherical calcu-
lation, the wave function (7) is expanded over hyperspherical
harmonics (K harmonics) [13,30]. The expansion, however,
is known to converge slowly, in particular for three-body
continuum states [31]. We will show later that the convergence
over ν [see Eq. (7)] is much faster. For solution of the adiabatic
equation, see Appendix A.

Insertion of ψ from Eq. (7) into the Schrödinger equation
from Eq. (3) results in a set of hyper-radial coupled-channel
equations:

∞∑
ν ′=1

L∑
l′=1

Tll′Oνl,ν ′l′cl′ν ′ + Uν(rl)clν = Eclν, (9)
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where Oνl,ν ′l′ = 〈〈�ν(rl ; �)|�ν ′(rl′ ; �)〉〉 are the overlap ma-
trix elements between adiabatic channels defined at different
quadrature points R = rl and rl′ , and the double bracket
denotes integration over the five angular coordinates �. Tll′

are the hyper-radial kinetic energy matrix elements and are
given in Ref. [20].

B. Complex absorbing potential (CAP)

A CAP is used to simulate an infinite hyper-radial grid.
CAPs are defined to be nonzero only in the asymptotic region,
converting the outgoing waves into exponentially decreasing
functions, thus allowing for the use of L2 (basis expansion)
methods. The functional form and parameters of CAPs need to
be optimized in order to minimize transmission and reflection
properties of these potentials. A CAP is purely imaginary and
must be added to the adiabatic potentials Uν(R), so that

Uν(R) → Uν(R) − iWν(R). (10)

This transforms the coupled-channel equations (9) into a
complex symmetric generalized eigenvalue problem. The
eigenenergies corresponding to the bound states do not change
under this transformation, but those corresponding to the
resonances are obtained in the form

E = Er − i�/2, (11)

where Er is the resonance position and � is the width
(inverse of lifetime). The eigenenergies corresponding to the
continuum states may depend on the form of a CAP and its
parameters, but the resonance positions and widths should not.
Various CAPs were proposed and tested in the past (see Refs.
[32–34] and references therein), while Blandon et al. [12]
combined CAPs with the hyperspherical SVD approach.

In the present work, we adopt the transmission-free (TF)
CAP proposed by Manolopoulos [16] and Gonzalez-Lezana
et al. [17] and tested by Grozdanov et al. [35]. The main
advantage of this potential is its ability to be used for a wide
range of kinetic energies of interest without the necessity of
optimizing any of its parameters. The TF-CAP is given by

W (R) =
{

0, R < Ra,
4Emin
C2

[
1

(1−x)2 + 1
(1+x)2 − 2

]
, Ra � R < Rmax,

(12)

where C = 2.62206. Emin is the lowest scattering energy of
interest, Ra defines the border between the interaction and
asymptotic regions, and x = (R − Ra)/D. The absorption
length D = Rmax − Ra is taken to be equal to the de Broglie
wavelength corresponding to Emin. We mention here that
it would be possible to introduce channel-dependent CAPs
Wν(R) instead of a channel-independent CAP W (R), but the
latter one is adequate in our case, since, as will be seen, all
the adiabatic potential curves approach one single threshold,
i.e., the three-body dissociation threshold. In Appendix B, we
illustrate the method with the simple α-α system.

III. RESULTS AND DISCUSSION

A. Conditions of the calculations

For the two-body potential v(r), we use the sum of an α + α
potential and the Coulomb potential,

v(r) = vαα(r) + vC(r), (13)

with

vαα(r) = 125e−r2/1.532 − 30.18e−r2/2.852
(14)

and

vC(r) = 4e2

r
erf(0.60141r). (15)

Here, the potential parameters are given in units of MeV
for energy and femtometers for length. The mass m of α
particle is set to �

2/m = 10.5254408 MeV fm2 and the charge
constant e2 to 1.4399644 MeV fm. vαα is the S-wave potential
used in Ref. [3] that is obtained by slightly modifying the
Ali-Bodmer potential [19]. Note that the above two-body
potential (vαα + vC) gives one S-wave 8Be resonance state,

of which the position and width are given respectively by
εr

0 = 88.83966 keV and γ0 = 5.66 eV. These values are
determined by solving the two-body Schrödinger equation
using fifth-order basis splines and a TF-CAP. These resonance
position and width are in good agreement with experimental
data [36]: 91.8 keV and 5.57 ± 0.25 eV. In what follows
we assume that the α + α potential of Eq. (13) acts on all
partial waves of the α-α relative motion. This indicates that
our potential is slightly too repulsive for D and G waves, but
it is readjusted by the three-body potential w. The three-body
potential w can be taken to be a simple Gaussian

w(R) = w
(Jπ)
3 exp

( − R2
/
b2

3

)
, (16)

which depends only on the hyper-radius R. The range param-
eter is taken to be b3 = 2.58 fm, while the strength parameter
w

(Jπ)
3 will be adjusted to reproduce the desired energy level

for a given Jπ . Since the three-body potential depends only
on the hyper-radius R, we can omit it when solving the
adiabatic equation (8) and incorporate it instead into the
hyper-radial coupled-channel equations (9). Figure 1 displays
two-dimensional contour plot of the potential energy surface
without three-body term,

∑3
i<j v(rij ), at a fixed hyper-radius

R = 10 fm as a function of the hyperangles θ and ϕ. Due to
the presence of three identical particles, the potential energy
surface is invariant under translation by 2π/3 in the ϕ direction.
In addition, it is invariant under reflection about π/3. The
two-body coalescent points with r12 = 0, r23 = 0, and r31 = 0
correspond respectively to (θ,ϕ) = (π/2,π/3), (π/2,π ), and
(π/2,5π/3), as has been explained above. The contour lines
surround these coalescent points in the form of ellipses. As R
increases, the contour lines shrink and approach the coalescent
points.

014004-3



HIROYA SUNO, YASUYUKI SUZUKI, AND PIERRE DESCOUVEMONT PHYSICAL REVIEW C 91, 014004 (2015)

0 0.1 0.2 0.3 0.4 0.5
θ (π rad)

0

0.5

1

1.5

2
ϕ 

(π
 ra

d)

r31=0

r23=0

r12=0

FIG. 1. (Color online) Two-dimensional contour plot of the po-
tential energy surface without three-body term,

∑3
i<j v(rij ), at a fixed

hyper-radius R = 10 fm as a function of the hyperangles θ and ϕ

for the three-α system. The solid lines show the lowest contour line
shown here (−4 MeV); the dashed lines show the second lowest
contour line (−2 MeV). The other lines correspond to 0 MeV and
2 MeV. The closed circles indicate the two-body coalescent points.

B. Adiabatic potential curves

In the present work, we restrict ourselves to the Jπ = 0+
and 2+ symmetries, although the other symmetries can be
treated easily. Figures 2(a) and 2(b) show the lowest adiabatic
hyperspherical potential curves for the three-α system in
those symmetries. These potential curves are calculated with
the three-body potential (16) with w

(0+)
3 = −152.2 MeV for
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FIG. 2. (Color online) The 10 lowest adiabatic hyperspherical
potential curves Uν(R) of the three-α system for (a) J π = 0+ and
(b) J π = 2+. In both panels (a) and (b), the inset shows the crossings
between the potential curves corresponding to the 8Be resonance.

Jπ = 0+ and w
(2+)
3 = −179.5 MeV for 2+. They are chosen

to reproduce the energies of the 0+
2 and 2+

1 states. All these
potential curves correspond asymptoticaly to the three-body
continuum states and approach the three-body dissociation
threshold Uν(R) → 0 in the limit of large hyper-radii R → ∞.

Convergence of the potential curves with respect to the basis
splines in θ and ϕ can be determined by computing them for
different numbers of grid points Nθ and Nϕ from which they are
generated. To do so, we choose the Jπ = 0+ symmetry and cal-
culate the several lowest eigenenergies at a fixed hyper-radius
R = 20 fm. If we compare the 25 lowest adiabatic eigenen-
ergies for (Nθ,Nϕ) = (40,60) and (60,90), the maximum of
the fractional differences |(U (40,60)

ν − U (60,90)
ν )/U (40,60)

ν | (ν =
1 − 25) between the adiabatic eigenenergies from the (40,60)
and (60,90) is found to be 5 × 10−11. This implies that these
eigenenergies are converged to more than ten significant digits
with respect to the basis splines in θ and ϕ, and we use therefore
(Nθ,Nϕ) = (40,60) for all the calculations throughout this
work.

In Fig. 2, we can observe a series of sharp avoided
crossings for both the Jπ = 0+ and 2+ states; see the insets.
These avoided crossings are due to the slowly decreasing
two-cluster α + 8Be channel (the lowest potential curve at
small R) that comes across the rapidly decreasing three-
body α + α + α channels. The two-cluster potential curve
approaches asymptotically the 8Be ground-state energy level
and is expressed as Uα+8Be(R) = εr

0 + q̃R−1 + O(R−2), with
εr

0 being the 8Be energy level and q̃ the Coulomb parameter
q̃ = 8 × 21/2e2/31/4. Such avoided crossings therefore take
place whenever the two-body subsystem supports a resonance
energy level above the three-body dissociation threshold.
The adiabatic channel functions certainly exchange their
characteristics through these avoided crossings. This can be
seen by computing the contributions of the different terms in
the adiabatic Hamiltonian to the potential curves as functions
of the hyper-radius R. Figures 3(a) and 3(b) show the contri-
butions of the centrifugal potential 〈〈�ν |2/(2μR2)|�ν〉〉, the
nuclear potentials 〈〈�ν |

∑
ij vαα(rij )|�ν〉〉, and the Coulomb

potentials 〈〈�ν |
∑

ij vC(rij )|�ν〉〉 to the two lowest potential
curves U1(R) and U2(R) for 0+, from which we see an
avoided crossing occurring at R ≈ 140 fm. The three-body
term is found to be negligibly small compared with the other
contributions. At hyper-radii smaller than this value, the lowest
curve U1(R) exhibits the nature of the two-cluster α + 8Be
channel (the centrifugal potential, the nuclear potentials, and
the Coulomb potentials comparable in magnitude with each
other), whereas the second curve U2(R) shows the charac-
teristics of a three-body α + α + α continuum channel (the
Coulomb potentials are by far dominant over the centrifugal
potential and the nuclear potentials). At hyper-radii larger than
R ≈ 140 fm, these two different characteristics are found to
be exchanged, and the lowest curve behaves as a three-body
channel and the second lowest one as the two-cluster channel.
We can also see that a similar exchange takes place between
U2(R) and U3(R) at R ≈ 180 fm, beyond which U2(R) shows
again the nature of a three-body channel.

The asymptotic behavior of the three-body curves with
the Coulomb interaction is not well known in contrast to
three-body systems only with short-range potentials. The
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FIG. 3. (Color online) Contributions of the centrifugal
potential 〈〈�ν |2/(2μR2)|�ν〉〉, the nuclear potentials
〈〈�ν |

∑
ij vαα(rij )|�ν〉〉, and the Coulomb potentials

〈〈�ν |
∑

ij vC(rij )|�ν〉〉 to the two 0+ lowest potential curves
(a) U1(R) (ν = 1) and (b) U2(R) (ν = 2), as functions of the
hyper-radius R.

radial wave function in the asymptotic region would be
obtained analytically as Coulomb functions if the potential
curve behaved there as Uν(R) ≈ a/R + b/R2. If we fit the
lowest 0+ potential curve using this expression at hyper-radii
R ∈ [400,600] fm, we obtain a = 23.3 MeV fm and b =
265 MeV fm2. At hyper-radii R ∈ [800,1000] fm, we obtain
a = 23.1 MeV fm and b = 367 MeV fm2. This implies that the
coefficients a and b are hardly constant even in the asymptotic
region, as already noticed by Macek [37]. With short-range
interaction, the potentials behave as Uν(R) ∼ 1/R3 at large
distances [38]. The problem is stronger with the Coulomb
interaction where couplings appear. In this way, we confirm
that the above expression does not hold for three-body systems
with both short-range and Coulomb interactions and the
hyper-radial wave function cannot be a linear combination
of the Coulomb functions in the asymptotic region.

C. 12C spectrum

The bound-state and resonance energies E(Jπ
n ) are obtained

by solving the coupled-channel hyper-radial equations in
Eq. (9) with the sum over ν truncated at νmax. In the case
of the lowest bound state (n = 1) in each symmetry, the upper
and lower limits of the energy level can be estimated by the
adiabatic and Born-Oppenheimer (BO) solutions, respectively
[39,40]. The adiabatic solution corresponds to solving Eq. (9)
with only one channel ν, neglecting all coupling elements
between different channels, that is, Oνl,ν ′l′ = 0 for ν = ν ′. The
lowest ν = 1 energy level obtained from Eq. (9) neglecting all
coupling elements between different channels gives a varia-
tional upper limit to the lowest state energy. One can also solve

TABLE I. Bound-state and resonance energies E(J π
n ) in MeV for

the three-α system at various levels of approximation.

J π
n 0+

1 0+
2 2+

1

BO −9.414838 0.2547141 − i1.28 × 10−8 −3.045527
Adiabatic −9.200581 0.4863017 − i2.15 × 10−5 −2.470521
νmax = 5 −9.300869 0.3672566 − i4.90 × 10−6 −2.837064
10 −9.300921 0.3669086 − i4.73 × 10−6 −2.839370
15 −9.300922 0.3668920 − i4.70 × 10−6 −2.839438
20 −9.300922 0.3668886 − i4.69 × 10−6 −2.839452
25 −9.300922 0.3668877 − i4.68 × 10−6 −2.839452

Eq. (9) by further setting Oνl,νl′ = 1, which is equivalent to
solving a one-dimensional Schrödinger equation with potential
Uν(R). This corresponds to the Born-Oppenheimer solution.
The lowest resulting energy for ν = 1 gives a rigorous lower
limit to the lowest state energy. Finally, solving Eq. (9) with the
sum truncated at ν,ν ′ = νmax gives variational approximations
to the exact energies. These energies will thus converge to the
exact energies from above in the limit νmax → ∞. Table I
summarizes these different levels of approximation to the
bound-state and resonance energies of the three-α system in
the Jπ = 0+ and 2+ symmetries. The lowest state (n = 1) in
both symmetries is found to converge rapidly with respect to
νmax and be accurate to more than seven significant digits with
νmax � 20. In contrast, convergence is a little slower for the
Jπ

n = 0+
2 state, and its resonance position and width are shown

to be accurate respectively to 5 and 2 significant digits with
νmax � 20.

In the calculations shown in Table I, the hyper-radial FEM-
DVR basis functions have been constructed by decomposing
the hyper-radial range 0.01 � R � 200 fm into 30 intervals
(N = 31) and further subdividing each interval with 10-point
Gauss-Lobatto quadrature (M = 10). The convergence with
respect to the FEM-DVR basis will be checked below by
extending the hyper-radial range up to R = 300 fm with 6
additional intervals (N then equals 37) or using a larger Gauss-
Lobatto quadrature with M = 15. In addition, convergence
must also be tested with respect to the minimum scattering
energy Emin in the TF-CAP in Eq. (12), although we have used
only Emin = 0.05 MeV in the calculations shown in Table I. We
have therefore focused on the Jπ

n = 0+
2 state and calculated its

resonance position and width for different FEM-DVR bases
and different scattering energies, with the fixed number of
potential curves νmax = 25. The results of these convergence
tests are shown in Table II. Here, we can see that the 0+

2
resonance position and width are converged at least to 6
and 2 significant digits, respectively. In conclusion, we have
obtained two states with E(0+

1 ) = −9.300922 MeV, E(0+
2 ) =

0.36689 − i4.7 × 10−6 MeV for Jπ = 0+, and one state with
E(2+

1 ) = −2.839452 MeV for Jπ = 2+. The 0+
1 energy is

lower than the experimental value of −7.46 MeV [41], whereas
the 2+

1 energy is close to the experimental value of −3.02 MeV.
The 0+

2 Hoyle resonance parameters Er (0+
2 ) = 0.36689 MeV

and �(0+
2 ) = 9.4 eV can be compared with the experimental

values, Er
exp(0+

2 ) = 0.38 MeV and �exp(0+
2 ) = 8.5 ± 1.0 eV

[41]. We can see that our resonance width agrees with the
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TABLE II. Resonance energies E(0+
2 ) calculated with different

values of the CAP scattering energy Emin and different FEM-DVR
bases. Rmax is the border of the hyper-radial FEM-DVR grid, and M
is the order of the Gauss-Lobatto quadrature.

Emin (MeV) Rmax (fm) M E(0+
2 ) (MeV)

0.02 200 10 0.3668877 − i4.69 × 10−6

300 10 0.3668877 − i4.69 × 10−6

0.05 200 10 0.3668877 − i4.68 × 10−6

15 0.3668877 − i4.69 × 10−6

300 10 0.3668877 − i4.69 × 10−6

15 0.3668877 − i4.69 × 10−6

0.08 200 10 0.3668878 − i4.69 × 10−6

300 10 0.3668878 − i4.69 × 10−6

experimental one within the experimental uncertainty. This
indicates that the width of the Hoyle state is not very sensitive
to the short-range α-α potential, as we use an l-independent
Ali-Bodmer potential, fitted to the l = 0 phase shifts.

D. Discussion of the wave functions

The hyper-radial wave functions at FEM-DVR points can
be easily calculated from the coefficient clν in Eq. (7) via
Fν(rl) = ω

−1/2
l clν . The hyper-radial wave functions associ-

ated with the bound and resonance states are shown in
Figs. 4(a)–4(c). Figure 4(a) shows the squared first hyper-radial
component |F1(R)|2 for the Jπ

n = 0+
1 state, while the other
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)|2  (f
m
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)
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ν(R

)|2  (f
m

-1
)

ν=1
    2
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ν=1
    2

(a) Jn
Π=01

+

(b) Jn
Π=02

+

(c) Jn
Π=21

+

X10

X10

FIG. 4. (Color online) The squared hyper-radial wave functions
|Fν(R)|2 for the bound and resonance states of the three-α system.
(a) J π

n = 0+
1 state: the first ν = 1 hyperradial component in the

expansion in Eq. (7) is shown; (b) J π
n = 0+

2 state: the first ν = 1
and second ν = 2 hyper-radial components in the expansion in Eq.
(7) are shown respectively as solid and dashed lines; and (c) the same
as for panel (b) but for J π

n = 2+
1 state. The ν = 2 components drawn

here are magnified 10 times.

components |Fν(R)|2 (ν = 2,3, . . . ) are too small to be shown
here. Figure 4(b) shows the first and second hyper-radial
components |Fν(R)|2 (ν = 1,2) for the Jπ

n = 0+
2 state, and

the other components are negligibly small. In the same
way, the hyper-radial components are shown for Jπ

n = 2+
1

in Fig. 4(c). For each of the bound and resonance states,
the first component F1(R) clearly dominates over the other
ν components Fν(R) (ν = 2,3, . . . ). The peak position of
those dominant components suggests the overall spatial size
of the bound and resonance states. Using these hyper-radial
wave functions, we can also calculate the root-mean-square
(rms) radius of the three-α system,

√
〈R2〉/33/4. The averaged

squared hyper-radius can be obtained from

〈R2〉 =
∫

dR

∫
d�ψ∗(R,�)R2ψ(R,�) ≈

∑
l

∑
ν

|clν |2r2
l .

(17)
We obtain

√
〈R2〉/33/4 = 1.78, 3.61, and 1.91 fm for Jπ

n = 0+
1 ,

0+
2 , and 2+

1 states, respectively. With use of the rms radius of
α particle, 1.42 fm, these values indicate the rms radii of the
respective states of 12C as 2.28, 3.88, and 2.38 fm.

To obtain more information on the geometric structure of
the three-α system, we need to analyze the total wave function
ψ(R,�) ≡ ψ(R,θ,ϕ,α,β,γ ), which is a six-dimensional wave
function. Although it is not trivial to deal with a six-
dimensional wave function, we can reduce its dimensionality
by defining the “three-dimensional (3D) probability density
function” as

D(R,θ,ϕ) = sin 2θ

∫ 2π

0
dα

∫ π

0
sin βdβ

×
∫ 2π

0
dγ |ψ(R,θ,ϕ,α,β,γ )|2, (18)

which we can express at hyper-radial FEM-DVR points R = rl

as

D(rl,θ,ϕ) = ω−1
l sin 2θ

×
∑

ν

∑
ν ′

∑
K

c∗
lνclν ′φ∗

Kν(rl ; θ,ϕ)φKν ′ (rl ; θ,ϕ).

(19)

We introduce the “two-dimensional (2D) probability density
functions” by integratingD(R,θ,ϕ) over one of the R, θ , and ϕ
coordinates. For example, the 2D probability density function
in θϕ space is obtained by integrating over R, i.e.,

D(θ,ϕ) =
∫ ∞

0
dRD(R,θ,ϕ) ≈

∑
l

D(rl,θ,ϕ)ωl. (20)

Contour plots of the 2D probability density functions
for Jπ

n = 0+
1 and 0+

2 states of the three-α system are
presented in Figs. 5(a) and 5(b). The 0+

1 state is found to
maximize around (R,θ,ϕ) ≈ (3.5fm,0.12π,0), but spreads
widely in the ϕ direction. In terms of the interparticle
distances in Eq. (6), this maximum position corresponds to
(r12,r23,r31) ≈ (2.4,2.4,3.1) fm, for which the three-particle
system displays an isosceles triangle. The 0+

2 state also
extends widely in the ϕ direction, but displays two peak
positions at (R,θ,ϕ) ≈ (3 fm,0.12π,0) and (6.5 fm,0.2π,0),
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FIG. 5. (Color online) Contour plots of the 2D probability den-
sity functions for the J π

n = 0+
1 and 0+

2 states of the three-α system
(a) in Rθ space, (b) in θϕ space, and (c) in Rϕ space. The 0+

1 state is
indicated by solid lines and the 0+

2 state by dashed lines.

which correspond respectively to (r12,r23,r31) ≈ (2.1,2.1,2.7)
fm and (4.2,4.2,6.2) fm. The peak at smaller R appears to
be a consequence of the orthogonality to the 0+

1 state. The 2+
1

state can also be analyzed in a similar way. It has the intrinsic
structure similar to that of the 0+

1 state.
These two-dimensional (2D) contour plots do not allow

for the direct identification of geometrical configurations. The
three-dimensional (3D) probability density functions can be
nevertheless be converted easily into one-dimensional (1D)
pair and angle distributions. These distribution functions are
shown for the Jπ

n = 0+
1 , 0+

2 , and 2+
1 states in Fig. 6. The pair

distribution functions are shown in Fig. 6(a). We calculate
r12, r23, and r31 as defined in Eq. (6) for each R, θ , and
ϕ and sort the interparticle distances into P (r), which we
normalize as

∫ ∞
0 P (r)r2dr = 1. In Fig. 6(b), we show angle

cosine distribution functions P (cos ϑ) where ϑ is the bond
angle, cos ϑijk = (r2

ij + r2
jk − r2

ki)/(2rij rjk). For each R, θ ,
and ϕ, there are three bond angles. We normalize the cosine
distribution functions P (cos ϑ) as

∫ 1
−1 P (cos ϑ)d(cos ϑ) = 1.

The pair distribution functions for the 0+
1 state is strongly

peaked around 2.8 fm. The 2+
1 state is shown to be peaked

almost at the same distance as the 0+
1 state. In contrast the

pair distribution of the 0+
2 state is much extended, as was

pointed out in the literature [42–45]. The pair distribution
functions for the 0+ state obtained in a microscopic three-α
cluster model [44] show structure similar to that in Fig. 6(a).
By comparing these distribution functions, it is clear that the
structure of the 0+

2 state is quite different from the other two.
The angle cosine distribution functions for both the 0+

1 and 2+
1

states show broad peaks around cos ϑ ≈ 0.67, or ϑ ≈ 0.27π .
This suggests a scalene triangle that fluctuates around the
equilibrium structure, but can be found very often in much
distorted shapes. The cosine distribution of the 0+

2 state is
much different from the other two and extends all the way
from −1 to +1, with a maximum close to, but not exactly,

0 5 10 15 20
r (fm)

0

0.01

0.02

0.03

0.04

0.05

0.06

P(
r)

 (f
m

-3
)
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+

      02
+

      21
+

-1 -0.5 0 0.5 1
cosϑ

0

0.5

1

1.5

2

P(
co

sϑ
)

Jn
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+

      02
+

      21
+

(a)

(b)

FIG. 6. (Color online) (a) Pair distribution P (r) and (b) angle
cosine distribution P (cos ϑ) for the J π

n = 0+
1 , 0+

2 , and 2+
1 states.

+1. Since a cosine of +1 corresponds to an angle of zero, this
suggests that nearly linear configurations are important. Note
that one or two of the three bond angles are zero for a perfect
linear configuration. This angle distribution function for the
0+

2 state shows a very similar nature to the ground state of the
atomic 4He trimer in Ref. [46], often characterized as a very
weakly bound state.

IV. SUMMARY

In this work, we have developed a method for calculating
the bound and continuum energy spectrum of three particles
interacting through the Coulomb potential. The method has
been applied to calculate the energy spectrum of 12C in
a 3α-particle model, focusing on accurate calculation of
the Hoyle resonance width of the extremely narrow near-
threshold Jπ

n = 0+
2 state. A combination of the slow variable

discretization approach with a complex absorbing potential
has allowed us to accurately describe the continuum states of
three charged particles and to calculate the resonance width,
converging to at least two significant digits, indicating that
the near-threshold continuum spectrum is correctly described.
This work can be considered as a first step towards accurate
description of the famous low-energy triple-α reaction, which
is of key importance for stellar nucleosynthesis as a unique
possibility for helium burning that allows further synthesis of
heavier elements. We are currently working for calculating the
triple-α reaction rate.

ACKNOWLEDGMENTS

The work of Y.S. is supported in part by JSPS KAKENHI
Grant No. 24540261. He thanks C. H. Greene and D. Blume
for several inspiring discussions made during the INIT_14_1
Program “Universality in Few-Body Systems: Theoretical

014004-7



HIROYA SUNO, YASUYUKI SUZUKI, AND PIERRE DESCOUVEMONT PHYSICAL REVIEW C 91, 014004 (2015)

Challenges and New Directions” (March 10–May 16 2014,
University of Washington). H.S. thanks Dr. Emiko Hiyama for
her encouragement during this work.

APPENDIX A: SOLUTION OF THE ADIABATIC
EQUATION

In order to solve the adiabatic equation (8), we expand the
channel functions on Wigner D functions [47]

�JMπ
ν (R; �) =

∑
K

φKν(R; θ,ϕ)DJ
KM (α,β,γ ). (A1)

The quantum number K denotes the projection of �J on
the body-fixed z axis and takes the values J,J − 2, . . . ,
− (J − 2), − J for the “parity-favored” case, π = (−1)J ,
and J − 1,J − 3, . . . , − (J − 3), − (J − 1) for the “parity-
unfavored” case, π = (−1)J+1, since K should be even for
even parity and odd for odd parity [15]. The resulting complex
coupled equations in θ and ϕ are solved by expanding
φKν(R; θ,ϕ) onto a direct product of fifth-order (k = 5) basis
splines [48]. We generate basis splines for θ from Nθ mesh
points and for ϕ from Nϕ mesh points. Convergence of the
adiabatic potential curves with respect to the basis splines can
be checked by computing them for different numbers of grid
points Nθ and Nϕ . For small hyper-radii R, a uniform mesh
can be employed; for large R, the mesh may be designed so
that it becomes dense around the two-body coalescence points
around (θ,ϕ) ≈ (π/2,π/3), (π/2,π ), and (π/2,5π/3), where
the potential energy surface V (R,θ,ϕ) changes significantly,
as is explained in Sec. III A. All matrix elements are calculated
by integrating numerically with shifted and scaled Gauss-
Legendre quadratures.

The identical particle symmetry was built into the adiabatic
equation (8) via the boundary conditions in ϕ. For details, see
Ref. [47]. In particular, the channel functions must be invariant
under the permutation operations P12P31 (ϕ → ϕ + 2π/3,
γ → γ + π ) and P23 (ϕ → 2π/3 − ϕ, β → π − β, γ →
2π − γ ). This leads to

�ν(R; θ,ϕ,α,β,γ ) = �ν(R; θ,ϕ + 2π/3,α,β,γ + π ) (A2)

= �ν(R; θ,2π/3 − ϕ,α,π − β,2π − γ ).

(A3)

These constraints result in boundary conditions at ϕ = 0 of

(−1)J+Kφ−Kν(R; θ,0) = φKν(R; θ,0), (A4)

(−1)J+K+1 ∂φ−Kν

∂ϕ

∣∣∣∣
ϕ=0

= ∂φKν

∂ϕ

∣∣∣∣
ϕ=0

, (A5)

and those at ϕ = π/3 of

(−1)J φ−Kν(R; θ,π/3) = φKν(R; θ,π/3), (A6)

(−1)J+1 ∂φ−Kν

∂ϕ

∣∣∣∣
ϕ=π/3

= ∂φKν

∂ϕ

∣∣∣∣
ϕ=π/3

, (A7)

and we only need to consider the range ϕ ∈ [0,π/3] (including
thus only one two-body coalescence point).

APPENDIX B: TEST CALCULATION OF 8Be(0+)
RESONANCE PARAMETERS

As we mention in the text, the S-wave 8Be resonance for the
simple α-α potential (vαα + vC) is described accurately with
the help of the TF-CAP. In this appendix we illustrate how
the 8Be(0+) resonance parameters (ER and �) depend on Emin

and Rmax of the TF-CAP, as well as on the basis dimension N .
For this purpose we use here well-known basis functions, the
Legendre polynomials, and we expand the S-wave α-α relative
motion function as

u(r) =
N−1∑
�=0

c�f�(x) (B1)

with

f�(x) =
√

2

Rmax
[P�(x) + a+

� PN (x) + a−
� PN+1(x)]. (B2)

Here x = 2r/Rmax − 1 and the last two terms of f�(x)
are added so as to satisfy the boundary condition, u(0) =
u(Rmax) = 0, which leads to a±

� = − 1
2 [1 ± (−1)N−�]. The

converged values obtained with large fifth-order basis splines
(see text) are ER = 88.84 keV and � = 5.66 eV.

The overlap and kinetic energy matrix elements with the
basis (B2) are evaluated analytically. The potential energy
matrix element is obtained with a Gauss-Legendre quadrature.
We use the potentials (14) and (15) for the α-α interaction,
and introduce the CAP (12) with different values for Emin

and Rmax. Table III lists the resonance parameters obtained

TABLE III. Resonance parameters of 8Be (0+) calculated with
Legendre polynomial basis. The exact values are ER = 88.84 keV
and � = 5.66 eV.

Emin (MeV) Rmax (fm) N ER (keV) � (eV)

0.15 100 60 88.86 4.75
80 88.84 4.31

100 88.84 4.31
0.15 200 80 88.89 8.21

100 88.84 8.21
150 88.84 8.20

0.10 200 80 88.88 8.12
100 88.84 8.08
150 88.84 8.06

0.05 200 80 88.88 5.24
100 88.84 5.21
150 88.84 5.20

0.05 300 100 88.88 5.99
150 88.84 5.90
200 88.84 5.90

0.02 200 80 88.88 5.53
100 88.84 5.50
150 88.84 5.49

0.02 300 100 88.88 5.78
150 88.84 5.68
200 88.84 5.68
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for different choices of the CAP parameters. In all cases the
resonance energy is found to be stable at least for four digits if
N is taken sufficiently large. However, the width depends on
a choice of the TF-CAP parameters, which is mainly due to
the extremely small ratio of �/ER . Further accuracy is needed
to obtain a converged width. Two values of Emin (0.15 and
0.10 MeV) are chosen as the case where Emin is larger than
ER . In this case we do not obtain the correct width. When

Emin is chosen to be lower than ER (0.05 and 0.02 MeV),
the calculated width becomes close to the accurate value. In
order to reproduce the width accurately we see that Rmax has
to be increased with decreasing Emin. This is because the de
Broglie wavelength corresponding to Emin = 0.15, 0.10, 0.05
and 0.02 MeV increases to 52.6, 64.5, 91.2, and 144.1 fm,
respectively. As a reasonable guide, Rmax has to be chosen at
least of the order of two times the de Broglie wavelength.
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