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Lightest neutral hypernuclei with strangeness −1 and −2
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Our current knowledge of the baryon-baryon interaction suggests that the dineutron (n,n) and its strange
analog (n,�) are unstable. In contrast, the situation is more favorable for the strange three-body system (n,n,�),
and even better for the four-body system T ≡ (n,n,�,�) with strangeness −2, which is likely to be stable under
spontaneous dissociation. The recent models of the hyperon-nucleon and hyperon-hyperon interactions suggest
that the stability of the (n,n,�) and T is possible within the uncertainties of our knowledge of the baryon-baryon
interactions. This new nucleus T could be produced and identified in central deuteron-deuteron collisions viathe
reaction d + d → T + K+ + K+, and the tetrabaryon T could play an important role in catalyzing the formation
of a strange core in neutron stars.
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I. INTRODUCTION

It is generally accepted that the dineutron 2n = (n,n) and
its strange analog 2

�n = (n,�), involving the lightest hyperon,
are unbound. The situation is more complicated for some
of the three-body or four-body systems made of nucleons
and hyperons, and needs to be clarified. The tetraneutron,
4n = (n,n,n,n), is naively suggested by the stability of the
8He isotope, but has received only controversial experimental
indications [1]. Its stability cannot be established using realis-
tic neutron-neutron potentials [2–6], nor even with potentials
made artificially deeper to produce a dineutron 2n, due to the
Pauli principle. The question is thus addressed of the stability
of a modified tetraneutron with Bose statistics, namely T =

4
��n = (n,n,�,�) with spin-singlet wave functions for both
the nn and the �� pairs endorsing the antisymmetrization.

The physics of hypernuclei is progressing dramatically in
both experiment and theory, for which recent reviews can be
found in [7,8]. For baryon number A = 2, there is no evidence
for a stable (n,�) nor (p,�) bound state, except for a mass
peak of about 2.06 GeV seen in d + π− [9]. On the other
hand, for A = 3, 3

�H = (n,p,�) is bound with an energy of
E3 = −2.45 MeV, i.e., just below the threshold for separation
in a deuteron plus an isolated hyperon, at E2 = −2.20 MeV.
There is only one claim for 3

�n = (n,n,�), at about 3 GeV [9].
The sector of strangeness S = −2, or “double �” hypernu-

clei has also been investigated, in particular, after the “Nagara”
event [10], which is the very accurate recent observation of

6
��He, and a measurement of its binding energy, which sets a
limit on the �� effective attraction in that system. This Nagara
event motivated to question whether lighter S = −2 systems
exist or not [11–13].

In 2002, Filikhin and Gal [14] studied the 4
��H system, and

found it unbound within the models they adopted. However,

*j-m.richard@ipnl.in2p3.fr
†q.wang@fz-juelich.de
‡zhaoq@ihep.ac.cn

their calculation was revisited by Nemura, Akaishi, and
Myint [15], who used a more sophisticated method for solving
the four-body problem, and found a small amount of binding,
below the dissociation threshold into 3

�H + �. This illustrates
once more how the four-body problem is delicate in the regime
of weak binding. In Refs. [11,14,15], it is stressed that the
free �� interaction receives a significant contribution from
the �� ↔ N� ↔ �� coupling, which is mediated by the
exchange of kaons, and is suppressed in a dense nucleus
due to the antisymmetrization between the nucleons in the
core and the nucleon in N�. This Pauli suppression was
successfully invoked to explain the relatively weak binding
of 6

��He. However, the Pauli suppression requires a (n��)
correlation inside the 6

��He system, and thus it does not operate
in the limit of very weak binding. The aim of this work is
to investigate the stability of the 4

��n system, to discuss its
production mechanism and its possible role in astrophysics.
As follows, we will demonstrate in Sec. II that 4

��n is likely
a “Borromean” system if it does exist. In Sec. III we propose
and discuss its production mechanism in deuteron-deuteron
scatterings. A summary is then given in Sec. IV.

II. ANALYSIS OF BINDING CONDITIONS FOR
THREE- AND FOUR-BODY SYSTEMS WITH

STRANGENESS −1 AND −2

We shall start with some reminders of binding systems
whose subsystems are unbound in this section. In his study of
the range of nuclear forces, Thomas [16] discovered that the
ratio of three-body to two-body bound-state energies, E3/E2,
becomes very large if the range of the interaction decreases.
Equivalently, for a given (short) range, E3/E2 → ∞ if the
coupling g approaches (from above) the minimal value g2

required to bind two particles. Here, the potential energy
is written as g

∑
v(rij ), where v is attractive or contains

attractive parts, and rij denotes the interparticle separation.
Implicit in this “Thomas collapse” is that the minimal coupling
g3 to bind three particles is smaller than g2, so that for

0556-2813/2015/91(1)/014003(5) 014003-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.014003


JEAN-MARC RICHARD, QIAN WANG, AND QIANG ZHAO PHYSICAL REVIEW C 91, 014003 (2015)

gMM
gmm

gMm

(a) (b)

FIG. 1. (Color online) Domain in which binding is forbidden for
a (m,m,M) (a) or (m,m,M,M) (b) system. The scale is set such that
the pair (mi,mj ) is bound for gij > 1. This drawing corresponds to
M/m = 1.2.

g3 < g < g2 there is a “Borromean” three-body bound state
whose two-body subsystems are unbound.

Since the work by Thomas in 1935, Borromean binding
has been further investigated. There are rigorous bounds on
the allowed domain of coupling constants for binding systems
whose subsystems are unbound [17], and studies on how wide
is the Borromean window as a function of the shape of the
potential [18] or of the low-energy parameters of the pair
interactions [19].

The allowed values of g3/g2 can be bound below rigor-
ously [17]. The basic idea is to decompose the Hamiltonian
H into sub-Hamiltonians, say H = H1 + H2 + · · · . Then H
hardly becomes negative if all Hi are positive. There are several
variants and refinements, depending on whether the center-of-
mass motion is properly removed and enough flexibility is
introduced to account for unequal masses and couplings. For
the three-body problem, the best decomposition [20] leads for
(m,m,M) to the forbidden domains shown in Fig. 1(a).

As seen in Fig. 1(a), the forbidden domain extents to nearly
3/4 of the Borromean sector {g31 = g12 � 1, g23 � 1}. The
reason is that as far as one deviates from the case of three
identical particles, the various cluster decompositions of the
wave function, such as [(12)3] or [(23)1], would not overlap
much and cannot interfere efficiently to build a collective
binding of these three particles.

The same reasoning, when applied to the (m,m,M,M)
system that involves two masses and three couplings, gives the
forbidden domain [17] shown in Fig. 1(b). The allowed fraction
is larger than in the three-body case. This is an encouragement
for us to perform the four-body calculations, namely, to
determine to which extent some points of the “nonforbidden”
domain can lead to actual four-body bound states. Another
encouragement is the existence of fully Borromean four-body
bound states in the case of screened Coulomb interaction [21].

The actual frontier of Borromean binding depends, indeed,
on the shape of the potential. An analysis has been proposed
in [18]. The rigorous lower bound tends to be saturated for
potentials with an external repulsive barrier. On the other hand,
the window of Borromean binding is more and more reduced
for potentials with harder and harder inner core.

In Fig. 2, a slightly different analysis is proposed. For a
mass m such that m/�

2 = 1 to fix the scale, we compare the
three-body binding energy E3 as a function of the effective

Exponential
Morse
Yukawa

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.04

0.03

0.02

0.01

0.00

reff

E
3

FIG. 2. (Color online) Three-body energy E3 as a function of the
two-body effective range parameter reff , for the exponential, Yukawa
and Morse (with R = 0.6) potentials, where g and μ are linked to
reproduced a two-body scattering length a = −10.

range reff for three different potentials, i.e.,

−g exp(−μ r) (exponential), (1)

−g exp(−μ r)/r (Yukawa), (2)

g exp[−2 μ (r − R)] − 2 g exp[−μ (r − R)] (Morse),(3)

where the two-body scattering length is fixed to a large negative
value a = −10, i.e., just below the threshold for two-body
binding. This gives g as a function of μ. For the Morse
potential, we use R = 0.6 for the illustration purpose.

The lessons of this exercise are:

(i) The algebraic energy is a sharply increasing function of
the effective range. This means that models with a very
large effective range cannot generate much Borromean
binding [19]. Note that in the case of ordinary three-
body binding (not fully Borromean), the dependence
upon the effective range might be different [22,23].

(ii) The amount of Borromean binding does not depend
dramatically on the shape of the potential, as seen by
comparing models whose short-range part is attractive
(Yukawa), constant (exponential) or repulsive (Morse).
The behavior would be universal, if instead of E3 vs.
reff , one plots E3 against the imaginary part of the pole
position of the two-body problem. However, since the
pole position is not easily accessible in the models
we use, we keep the effective range as a tool for the
discussion.

In short, it looks reasonable to use simple models to study
Borromean binding, given that both the scattering length and
effective range are properly reproduced.

For Fig. 2 and other three-body problems in the regime
of weak binding, an efficient variational method makes use
of the distances x = |r2 − r3|, . . . , and a basis of expo-
nential functions � = ∑

i αi exp[−(ai x + bi y + ci z)]. For
any given set of nonlinear parameters ai, bi, ci , the varia-
tional energy and coefficients αi are obtained from a simple
eigenvalue equation. As done sometimes for Gaussians [24],
the nonlinear parameters are assigned to belong to a single
geometric series a, a v, a v2, . . ., and thus the minimization
of the energy is achieved by varying a and v. The results
are crosschecked against the stochastic variational method of
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TABLE I. Values (in fm) adopted for the scattering length and
effective range parameter in the two models.

ESC08 CEFT

Pair a rreff a reff

nn −16.51 2.85 −18.9 2.75
(n�)s=0 −2.7 2.97 −2.9 2.65
(n�)s=1 −1.65 3.63 −1.51 2.64
�� −0.88 4.34 −1.54 0.31

Suzuki and Varga [25] based on Gaussian wave functions,
and the associated computer code [26], which is also used for
four-body systems.

We first test a simple toy model, where the potential for each
pair is taken as −gij exp(−μ0 r), with a unique range μ−1

0 . The
two-body problem can be solved analytically to identify the
couplings gij providing a given two-body energy or a given
two-body scattering length. Once the nucleon-nucleon sector
is fixed, the gN� coupling of the nucleon-hyperon interaction,
assumed to be spin-independent, has been fixed as to reproduce
an energy of about −2.45 MeV for 3

�H.
For μ0 = 1 GeV, i.e., a short-range toy model, one obtains

unrealistically low values for the effective-range parameters,
e.g., about 3.2 GeV−1 for (np) and 3.6 GeV−1 for (nn), and
the four-body configurations of interest are found stable. In
particular, 4

��H is bound below the threshold for dissociation
into 3

�H + �, even for a coupling g�� as low as about a
quarter of the value required to bind (��), and the isovector
configurations 4

��H and 4
��n are found stable against complete

dissociation.
In contrast, for μ0 = 0.2 GeV corresponding to a long-

range interaction, the effective-range parameters are system-
atically overestimated, and the four-body systems 4

��H with
both isospin I = 0 and I = 1, and 4

��n with I = 1 become
unstable, unless a large value is adopted for g��, implying a
positive �� scattering length and a bound ��.

The analysis with toy models motivates the choice of
a tractable potential which gives realistic effective-range
parameters, i.e., which reproduces either the scattering lengths
asc and effective-range reff of the models ESC08a-ESC08c
of the Nijmegen-RIKEN group [7,27,28], or the more recent
values based on chiral effective field theory (CEFT) [29,30].
More precisely, we adopted the parameters given in Table I.

For the potential, we adopted the exponential shape (1), and
the Morse interaction (3), with a reasonable range R = 0.6 fm.
The results are similar, with slightly more binding for the
exponential parametrization, as already observed in Fig. 2.

The model reproduces, not surprisingly, the observed
binding of the 2H and 3

�H systems. For the latter, both
the spin s = 1/2 and s = 3/2 exist, as there is no much
difference between the spin-triplet and the spin-averaged
nucleon-hyperon interactions. The states 3

�H with isospin
I = 1 and spin s = 1/2 and 3

�n are marginally unbound,
and would become bound, for instance, if some masses are
increased by about 10%. Our results for 3

�n agree with the
conclusions of recent studies [23,31,32]. The state 4

��H with
isospin I = 0 is found weakly bound (about 3 MeV) in the
Nijmegen-RIKEN model, and slightly more (about 9 MeV) in

the CEFT one. The state 4
��H with isospin I = 1 and 4

��n miss
binding by a very small amount with the Nijmegen-RIKEN
parameters, but become bound by about 1 MeV with the CEFT
parameters. It is interesting that the most recent approach to
inter-hadronic forces slightly differs from the conventional
approach.

At this point, however, one cannot firmly conclude before
including three-body forces. They probably have an attractive
component, which is the analog of the attraction brought
by three-body forces to few-nucleons systems. Some spin-
dependence of the three-body forces cannot be excluded,
this could be invoked to keep the spin s = 1/2 state of 3

�H
bound and move the s = 3/2 in the continuum. The three-body
and n-body forces with n > 3 probably contain a repulsive-
component of shorter range, which reflects that if several
hyperons or several hyperons and nucleons overlap, they feel
the effect of the Pauli exclusion of their constituent quarks.
This repulsive component seems needed in large systems
containing strangeness [33]. The calculations of hyperon-
nucleon and hyperon-hyperon forces should be pushed to
higher order within chiral effective theories and Nijmegen-
RIKEN models, as the three-body components will emerge
automatically together with a refinement of the two-body ones.

III. PRODUCTION MECHANISM FOR 4
��n

We now propose and discuss a possible production mech-
anism for T = 4

��n, but omit most details. The most ideal
process to create such a loosely bound neutral system is
via the deuteron-deuteron (d − d) scattering, i.e., d + d →
K+ + K+ + T . This is an extremely clean process. By tagging
the K+K+ events and examining the missing mass spectrum
recoiling against the K+K+ pairs, the signal for T , if T does
exist, will accumulate at the mass of T to form a narrow peak.
We now analyze the reaction mechanism and make a numerical
evaluation of the cross section.

In Fig. 3 one of the typical transition processes is illustrated
with the kinematic variables defined and others are implicated.
In the d-d collision, the two protons scatter and exchange
mesons such as π0,η,ρ0, etc., and the K+K+ pair is created
in association with the ��. The central collision will
kinematically favor the formation of (n,n,�,�) in the final
state. As the leading-order test of this formation mechanism,

p(p1)

d(pD2)

d(pD1)

n(p2)

n(p4)

p(p3)

π0(pπ)

a

b

K+(pK1)

K+(pK2)

Λ(p′
1)

Λ(p′
3)

n(p′
4)

n(p′
2)

T (p′
T )

FIG. 3. (Color online) Mechanism for T production in dd

collisions.
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FIG. 4. (Color online) Total cross section for d + d → K+ +
K+ + (n,n,�,�). From upper to lower the curves stand for the total
cross sections of the full calculations, exclusive process from the
nucleon Born terms, exclusive process from the double S11(1535)
excitations, and exclusive process from the one Born transition and
one S11(1535) excitation.

we assume that the relative internal momenta between the
proton and neutron inside the incident deuterons is negligibly
small compared to the relative momentum between these two
initial deuterons. It means that we have neglected the Fermi
motion inside the initial deuterons in the reaction. We have
also neglected the final-state interactions among the final-state
baryons. Thus the neutrons are treated as spectators and their
contributions to the amplitude will be via the convolution of
the final-baryon momentum distributions.

Taking into account the large πNN coupling and the small
pion mass, the underlying mechanism will be dominated
by the π0 exchange and through two combined elementary
process π0 + p → � + K+, which is known. The Born term,
with a virtual nucleon in the intermediate state, gives a
significant contribution, as seen in Fig. 4. The S11(1535)
resonance has relatively smaller contributions mainly due
to the smaller couplings to πN and K�. Although some
higher N∗ resonances may also have important contributions
and benefit from a significant coupling to K�, our estimate
including the Born term and S11(1535) excitations can be
regarded as a conservative estimate of the T production cross
section.
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FIG. 5. (Color online) The missing mass spectra for the recoiled
(n,n,�,�) at different energies above the production threshold in
d + d → K+ + K+ + (n,n,�,�).

In Fig. 5 we show the missing mass spectra for the
recoiled (n,n,�,�) at different energies above the production
threshold. It shows that the peak position is located at the
four baryon nn�� threshold. Since we have not introduced
a dynamic wave function for (n,n,�,�), the integration over
the internal momentum only present a momentum distribution
that we introduced for these two n� clusters. This leads to the
relatively extended tail of the peak as shown in Fig. 5. However,
notice that the deuteron is dominated by the S wave and T is
also treated as an S-wave isoscalar system. Our estimate is suf-
ficient to demonstrate the behavior of the correlated system re-
coiled by the K+ pair. In case that the final-state baryons are not
bound, the peak will disappear in the missing mass spectrum.

IV. SUMMARY

The stability of 3
�n and, more likely, of T = 4

��n is within
the uncertainties of our knowledge of the baryon-baryon
interaction. Many effects should be taken into account to
refine the predictions. We already mentioned the three-body
and four-body forces. Also, it would be interesting to unfold
the effective �N interaction, to separate the contribution from
�N ↔ 	N ↔ �N , and to recalculate the (n,p,�) systems
with explicit coupling to (N,N,	). Similar considerations
hold for the �� coupling to �N . As stressed in the
literature [11,22,31], the coupling to channels with 	 or �
gives extra attraction if it induces additional spin and isospin
coupling that are not present if the picture is restricted to
nucleons and �.

As in earlier studies, e.g., [14,15], we used simple potentials
that mimic more elaborate interactions. For three-nucleons
systems, this is a notorious source of overbinding, as analyzed
in the literature [34], in particular for the tensor forces absorbed
into an effective central component. However, the effect
becomes much less important for dilute systems whose wave
function extends very far and thus does not probe the details
of the interaction region.

Most interesting, in our opinion, is the possibility to produce
T in deuteron-deuteron (dd) collisions. As both d and T
are weakly bound, their constituents are almost on shell.
This simplifies the calculation of the production cross-section
coupling from elementary coupling among hadrons, and
suppresses any off-shell corrections. We are confident that this
will be an efficient doorway to this system. In brief, this new
type of element, if it does exist, would bring novel insights
into the nuclear forces that hold the building block hadrons
together and provide a great opportunity for extending our
knowledge to some unreached part in our matter world.
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