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We present the two- and three-pion-exchange contributions to the nucleon-nucleon interaction which occur at
next-to–next-to–next-to–next-to–leading order (N4LO, fifth order) of chiral effective field theory and calculate
nucleon-nucleon scattering in peripheral partial waves with L � 3 by using low-energy constants that were
extracted from πN analysis at fourth order. While the net three-pion-exchange contribution is moderate, the
two-pion exchanges turn out to be sizable and prevailingly repulsive, thus compensating the excessive attraction
characteristic for next-to–next-to–leading order and N3LO. As a result, the N4LO predictions for the phase shifts
of peripheral partial waves are in very good agreement with the data (with the only exception being the 1F3 wave).
We also discuss the issue of the order-by-order convergence of the chiral expansion for the NN interaction.
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I. INTRODUCTION

During the past three decades, it has been demonstrated
that chiral effective field theory (chiral EFT) represents a
powerful tool to deal with hadronic interactions at low energy
in a systematic and model-independent way (see Refs. [1,2]
for recent reviews). The systematics is provided by a low-
energy expansion arranged in terms of powers of the soft
scale over the hard scale, (Q/�χ )ν , where Q is generic for
an external momentum (nucleon three-momentum or pion
four-momentum) or a pion mass, and �χ ≈ 1 GeV the chiral-
symmetry-breaking scale. The model-independent dynamics
is created by pions interacting under the constraint of broken
chiral symmetry which provides the link to low-energy QCD.

The early applications of chiral perturbation theory (ChPT)
focused on systems like ππ [3] and πN [4], where the
Goldstone-boson character of the pion guarantees that a per-
turbative expansion exists. But the past 20 years have also seen
great progress in applying ChPT to nuclear forces [1,2,5–17].
About a decade ago, the nucleon-nucleon (NN ) interaction up
to fourth order (next-to–next-to–next-to–leading order, N3LO)
was derived [7,9,10,12,13,15] and quantitative NN potentials
were developed [16,17].

These N3LO NN potentials complemented by chiral three-
nucleon forces (3NFs) have been applied in calculations of
few-nucleon reactions, the structure of light- and medium-
mass nuclei, and nuclear and neutron matter—with, in general,
a good deal of success. However, some problems continue
to exist that seem to defy any solution. The most prominent
one is the so-called “Ay puzzle” of nucleon-deuteron scat-
tering, which requires the inclusion of 3NFs [18]. While the
chiral 3NF at next-to–next-to-leading order (NNLO) slightly
improves the predictions for low-energy N -d scattering [19],
inclusion of the N3LO 3NF deteriorates the predictions [20].
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Based upon general arguments, the N3LO 3NF is presumed
weak, which is why one would not expect the solution of
any substantial problems, anyhow. When working in the
framework of an expansion, then, the obvious way to proceed
is to turn to the next order, which is N4LO (or fifth order).
Some 3NF topologies at N4LO have already been worked
out [21,22], and it has been shown that, at this order, all
22 possible isospin-spin-momentum 3NF structures appear.
Moreover, the contributions are moderate to sizable. What
makes the fifth order even more interesting is the fact that,
at this order, a new set of 3NF contact interactions appears,
which has recently been derived by the Pisa group [23]. 3NF
contact terms are attractive from the point of view of the
practitioner, because they are typically simple (as compared to
loop contributions) and their coefficients are essentially free.
Thus, at N4LO, the Ay puzzle may be solved in a trivial way
through 3NF (contact) interactions. Due to the great diversity
of structures offered at N4LO, one can also expect that other
persistent nuclear structure problems may finally find their
solution at N4LO.

A principle of all EFTs is that, for reliable predictions, it is
necessary that all terms included are evaluated at the order at
which the calculation is conducted. Thus, if nuclear-structure
problems require for their solution the inclusion of 3NFs at
N4LO, then the two-nucleon force involved in the calculation
also has to be of order N4LO. This is one reason for the
investigation of the NN interaction at N4LO presented in this
paper. Besides this, there are also some more specific issues
that motivate a study of this kind. From calculations of the NN
interaction at NNLO [7] and N3LO [15], it is well known that
there is a problem with excessive attraction, particularly when,
for the ci low-energy constants (LECs) of the dimension-two
πN Lagrangian, the values are applied that are obtained from
πN analysis. It is important to know if this problem is finally
solved when going beyond N3LO. Last not least, also the
convergence of the chiral expansion of the NN interaction is
of general interest.

This paper is organized as follows: In Secs. II A and II B,
we derive the two- and three-pion-exchange contributions at
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fifth order. The predictions for NN scattering in peripheral
partial waves are shown in Sec. III, and Sec. IV concludes
the paper. In the appendixes, we summarize the detailed
mathematical expressions that define the lower orders of
the chiral NN potential. This is necessary, because in this
study we perform the power counting (of relativistic 1/MN

corrections) differently as compared with our earlier work.
Since we present also phase-shift predictions for the lower
orders, the unambiguous definition of each order is necessary
to avoid confusion.

II. PION-EXCHANGE CONTRIBUTIONS
TO THE N N POTENTIAL

The various pion-exchange contributions to the NN poten-
tial may be analyzed according to the number of pions being
exchanged between the two nucleons:

V = V1π + V2π + V3π + · · · , (2.1)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
above terms, we have a low-momentum expansion:

V1π = V
(0)

1π + V
(2)

1π + V
(3)

1π + V
(4)

1π + V
(5)

1π + · · · , (2.2)

V2π = V
(2)

2π + V
(3)

2π + V
(4)

2π + V
(5)

2π + · · · , (2.3)

V3π = V
(4)

3π + V
(5)

3π + · · · , (2.4)

where the superscript denotes the order ν of the expansion,
which for an irreducible two-nucleon diagram is given by
ν = 2L + ∑

i(di + ni/2 − 2) where L is the number of loops,
di is the number of derivatives or pion-mass insertions, and ni is
the number of nucleon fields (nucleon legs) involved in vertex
i. The sum runs over all vertices contained in the diagram
under consideration.

Order by order, the NN potential builds up as follows:

VLO ≡ V (0) = V
(0)

1π , (2.5)

VNLO ≡ V (2) = VLO + V
(2)

1π + V
(2)

2π , (2.6)

VNNLO ≡ V (3) = VNLO + V
(3)

1π + V
(3)

2π , (2.7)

VN3LO ≡ V (4) = VNNLO + V
(4)

1π + V
(4)

2π + V
(4)

3π , (2.8)

VN4LO ≡ V (5) = VN3LO + V
(5)

1π + V
(5)

2π + V
(5)

3π , (2.9)

where LO stands for leading order, NLO stands for next-to-
leading order, etc.

In past work [6–10,12–17], the NN interaction has been
developed up to N3LO. To make this paper self-contained
and because we perform the power counting for relativistic
corrections differently as compared with our previous work,
we summarize, order by order, the contributions up to N3LO
in the appendixes. In this way, all orders which we are talking
about in this paper are unambiguously defined.

The novel feature of this paper are the contributions to the
NN potential at N4LO, which we will present now.

The results will be stated in terms of contributions to
the momentum-space NN amplitudes in the center-of-mass
system (CMS), which arise from the following general

(a)

(b)

(c)

= + + +

+ + + . . .

= + + +

+ + + +

+ + + + . . .

FIG. 1. Two-pion-exchange contributions at N4LO. (a) The lead-
ing one-loop πN amplitude is folded with the chiral ππNN vertices
proportional to ci . (b) The one-loop πN amplitude proportional to ci

is folded with the leading-order chiral πN amplitude. (c) Relativistic
corrections of NNLO diagrams. Solid lines represent nucleons and
dashed lines represent pions. Small dots, large solid dots, solid
squares, and triangles denote vertices of index di + ni/2 − 2 = 0, 1,
2, and 3, respectively. Open circles are relativistic 1/MN corrections.

decomposition:

V ( �p ′, �p ) = VC + τ 1 · τ 2 WC + [VS + τ 1 · τ 2WS]�σ1 · �σ2

+ [VLS + τ 1 · τ 2WLS][−i �S · (�q×�k)]

+ [VT + τ 1 · τ 2WT ]�σ1 · �q �σ2 · �q
+ [VσL + τ 1 · τ 2WσL]�σ1 · (�q×�k)�σ2 · (�q×�k),

(2.10)

where �p ′ and �p denote the final and initial nucleon mo-
menta in the CMS, respectively. Moreover, �q = �p ′ − �p
is the momentum transfer, �k = ( �p ′ + �p )/2 is the average
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momentum, and �S = (�σ1 + �σ2)/2 is the total spin, with �σ1,
σ2 and τ 1, τ 2 being the spin and isospin operators, of
nucleons 1 and 2, respectively. For on-shell scattering, Vα

and Wα (α = C,S,LS,T ,σL) can be expressed as functions
of q = |�q | and p = | �p ′| = | �p | only. Note that the one-pion-
exchange contribution in Eq. (2.2) is of the form W

(1π)
T =

−[gπN/(2MN )]2(m2
π + q2)−1 with physical values of the

coupling constant gπN and nucleon and pion masses MN and
mπ . This expression fixes at the same time our sign convention
for V ( �p ′, �p ).

We will state two-loop contributions in terms of their spec-
tral functions, from which the momentum-space amplitudes
Vα(q) and Wα(q) are obtained via the subtracted dispersion
integrals:

VC,S(q) = −2q6

π

∫ �̃

nmπ

dμ
ImVC,S(iμ)

μ5(μ2 + q2)
,

VT (q) = 2q4

π

∫ �̃

nmπ

dμ
ImVT (iμ)

μ3(μ2 + q2)
, (2.11)

and similarly for WC , WS , and WT . Clearly, n = 2 for two-pion
exchange and n = 3 for three-pion exchange. For �̃ → ∞ the

above dispersion integrals yield the results of dimensional
regularization, while for finite �̃ � nmπ we have what has
become known as spectral-function regularization (SFR) [24].
The purpose of the finite scale �̃ is to constrain the imaginary
parts to the low-momentum region where chiral effective-field
theory is applicable.

A. Two-pion-exchange contributions at N4LO

The 2π -exchange contributions that occur at N4LO are dis-
played graphically in Fig. 1. We present now the corresponding
analytical expressions separately for each class.

1. Spectral functions for class (a)

The N4LO 2π -exchange two-loop contributions of class (a)
are shown in Fig. 1(a). For this class the spectral functions are
obtained by integrating the product of the leading one-loop
πN amplitude and the chiral ππNN vertex proportional to ci

over the Lorentz-invariant 2π -phase space. In the ππ center-
of-mass frame this integral can be expressed as an angular
integral

∫ 1
−1 dx [12]. The results for the nonvanishing spectral

functions read

ImVC = − m5
π

(4fπ )6π2

(
g2

A

√
u2 − 4

(
5 − 2u2 − 2

u2

)
[24c1 + c2(u2 − 4) + 6c3(u2 − 2)] ln

u + 2

u − 2

+ 8

u

{
3[4c1 + c3(u2 − 2)]

(
4g4

Au2 − 10g4
A + 1

) + c2
(
6g4

Au2 − 10g4
A − 3

)}
B(u)

+
√

u2 − 4

{
3(2 − u2)[4c1 + c3(u2 − 2)] + c2(7u2 − 6 − u4) + 4g2

A

u
(2u2 − 1)[4(6c1 − c2 − 3c3) + (c2 + 6c3)u2]

+ 4g4
A

[
32

u + 2
(2c1 + c3) + 64

3u
(6c1 + c2 − 3c3) + 14c3 − 5c2 − 92c1 + 8u

3
(18c3 − 5c2)

+ u2

6
(36c1 + 13c2 − 156c3) + u4

6
(2c2 + 9c3)

]})
, (2.12)

ImWS = μ2ImWT = c4g
2
Am5

π

(4fπ )6π2

{
8g2

Au(5 − u2)B(u) + 1

3
(u2 − 4)5/2 ln

u + 2

u − 2
+ u

3

√
u2 − 4

[
g2

A(30u − u3 − 64) − 4u2 + 16
]}

,

(2.13)

with the dimensionless variable u = μ/mπ > 2 and the logarithmic function

B(u) = ln
u + √

u2 − 4

2
. (2.14)

2. Spectral functions for class (b)

The N4LO 2π -exchange two-loop contributions of class (b) are displayed in Fig. 1(b). For this class, the product of the
one-loop πN amplitude proportional to ci (see Ref. [21] for details) and the leading-order chiral πN amplitude is integrated over
the 2π phase space. We obtain

ImVS = μ2ImVT = g4
Am5

π (c3 − c4)u

(4fπ )6π2
{
√

u2 − 4(u3 − 30u + 64) + 24(u2 − 5)B(u)}, (2.15)

ImWS = μ2ImWT = g2
Am5

π

(4fπ )6π2
(4 − u2)

{
c4

3

[√
u2 − 4(2u2 − 8)B(u) + 4u

(
2 + 9g2

A

) − 5u3

3

]
+ 2ē17(8πfπ )2(u3 − 2u)

}
,

(2.16)
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ImVC = g2
Am5

π

(4fπ )6π2
(u2 − 2)

(
1

u2
− 2

){
2
√

u2 − 4[24c1 + c2(u2 − 4) + 6c3(u2 − 2)]B(u)

+u

[
c2

(
8 − 5u2

3

)
+ 6c3(2 − u2) − 24c1

]}
+ 3g2

Am5
π

(2fπ )4u
(2 − u2)3ē14, (2.17)

ImWC = − c1m
5
π

(2fπ )6π2

{
3g2

A + 1

8

√
u2 − 4(2 − u2) +

(
3g2

A + 1

u
− 2g2

Au

)
B(u)

}

− c2m
5
π

(2fπ )6π2

{
1

96

√
u2 − 4

[
7u2 − 6 − u4 + g2

A(5u2 − 6 − 2u4)
] + 1

4u

(
g2

Au2 − 1 − g2
A

)
B(u)

}

− c3m
5
π

(4fπ )6π2

{
2

9

√
u2 − 4

[
3(7u2 − 6 − u4) + 4g2

A

(
32

u
− 12 − 20u + 7u2 − u4

)

+ g4
A

(
114 − 512

u
+ 368u − 169u2 + 7u4 + 192

u + 2

)]
+ 16

3u

[
g4

A(6u4 − 30u2 + 35) + g2
A(6u2 − 8) − 3

]
B(u)

}

− c4g
2
Am5

π

(4fπ )6π2

{
2

9

√
u2 − 4

[
30 − 128

u
+ 80u − 13u2 − 2u4 + g2

A

(
512

u
− 114 − 368u + 169u2 − 7u4 − 192

u + 2

)]

+ 16

3u
[5 − 3u2 + g2

A(30u2 − 35 − 6u4)]B(u)

}
. (2.18)

Consistent with the calculation of the πN amplitude in Ref. [21], we applied relations between LECs such that only ē14 and ē17

remain in the final result.

3. Relativistic corrections

This group consists of diagrams with one vertex proportional to ci and one 1/MN correction. A few representative graphs are
shown in Fig. 1(c). Since in this investigation we count Q/MN ∼ (Q/�χ )2, these relativistic corrections are formally of order
N4LO. In our sign-convention, the result for this group of diagrams reads [12]

VC = g2
AL(�̃; q)

32π2MNf 4
π

[
(6c3 − c2)q4 + 4(3c3 − c2 − 6c1)q2m2

π + 6(2c3 − c2)m4
π − 24(2c1 + c3)m6

πw−2], (2.19)

WC = − c4

192π2MNf 4
π

[
g2

A

(
8m2

π + 5q2) + w2]q2L(�̃; q), (2.20)

WT = − 1

q2
WS = c4

192π2MNf 4
π

[
w2 − g2

A

(
16m2

π + 7q2
)]

L(�̃; q), (2.21)

VLS = c2g
2
A

8π2MNf 4
π

w2L(�̃; q), (2.22)

WLS = − c4

48π2MNf 4
π

[
g2

A

(
8m2

π + 5q2) + w2]L(�̃; q), (2.23)

where the (regularized) logarithmic loop function is given by

L(�̃; q) = w

2q
ln

�̃2
(
2m2

π + q2
) − 2m2

πq2 + �̃

√
�̃2 − 4m2

πqw

2m2
π (�̃2 + q2)

, (2.24)

with w = (4m2
π + q2)1/2. Note that

lim
�̃→∞

L(�̃; q) = w

q
ln

w + q

2mπ

(2.25)

is the logarithmic loop function of dimensional regularization.

B. Three-pion-exchange contributions at N4LO

The 3π exchange of order N4LO is shown in Fig. 2. The spectral functions for these diagrams have been calculated in Ref. [11].
We use here the classification scheme introduced in that reference and note that class XI vanishes. Moreover, we find that class
X and part of class XIV make only negligible contributions. Thus, we include in our calculations only class XII and XIII, and the
VS contribution of class XIV. In Ref. [11] the spectral functions were presented in terms of an integral over the invariant mass of
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a pion pair. We solved these integrals analytically and obtain the following spectral functions for the non-negligible cases:

Im V
(XII)
S = − g2

Ac4m
5
π

(4fπ )6π2u3

[
y

12
(u − 1)(100u3 − 27 − 50u − 151u2 + 185u4 − 14u5 − 7u6) + 4D(u)(2 + 10u2 − 9u4)

]
,

(2.26)

Im V
(XII)
T = 1

μ2
Im V

(XII)
S − g2

Ac4m
3
π

(4fπ )6π2u5

[
y

6
(u − 1)(u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u − 27) + 8D(u)(3u4 − 10u2 + 2)

]
,

(2.27)

Im W
(XII)
S = − g2

Am5
π

(4fπ )6π2u3

{
y(u − 1)

[
4c1u

3
(u3 + 2u2 − u + 4) + c2

72
(u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u − 27)

+ c3

12
(u6 + 2u5 − 31u4 + 4u3 + 57u2 − 18u − 27) + c4

72
(7u6 + 14u5 − 185u4 − 100u3 + 151u2 + 50u + 27)

]

+D(u)

[
16c1(4u2 − 1 − u4) + 2c2

3
(2 − 10u2 + 3u4) + 4c3u

2(u2 − 2) + 2c4

3
(9u4 − 10u2 − 2)

]}
, (2.28)

Im W
(XII)
T = 1

μ2
Im W

(XII)
S − g2

Am3
π

(4fπ )6π2u5

{
y(u − 1)

[
16c1u

3
(2 + u − 2u2 − u3) + c2

36
(73u4 − 6u5 − 3u6 + 44u3

− 43u2 − 50u − 27) + c3

2
(19u4 − 2u5 − u6 + 4u3 − 9u2 − 6u − 9) + c4

36
(39u4 − 2u5 − u6 + 12u3

− 65u2 + 50u + 27)

]
+ 4D(u)

[
8c1(u4 − 1) + c2

(
2

3
− u4

)
− 2c3u

4 + c4

3
(10u2 − 2 − 3u4)

]}
, (2.29)

Im W
(XIII)
C = − g4

Ac4m
5
π

(4fπ )6π2

[
8y

3
(u − 1)(u − 4 − 2u2 − u3) + 32D(u)

(
u3 − 4u + 1

u

)]
, (2.30)

Im V
(XIII)
S = − g4

Ac4m
5
π

(4fπ )6π2u3

[
y

24
(u − 1)(37u6 + 74u5 − 251u4 − 268u3 + 349u2 − 58u − 135)

+ 2D(u)(39u4 − 2 − 52u2 − 6u6)

]
, (2.31)

Im V
(XIII)
T = 1

μ2
Im V

(XIII)
S − g4

Ac4m
3
π

(4fπ )6π2u5

[
y

12
(u − 1)(5u6 + 10u5 − 3u4 − 252u3 − 443u2 − 58u − 135)

+ 4D(u)(3u4 + 22u2 − 2)

]
, (2.32)

Im W
(XIII)
S = − g4

Am5
π

(4fπ )6π2u3

{
y(u − 1)

[
2c1u(5u3 + 10u2 − 5u − 4) + c2

48
(135 + 58u − 277u2 − 36u3 + 147u4 − 10u5 − 5u6)

+ c3

8
(7u6 + 14u5 − 145u4 − 20u3 + 111u2 + 18u + 27) + c4

6
(44u3 + 37u4 − 14u5 − 7u6 − 3u2 − 18u − 27)

]

+D(u)[24c1(1 + 4u2 − 3u4) + c2(2 + 2u2 − 3u4) + 6c3u
2(3u2 − 2) + 8c4u

2(u4 − 5u2 + 5)]

}
, (2.33)

Im W
(XIII)
T = 1

μ2
Im W

(XIII)
S − g4

Am3
π

(4fπ )6π2u5

{
y(u − 1)

[
4c1u(5u3 + 10u2 + 7u − 4) + c2

24
(135 + 58u + 227u2 + 204u3

+ 27u4 − 10u5 − 5u6) + c3

4
(27 + 18u − 9u2 − 68u3 − 121u4 + 14u5 + 7u6) + c4(4u3 + 19u4 − 2u5 − u6

− 9u2 − 6u − 9)

]
+ 2D(u)[24c1(1 − 3u4) + c2(2 − 10u2 − 3u4) + 6c3u

2(3u2 + 2) − 8c4u
4]

}
, (2.34)

Im V
(XIV)
S = − g4

Ac4m
5
π

(4fπ )6π2u3

[
y

24
(u − 1)(637u2−58u − 135 + 116u3−491u4 − 22u5 − 11u6) + 2D(u)(6u6 − 9u4 + 8u2 − 2)

]
,

(2.35)

where y = √
(u − 3)(u + 1) and D(u) = ln[(u − 1 + y)/2] with u = μ/mπ > 3.
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Class X Class XI

Class XII Class XIII Class XIV

FIG. 2. Three-pion-exchange contributions at N4LO. The clas-
sification scheme of Ref. [11] is used. Notation is the same as in
Fig. 1.

III. PERTURBATIVE N N SCATTERING
IN PERIPHERAL PARTIAL WAVES

Nucleon-nucleon scattering in peripheral partial waves is of
special interest—for several reasons. First, these partial waves
probe the long- and intermediate-range of the nuclear force.
Due to the centrifugal barrier, there is only small sensitivity
to short-range contributions and, in fact, the contact terms
up to and including order N3LO make no contributions for
orbital angular momenta L � 3. Thus, for F and higher
waves and energies below the pion-production threshold, we
have a window in which the NN interaction is governed by
chiral symmetry alone (chiral one- and multipion exchanges),
and we can conduct a relatively clean test of how well the
theory works. Using values for the LECs from πN analysis,
the NN predictions are even parameter free. Moreover, the
smallness of the phase shifts in peripheral partial waves
suggests that the calculation can be done perturbatively. This
avoids the complications and possible model dependence
(e.g., cutoff dependence) that the nonperturbative treatment of
the Lippmann–Schwinger equation, necessary for low partial
waves, is beset with. A thorough investigation of this kind
at N3LO was conducted in Ref. [15]. Here, we will work on
N4LO.

The perturbative K matrix for np scattering is calculated as
follows:

K( �p′, �p) = V
(np)

1π ( �p′, �p) + V
(np)

2π,it( �p′, �p) + V ( �p′, �p), (3.1)

where V
(np)

1π ( �p′,�p) is as in Eq. (A2), and V
(np)

2π,it( �p ′, �p ) rep-
resents the once-iterated one-pion exchange (1PE) given by

V
(np)

2π,it( �p′, �p) = P
∫

d3p′′ M2
N

Ep′′

V
(np)

1π ( �p′, �p′′)V (np)
1π ( �p′′, �p)

p2 − p′′2 ,

(3.2)
where P denotes the principal value integral and Ep′′ =
(M2

N + p′′2)1/2. A calculation at LO includes only the first
term on the right-hand side of Eq. (3.1), V

(np)
1π ( �p ′, �p ), while

calculations at NLO or higher order also include the second
term on the right-hand side (r.h.s.), V

(np)
2π,it( �p ′, �p ). At N3LO

and beyond, the twice-iterated 1PE should be included, too.
However, we found that the difference between the once-
iterated 1PE and the infinitely iterated 1PE is so small that it
could not be identified on the scale of our phase-shift figures.

For that reason, we omit iterations of 1PE beyond what is
contained in V

(np)
2π,it( �p ′, �p ).

Finally, the third term on the r.h.s. of Eq. (3.1), V ( �p ′, �p ),
stands for the irreducible multipion-exchange contributions
that occur at the order at which the calculation is conducted.
In multipion exchanges, we use the average pion mass
mπ = 138.039 MeV and, thus, neglect the charge-dependence
due to pion-mass splitting in irreducible multipion diagrams.
The charge-dependence that emerges from irreducible 2π
exchange was investigated in Ref. [25] and found to be
negligible for partial waves with L � 3.

Throughout this paper, we use

MN = 2MpMn

Mp + Mn

= 938.9182 MeV. (3.3)

Based upon relativistic kinematics, the CMS on-shell momen-
tum p is related to the kinetic energy of the incident neutron
in the laboratory system (“Lab. Energy”), Tlab, by

p2 = M2
pTlab(Tlab + 2Mn)

(Mp + Mn)2 + 2TlabMp

, (3.4)

with Mp = 938.2720 MeV and Mn = 939.5653 MeV being
the proton and neutron masses, respectively.

The K matrix, Eq. (3.1), is decomposed into partial waves
following Ref. [26]1 and phase shifts are then calculated via

tan δL(Tlab) = − M2
Np

16π2Ep

pKL(p,p). (3.5)

For more details concerning the evaluation of the phase shifts,
including the case of coupled partial waves, see Ref. [27] or
the appendix of Ref. [28]. All phase shifts shown in this paper
are in terms of Stapp conventions [29].

We calculate phase shifts for partial waves with L � 3 and
Tlab � 300 MeV. To establish a link between πN and NN and
to check the consistency of the πN and NN systems, we use
the πN LECs determined in Ref. [21] in a calculation of πN
scattering at fourth order applying the same power-counting
scheme as in the present work. To be specific, we use the set
of LECs denoted by “KH” in Ref. [21]. The values are

c1 = −0.75 GeV−1, c2 = 3.49 GeV−1,

c3 = −4.77 GeV−1, c4 = 3.34 GeV−1,

d̄1 + d̄2 = 6.21 GeV−2, d̄3 = −6.83 GeV−2,

d̄5 = 0.78 GeV−2, d̄14 − d̄15 = −12.02 GeV−2,

ē14 = 1.52 GeV−3, ē17 = −0.37 GeV−3.

Moreover, we absorb the Goldberger–Treiman discrepancy
into an effective value for gA; namely, gA = 1.29. Finally,

1Note that there is an error in equation (4.22) of Ref. [26] where it
should read

−WJ
LS = 2qq ′ J − 1

2J − 1

[
A

J−2,(0)
LS − A

J (0)
LS

]
,

and
+WJ

LS = 2qq ′ J + 2

2J + 3

[
A

J+2,(0)
LS − A

J (0)
LS

]
.
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FIG. 3. Effect of individual fifth-order contributions on the neutron-proton phase shifts of some selected peripheral partial waves. The
individual contributions are added up successively in the order given in parentheses next to each curve. Curve (1) is N3LO and curve (5) is
the complete N4LO. The filled and open circles represent the results from the Nijmegan multi-energy np phase-shift analysis [30] and the
VPI-GWU single-energy np analysis SM99 [31], respectively.

the physical value of the pion-decay constant is fπ =
92.4 MeV.

As shown in Figs. 1 and 2 and derived in Sec. II,
the fifth order consists of several contributions. We will
now demonstrate how the individual fifth-order contributions
impact NN phase shifts in peripheral waves. For this purpose,
we display in Fig. 3 phase shifts for six important peripheral
partial waves; namely, 1F3, 3F2, 3F3, 3F4, 1G4, and 3G5. In each
frame, the following curves are shown:

(1) N3LO.
(2) The previous curve plus the ci/MN corrections

(denoted by “c/M”); Fig. 1(c) and Sec. II A 3.
(3) The previous curve plus the N4LO 2π -exchange (2PE)

two-loop contributions of class (a); Fig. 1(a) and
Sec. II A 1.

(4) The previous curve plus the N4LO 2PE two-loop
contributions of class (b); Fig. 1(b) and Sec. II A 2.

(5) The previous curve plus the N4LO 3π -exchange (3PE)
contributions; Fig. 2 and Sec. II B.

In summary, the various curves add up successively the
individual N4LO contributions in the order indicated in the
curve labels. The last curve in this series, curve (5), is the full
N4LO result. In these calculations, a SFR cutoff �̃ = 1.5 GeV
is applied [cf. Eq. (2.11)].

From Fig. 3, we make the following observations: In triplet
F waves, the ci/MN corrections as well as the 2PE two loops,
class (a) and (b), are all repulsive and of about the same
strength. As a consequence, the problem of the excessive
attraction, that N3LO is beset with, is overcome. A similar
trend is seen in 1G4. An exception is 1F3, where the class (b)
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FIG. 4. (Color online) Phase shifts of neutron-proton scattering at various orders as denoted. The shaded (colored) bands show the variation
of the predictions when the SFR cutoff �̃ is changed over the range 0.7 to 1.5 GeV. The filled and open circles represent the results from the
Nijmegan multi-energy np phase-shift analysis [30] and the VPI-GWU single-energy np analysis SM99 [31], respectively.
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FIG. 5. (Color online) Same as Fig. 4, but for G waves.
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contribution is attractive leading to phase shifts above the data
for energies higher than 150 MeV.

Now turning to the N4LO 3PE contributions [curve (5)
in Fig. 3], they are substantially smaller than the 2PE two-
loop contributions, in all peripheral partial waves. This can be
interpreted as an indication of convergence with regard to the
number of pions being exchanged between two nucleons—a
trend that is very welcome. Furthermore, note that the total
3PE contribution is a very comprehensive one, cf. Fig. 2. It is
the sum of ten terms (cf. Sec. II B) which, individually, can be
fairly large. However, destructive interference between them
leads to the small net result.

For all F and G waves (except 1F3), the final N4LO result is
in excellent agreement with the empirical phase shifts. Notice
that this includes also 3G5, which posed persistent problems at
N3LO [15].

On a historical note, we mention that in the construction
of the Stony Brook [32,33] and Paris [34,35] NN potentials,
which both include a 2PE contribution based upon dispersion
theory, the dispersion integral, Eq. (2.11), is cut off at μ2 =
50m2

π , which is equivalent to a SFR cutoff �̃ = √
50mπ ∼

1 GeV. Not accidentally, this agrees well with the common
assumption of �χ ∼ 1 GeV and, thus, sets the scale for an
appropriate choice of �̃. Consistent with this, �̃ = 1.5 GeV
was used for the results presented in Fig. 3. It is, however, also
of interest to know how predictions change with variations
of �̃ within a reasonable range. We have, therefore, varied
�̃ between 0.7 and 1.5 GeV and show the predictions for all
F and G waves in Figs. 4 and 5, respectively, in terms of
shaded (colored) bands. It is seen that, at N3LO, the variations
of the predictions are very large and always too attractive
while, at N4LO, the variations are small and the predictions
are close to the data or right on the data. Figures 4 and 5 also
include the lower orders (as defined in the appendixes) such
that a comparison of the relative size of the order-by-order
contributions is possible. We observe that there is not much of
a convergence, since obviously the magnitudes of the NNLO,
N3LO, and N4LO contributions are about the same. Potentially,
this is characteristic for just these three orders and changes
beyond N4LO. But only an explicit calculation at N5LO can
settle this issue.

IV. CONCLUSIONS

In this paper, we calculated the one- and two-loop 2π -
exchange (2PE) and two-loop 3π -exchange (3PE) contribu-
tions to the NN interaction which occur at N4LO (fifth order)
of the chiral low-momentum expansion. The calculations are
based on heavy-baryon chiral perturbation theory and use the
most general fourth-order Lagrangian for pions and nucleons.
We apply πN LECs, which were determined in an analysis of
elastic pion-nucleon scattering to fourth order using the same
power-counting scheme as in the present work. The spectral
functions, which determine the NN amplitudes via dispersion
integrals, are regularized by a cutoff �̃ in the range 0.7 to
1.5 GeV (also known as spectral-function regularization).
Besides the cutoff �̃, our calculations do not involve any
adjustable parameters.

From past work on NN scattering in chiral perturbation
theory (see, e.g., Ref. [15]), it is well known that, at NNLO
and N3LO, chiral 2PE produces far too much attraction. The
most important result of the present study is that the N4LO 2PE
contributions are prevailingly repulsive and, thus, compensate
the excessive attraction of the lower orders. As a consequence,
the phase-shift predictions in F and G waves are in very good
agreement with the data, with the only exception being the 1F3

wave. The net 3PE contribution turns out to be moderate,
pointing towards convergence in terms of the number of
pions exchanged between two nucleons. On the other hand,
the NNLO, N3LO, and N4LO contributions are all about
of the same magnitude, raising some concern about the
convergence of the chiral expansion of the NN amplitude.
To obtain more insight into this issue, future investigations at
N5LO may be necessary.
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APPENDIX A: LEADING ORDER

At leading order, there is only the 1π -exchange contribu-
tion; cf. Fig. 6. The charge-independent 1π -exchange is given
by

V
(CI)

1π ( �p ′, �p) = − g2
A

4f 2
π

τ 1 · τ 2
�σ1 · �q �σ2 · �q
q2 + m2

π

. (A1)

Higher-order corrections to the 1π exchange are taken care
of by mass and coupling-constant renormalizations gA/fπ →
gπN/MN . Note also that, on shell, there are no relativistic

LO
(Q/Λχ)0

NLO
(Q/Λχ)2

NNLO
(Q/Λχ)3

FIG. 6. LO, NLO, and NNLO contributions to the NN interac-
tion. Notation is the same as in Fig. 1.

014002-10



PERIPHERAL NUCLEON-NUCLEON SCATTERING AT . . . PHYSICAL REVIEW C 91, 014002 (2015)

corrections. Thus, we apply 1π exchange in the form Eq. (A1)
through all orders.

In this paper, we are specifically calculating neutron-proton
(np) scattering and take the charge dependence of the 1π
exchange into account. Thus, the 1π -exchange potential that
we actually apply reads

V
(np)

1π ( �p ′, �p) = −V1π (mπ0 ) + (−1)I+12V1π (mπ±), (A2)

where I = 0,1 denotes the total isospin of the two-nucleon
system and

V1π (mπ ) ≡ − g2
A

4f 2
π

�σ1 · �q �σ2 · �q
q2 + m2

π

. (A3)

We use mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV.
Formally speaking, the charge dependence of the 1PE ex-
change is of order NLO [1], but we include it already at leading
order to make the comparison with the np phase shifts more
meaningful.

APPENDIX B: NEXT-TO-LEADING ORDER

The NN diagrams that occur at NLO (cf. Fig. 6) contribute
in the following way [7]:

WC = L(�̃; q)

384π2f 4
π

[
4m2

π

(
1 + 4g2

A − 5g4
A

)

+ q2
(
1 + 10g2

A − 23g4
A

) − 48g4
Am4

π

w2

]
, (B1)

VT = − 1

q2
VS = − 3g4

A

64π2f 4
π

L(�̃; q). (B2)

APPENDIX C: NEXT-TO-NEXT-TO-LEADING ORDER

The NNLO contribution (lower row of Fig. 6) is given by [7]

VC = 3g2
A

16πf 4
π

[
2m2

π (c3 − 2c1) + c3q
2
](

2m2
π + q2

)
A(�̃; q),

(C1)

WT = − 1

q2
WS = − g2

A

32πf 4
π

c4w
2A(�̃; q). (C2)

(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

FIG. 7. Two-pion-exchange contributions at N3LO with (a) the
N3LO football diagram, (b) the leading 2PE two-loop contributions,
and (c) the relativistic corrections of NLO diagrams. Notation is the
same as in Fig. 1.

The loop function that appears in the above expressions,
regularized by spectral-function cutoff �̃, is

A(�̃; q) = 1

2q
arctan

q(�̃ − 2mπ )

q2 + 2�̃mπ

. (C3)

Note that

lim
�̃→∞

A(�̃; q) = 1

2q
arctan

q

2mπ

(C4)

yields the loop function used in dimensional regularization.

APPENDIX D: NEXT-TO–NEXT-TO–NEXT-TO–LEADING ORDER

1. Football diagram at N3LO

The football diagram at N3LO, Fig. 7(a), generates [12]

VC = 3

16π2f 4
π

{[
c2

6
w2 + c3

(
2m2

π + q2
) − 4c1m

2
π

]2

+ c2
2

45
w4

}
L(�̃; q), (D1)

WT = − 1

q2
WS = c2

4

96π2f 4
π

w2L(�̃; q). (D2)
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2. Leading two-loop contributions

The leading-order 2π -exchange two-loop diagrams are shown in Fig. 7(b). In terms of spectral functions, the results are [12]

ImVC = 3g4
A

(
2m2

π − μ2
)

πμ(4fπ )6

[(
m2

π − 2μ2
)(

2mπ + 2m2
π − μ2

2μ
ln

μ + 2mπ

μ − 2mπ

)
+ 4g2

Amπ

(
2m2

π − μ2
)]

, (D3)

ImWC = 2κ

3μ
(
8πf 2

π

)3

∫ 1

0
dx

[
g2

A

(
μ2 − 2m2

π

) + 2
(
1 − g2

A

)
κ2x2

]{
96π2f 2

π

[(
2m2

π − μ2
)
(d̄1 + d̄2) − 2κ2x2d̄3 + 4m2

π d̄5
]

+ [
4m2

π

(
1 + 2g2

A

) − μ2(1 + 5g2
A

)] κ

μ
ln

μ + 2κ

2mπ

+ μ2

12

(
5 + 13g2

A

) − 2m2
π

(
1 + 2g2

A

)

− 3κ2x2 + 6κx

√
m2

π + κ2x2 ln
κx + √

m2
π + κ2x2

mπ

+ g4
A

(
μ2 − 2κ2x2 − 2m2

π

)[5

6
+ m2

π

κ2x2
−

(
1 + m2

π

κ2x2

)3/2

ln
κx + √

m2
π + κ2x2

mπ

]}
, (D4)

ImVS = μ2ImVT = g2
Aμκ3

8πf 4
π

(d̄15 − d̄14) + 2g6
Aμκ3

(
8πf 2

π

)3

∫ 1

0
dx(1 − x2)

[
1

6
− m2

π

κ2x2
+

(
1 + m2

π

κ2x2

)3/2

ln
κx + √

m2
π + κ2x2

mπ

]
,

(D5)

ImWS = μ2ImWT (iμ) = g4
A

(
4m2

π − μ2
)

π (4fπ )6

[(
m2

π − μ2

4

)
ln

μ + 2mπ

μ − 2mπ

+ (
1 + 2g2

A

)
μmπ

]
, (D6)

where κ = (μ2/4 − m2
π )1/2.

The momentum-space amplitudes Vα(q) and Wα(q) are obtained from the above expressions by means of the dispersion
integrals shown in Eq. (2.11).

3. Leading relativistic corrections

The relativistic corrections of the NLO diagrams, which are shown in Fig. 7(c), count as N3LO and are given by [1]

VC = 3g4
A

128πf 4
π MN

[
m5

π

2w2
+ (

2m2
π + q2) (

q2 − m2
π

)
A(�̃; q)

]
, (D7)

WC = g2
A

64πf 4
π MN

{
3g2

Am5
π

2ω2
+ [

g2
A

(
3m2

π + 2q2
) − 2m2

π − q2
] (

2m2
π + q2

)
A(�̃; q)

}
, (D8)

VT = − 1

q2
VS = 3g4

A

256πf 4
π MN

(
5m2

π + 2q2
)
A(�̃; q), (D9)

WT = − 1

q2
WS = g2

A

128πf 4
π MN

[
g2

A

(
3m2

π + q2) − w2] A(�̃; q), (D10)

VLS = 3g4
A

32πf 4
π MN

(
2m2

π + q2
)
A(�̃; q), (D11)

WLS = g2
A

(
1 − g2

A

)
32πf 4

π MN

w2A(�̃; q). (D12)

4. Leading three-pion-exchange contributions

The leading 3π -exchange contributions that occur at N3LO have been calculated in Refs. [9,10] and are found to be negligible.
We therefore omit them.
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[24] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Eur. Phys. J. A
19, 125 (2004).

[25] G. Q. Li and R. Machleidt, Phys. Rev. C 58, 3153
(1998).

[26] K. Erkelenz, R. Alzetta, and K. Holinde, Nucl. Phys. A 176, 413
(1971).

[27] R. Machleidt, in Computational Nuclear Physics 2–Nuclear
Reactions, edited by K. Langanke, J. A. Maruhn, and S. E.
Koonin (Springer, New York, 1993), p. 1.

[28] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[29] H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev. 105,

302 (1957).
[30] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and

J. J. de Swart, Phys. Rev. C 48, 792 (1993).
[31] R. A. Arndt, I. I. Strakovsky, and R. L. Workman, SAID,

Scattering Analysis Interactive Dial-in computer facility,
George Washington University (formerly Virginia Polytechnic
Institute), solution SM99 (Summer 1999); For more information
see, e.g., ,Phys. Rev. C 50, 2731 (1994).

[32] A. D. Jackson, D. O. Riska, and B. Verwest, Nucl. Phys. A 249,
397 (1975).

[33] G. E. Brown and A. D. Jackson, The Nucleon-Nucleon
Interaction (North-Holland, Amsterdam, 1976).

[34] R. Vinh Mau, in Mesons in Nuclei, edited by M. Rho and
D. H. Wilkinson (North-Holland, Amsterdam, 1979), Vol. I,
p. 151.

[35] M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau,
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