Comprehensive sets of 124 Xe (n, γ) 125 Xe and 124 Xe(n, 2n) 123 Xe cross-section data for assessment of inertial-confinement deuterium-tritium fusion plasma

Megha Bhike,^{1,2,*} B. Fallin,^{1,2} M. E. Gooden,^{2,3,†} N. Ludin,^{4,‡} and W. Tornow^{1,2}

¹Department of Physics, Duke University, Durham, North Carolina, 27708, USA

²Triangle Universities Nuclear Laboratory, Durham, North Carolina, 27708, USA

³North Carolina State University, Raleigh, North Carolina, 27695, USA

⁴University of Denver, Denver, Colorado, 80208, USA

(Received 10 September 2014; revised manuscript received 12 November 2014; published 7 January 2015)

Measurements of the neutron radiative-capture cross section of ¹²⁴Xe have been performed for the first time for neutron energies above 100 keV. In addition, data for the ${}^{124}Xe(n,2n){}^{123}Xe$ reaction cross section have been obtained from threshold to 14.8 MeV to cover the entire energy range of interest, while previous data existed only at around 14 MeV. The results of these measurements provide the basis for an alternative and sensitive diagnostic tool for investigating properties of the inertial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory. Here, areal density ρR (density × radius) of the fuel, burn asymmetry, and fuel-ablator mix are of special interest. The 124 Xe $(n, \gamma)^{125}$ Xe reaction probes the down-scattered neutrons, while the ${}^{124}Xe(n,2n){}^{123}Xe$ reaction provides a measure of the 14 MeV direct neutrons.

DOI: 10.1103/PhysRevC.91.011601

PACS number(s): 25.40.Lw, 24.10.Pa, 29.30.Kv, 52.57.-z

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory used the world's largest laser to compress and heat a capsule of fusion fuel with the goal of thermo nuclear ignition. Nuclear reactions play an important role in understanding the complicated physics governing the inertial confinement fusion (ICF) plasma [1,2]. The neutron energy distribution created in deuterium-tritium (DT) ICF plasmas depends, among other parameters, to some extent on the stopping power of deuterons and tritons in the plasma. This is especially the case for the reaction-in-flight neutrons with energies between 15 and 30 MeV [3]. A diagram of a special DT capsule is shown in Fig. 1. The radius of the capsule is 1.1 mm. The outer ablator consists of plastic or beryllium, which almost completely burns away when hit by the lasers. About 10^{15} atoms of the isotope(s) of interest will be loaded into the inner-most layer of the ablator shell [4,5], which in turn surrounds a layer of DT ice and a sphere of DT gas. Noble gases are considered to be the most suitable dopants. For many reasons, ¹²⁴Xe became the primary choice of capsule dopant [4]. In the presence of DT neutrons the isotope ¹²⁴Xe undergoes both (n,γ) and (n,2n) reactions, leading to ¹²⁵Xe and ¹²³Xe, respectively. Following a NIF shot, the xenon gas is collected with the Radiochemical Analysis of Gaseous Samples (RAGS) apparatus [5], and subsequently, the two isotopes 125 Xe and 123 Xe are analyzed using ν -ray spectroscopy to determine the 125 Xe/ 123 Xe ratio. The collection efficiency cancels, and there is no need to know the absolute amount of ¹²⁴Xe bonded to the ablator. Therefore, the capsule performance can be benchmarked according to the 125 Xe/ 123 Xe ratio.

[†]Present address: Nuclear and Radiochemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. [‡]NSF REU 2013 student at TUNL.

The threshold for the ${}^{124}Xe(n,2n){}^{123}Xe$ reaction is 10.569 MeV, and its cross section increases with energy in the neutron energy region of interest. Therefore, this reaction probes the primary 14 MeV DT neutrons and a small portion of the down-scattered neutrons (small-angle scattering). In contrast, the energy threshold of the 124 Xe (n, γ) 125 Xe reaction is zero, and its cross section increases with decreasing neutron energy. With increasing areal density ρR of the fuel, more neutrons will down-scatter to lower energies, thereby increasing the ¹²⁵Xe activity at the expense of the ¹²³Xe activity. Therefore, the 125 Xe/ 123 Xe intensity ratio provides a measure for ρR of the ICF plasma [4].

A NIF shot on a spherical glass shell of 1.1 mm radius filled with a 1:1 DT mixture and a small amount of ¹²⁴Xe was performed as early as 2011 for commissioning of the RAGS diagnostic tool [5,6]. The data of a more recent shot are being analyzed [7]. However, cryogenically layered capsules (see Fig. 1) loaded with xenon have not been used yet at NIF [7]. Currently, any quantitative assessment of the areal density ρR of the DT plasma obtained from ¹²⁴Xe loaded capsules rests on the accuracy of evaluations and model calculations used for the 124 Xe (n,γ) 125 Xe and 124 Xe(n,2n) 123 Xe reaction cross sections. One reason for choosing ¹²⁴Xe as a dopant is its evaluated [8] and predicted extremely large (n, γ) cross section. For example, at 3 MeV neutron energy this cross section is predicted to be a factor of 300 larger than that for the neutron-rich isotope 136 Xe [8,9]. However, for the neutrondeficient isotope ¹²⁴Xe no experimental data exist for the (n, γ) reaction above 30 keV neutron energy [10]. Furthermore, for the (n, 2n) cross section, experimental data exist only at around 14 MeV [11–13] and they scatter between 1.0 and 1.6 b. Therefore, to improve the accuracy of ρR determinations from ¹²⁵Xe/¹²³Xe ratio measurements at NIF, cross-section data for the 124 Xe (n,γ) 125 Xe reaction were measured in the important energy range between 0.4 and 7.5 MeV. In addition, cross-section data for the 124 Xe $(n, 2n)^{123}$ Xe data were obtained

^{*}megha@tunl.duke.edu

FIG. 1. (Color) Schematic of deuterium-tritium capsule used in laser shots at the National Ignition Facility.

between 11.3 and 14.8 MeV. The experimental procedure and our results are presented in the following.

Monoenergetic neutrons were obtained via the ${}^{3}\text{H}(p,n){}^{3}\text{He}$ reaction (Q = -0.764 MeV) between 0.37 and 3.8 MeV, via the ${}^{2}\text{H}(d,n){}^{3}\text{He}$ reaction (Q = +3.269 MeV) between 4.5 and 14.5 MeV, and finally at 14.8 MeV via the ${}^{3}\text{H}(d,n){}^{4}\text{He}$ reaction (Q = +17.589 MeV). The charged-particle beams were produced and accelerated at the Triangle Universities Nuclear Laboratory (TUNL) [14]. Typically, the proton and deuteron beam currents ranged between 1.5 and 3.5 μ A, producing the neutron fluxes given in Tables I and III in the second column at the neutron energies specified in the first column. The target assemblies used for the ${}^{3}\text{H}(p,n){}^{3}\text{He}$, ${}^{3}\text{H}(d,n){}^{4}\text{He}$, and ${}^{2}\text{H}(d,n){}^{3}\text{He}$ reactions were identical to those of Refs. [9] and [15], respectively.

A schematic view of the experimental setup is shown in Fig. 2. The xenon gas, enriched to 99.6% in ¹²⁴Xe, was contained in a stainless steel sphere with inner diameter of 20 mm and wall thickness of 0.6 mm, resulting in a ¹²⁴Xe mass of 2.697 g and a pressure of about 120 atm. The distance between the end of the neutron production target and the center of the ¹²⁴Xe sphere was typically 19 mm for measurements of the ¹²⁴Xe(n,γ)¹²⁵Xe reaction cross section, and 25 mm for the ¹²⁴Xe(n,2n)¹²³Xe reaction. Monitor foils (indium and gold) were attached to the upstream and downstream faces of the sphere for neutron fluence determination. The entire neutron target-sphere assembly was contained in a thin-walled cage made of 0.5 mm thick cadmium to prevent room-return thermal neutrons from initiating the ¹²⁴Xe(n,γ)¹²⁵Xe reaction.

TABLE I. 124 Xe $(n,\gamma)^{125}$ Xe reaction: Neutron energy and associated energy spread, neutron flux at position of 124 Xe sphere, monitor reactions used for determining the neutron fluence, and cross-section results obtained for 124 Xe $(n,\gamma)^{125}$ Xe reaction.

Neutron energy $E_n \pm \Delta E_n$ (MeV)	Neutron flux $\phi_n \ (\mathrm{cm}^{-2} \ \mathrm{s}^{-1})$	Monitor reactions σ (mb)	σ^{124} Xe $(n,\gamma)^{125}$ Xe σ (mb)
0.37 ± 0.10	1.04×10^{7}	183.90 ± 8.90	266.92 ± 15.44
0.86 ± 0.10	4.09×10^{6}	166.44 ± 1.70	176.14 ± 11.20
1.86 ± 0.10	1.06×10^{7}	229.72 ± 5.50	141.96 ± 9.92
2.73 ± 0.15	9.49×10^{6}	344.50 ± 8.10	126.14 ± 20.31
3.61 ± 0.15	5.72×10^{6}	331.51 ± 7.80	133.62 ± 24.22
4.48 ± 0.26	7.21×10^{6}	318.44 ± 7.48	64.14 ± 5.61
5.31 ± 0.35	2.29×10^{7}	334.57 ± 8.70	29.51 ± 5.32
6.31 ± 0.33	2.60×10^{7}	346.09 ± 12.30	22.78 ± 3.46
7.25 ± 0.33	4.28×10^7	323.22 ± 11.50	16.10 ± 2.93

PHYSICAL REVIEW C 91, 011601(R) (2015)

FIG. 2. (Color online) Schematic of experimental setup consisting of neutron production target, ¹²⁴Xe high-pressure sphere with monitor foils, and neutron flux detector.

The room-return neutron flux is five to six orders of magnitude smaller than the direct neutron flux of interest [16].

A neutron flux monitor was positioned at 0° relative to the incident charged-particle beam at a distance of 3 m from the neutron-production target. This BC-501A based liquid scintillator [17] of 3.9 cm diameter and 3.9 cm thickness was used to record the neutron flux during the activation measurements.

The tritiated titanium target [15] used for producing neutrons via the ${}^{3}H(p,n){}^{3}He$ reaction is also the source of lower energy background neutrons, once the proton energy exceeds about 3 MeV. Therefore, as described in Ref. [9], for neutron energies between 2.4 and 3.8 MeV, auxiliary measurements were performed with an untritiated, but otherwise identical target, to correct the data of interest for contributions originating from (p,n) reactions in the titanium layer and copper backing of the tritiated titanium target assembly. The correction factors were between 1.7% at 2.73~MeV and 28% at 3.61 MeV. Similarly, for the ${}^{2}\text{H}(d,n){}^{3}\text{He}$ reaction at $E_{n} = 6.31$ and 7.25 MeV, gas-out measurements were made to correct for the deuteron breakup reaction on the structural materials of the deuterium gas cell. The size of the corrections varied between 1% at 5.31 MeV and 40% at 7.31 MeV for the reaction 124 Xe $(n, \gamma)^{125}$ Xe. The correction factors associated with the monitor foils varied between 0.1% at 5.31 MeV and 7% at 3.61 MeV.

For the measurements of the ${}^{124}Xe(n,\gamma){}^{125}Xe$ cross section the neutron irradiation times varied between 1.5 and 4 h (depending on energy), while for the ${}^{124}Xe(n,2n){}^{123}Xe$ reaction activation times between 1 and 1.5 h turned out to be sufficient. After irradiation, the ${}^{124}Xe$ sphere was γ -ray counted using a

FIG. 3. (Color online) Partial level scheme relevant to the 124 Xe(n, γ) 125 Xe reaction. All energies are given in keV. Data taken from [18].

FIG. 4. (Color online) Partial level scheme relevant to the 124 Xe $(n, 2n)^{123}$ Xe reaction. All energies are given in keV. Data taken from [18].

calibrated and shielded 60% high-purity germanium (HPGe) detector of well-known efficiency. For the ¹²⁴Xe(n, γ)¹²⁵Xe reaction, the γ -ray lines of 188.416 and 243.382 keV from ¹²⁵I were used after allowing for a delay time of 10 min for the 252.61 keV isomeric state of ¹²⁵Xe to decay to its ground state (see Fig. 3). For the ¹²⁴Xe(n,2n)¹²³Xe cross-section measurements the yields of the ¹²³I γ -ray lines at 148.92 and 178.02 keV were recorded (see Fig. 4). The indium and gold foils were γ -ray counted using 60% HPGe detectors as well. The data-acquisition system GENIE [19] was used to follow the intensity of the γ -ray lines of interest over typically three half-life times, except for the 355.73 keV line of ¹⁹⁶Au ($T_{1/2} = 6.167$ d), for which data acquisition was limited to 24 h. The γ -ray spectra were analyzed with the software package TV [20].

An empty, but otherwise identical sphere was irradiated at selected energies to check whether γ -ray lines from the stainless steel sphere were contaminating the lines of interest. No such γ -ray lines were observed. The well-known activation formula [9] was used to determine the neutron flux ϕ_n at the position of the ¹²⁴Xe sphere from the data obtained with the monitor foils:

$$\phi_n = \frac{A\lambda}{N\sigma\epsilon I_{\gamma}(1 - e^{-\lambda t_i})e^{-\lambda t_d}(1 - e^{-\lambda t_m})}.$$
 (1)

Here, the activity A is the total yield in the photopeak of the monitor reaction, N is the number of target nuclei, σ is the monitor reaction cross section, ϵ is the photopeak efficiency

TABLE II. Uncertainty budget for 124 Xe (n,γ) 125 Xe and monitor reaction cross-section data.

Uncertainty	¹²⁴ Xe (%)	Monitors (%)
Counting statistics	0.1-1.16	0.3-1.13
Reference cross sections		2.3-4.1
Neutron flux correction	<2	
Detector efficiency	0.91-5.30	1.16-3.14
Source geometry and self-absorption	< 0.2	< 0.2
Half-life time	1.18	0.09-0.31
γ -ray branching ratio I_{γ}		1.42-4.80
Neutron flux fluctuation	<1	<1
Low-energy neutrons	<4	<1

PHYSICAL REVIEW C 91, 011601(R) (2015)

FIG. 5. (Color) 124 Xe $(n,\gamma)^{125}$ Xe cross-section data obtained in the present work in comparison to the evaluations ENDF-B/VII.1 [8] and JENDL-4.0 [24], and the model calculation TENDL-2012 [25].

at the γ -ray energy of interest, I_{γ} is the branching ratio, and λ denotes the decay constant of the residual nucleus. The times t_i , t_d , and t_m refer to the irradiation time, decay time between the end of irradiation and beginning of counting, and the measuring time, respectively. The ¹¹⁵In $(n,n')^{115m}$ In reaction was used for incident neutron energies between 0.85 and 7.31 MeV. Cross-section values were obtained from Ref. [21]. The ¹⁹⁷Au $(n,\gamma)^{198}$ Au reaction was used at 0.37 MeV, with the cross section taken from Ref. [22]. Finally, the reaction ¹⁹⁶Au $(n,2n)^{196}$ Au was employed at energies above 9 MeV. In this case the cross-section values of Ref. [23] were used. Details are given in the third column of Table III.

Subsequently, the activation formula was employed again. This time the neutron flux ϕ_n determined above was used to extract the cross sections σ of interest, now using the relevant quantities related to ¹²⁴Xe.

The tight geometry of the experimental setup shown schematically in Fig. 2, and the neutron attenuation in the 124 Xe sphere causes the neutron fluence at the position of the 124 Xe gas to deviate from the average fluence obtained from the two monitor foils. In addition, the average neutron energy seen by the 124 Xe gas is not the nominal neutron

TABLE III. ¹²⁴Xe $(n,2n)^{123}$ Xe reaction: Neutron energy and associated energy spread, neutron flux at position of ¹²⁴Xe sphere, monitor reactions used for determining the neutron fluence, and cross-section results obtained for ¹²⁴Xe $(n,2n)^{123}$ Xe reaction.

Neutron energy $E_n \pm \Delta E_n$ (MeV)	Neutron flux $\phi_n(\text{cm}^{-2} \text{ s}^{-1})$	Monitor reactions σ (mb)	σ^{124} Xe $(n,2n)^{123}$ Xe σ (mb)
$\begin{array}{c} \hline 11.36 \pm 0.14 \\ 11.86 \pm 0.14 \\ 12.36 \pm 0.14 \\ 12.85 \pm 0.15 \\ 13.35 \pm 0.15 \\ 13.85 \pm 0.15 \\ 14.35 \pm 0.15 \\ 14.35 \pm 0.15 \\ \hline \end{array}$	$\begin{array}{c} 1.57 \times 10^{7} \\ 2.32 \times 10^{7} \\ 2.07 \times 10^{7} \\ 1.82 \times 10^{7} \\ 1.84 \times 10^{7} \\ 2.03 \times 10^{7} \\ 1.82 \times 10^{7} \\ \end{array}$	1564.05 ± 42.07 1701.31 ± 44.06 1823.51 ± 44.68 1933.86 ± 43.90 2035.41 ± 37.86 2114.60 ± 26.43 2152.99 ± 24.09	$\begin{array}{c} 80.36 \pm 5.03 \\ 228.56 \pm 12.17 \\ 391.22 \pm 34.25 \\ 570.07 \pm 28.46 \\ 676.28 \pm 39.99 \\ 793.88 \pm 38.13 \\ 839.57 \pm 46.53 \\ 200.44 \pm 46.53 \end{array}$

PHYSICAL REVIEW C 91, 011601(R) (2015)

TABLE IV. Uncertainty budget for 124 Xe(n,2n) 123 Xe and monitor reaction cross-section data.

Uncertainty 124 Xe (%)Monitors (%)Counting statistics $0.1-0.2$ $0.35-0.62$ Reference cross sections $1-2.7$ Neutron flux correction <2 Detector efficiency $1-4$ $4-5$ Source geometry and self-absorption <0.2 <0.2 <0.2 Half-life time 0.96 γ -ray branching ratio I_{γ}			
Counting statistics $0.1-0.2$ $0.35-0.62$ Reference cross sections $1-2.7$ Neutron flux correction <2 Detector efficiency $1-4$ $4-5$ Source geometry and self-absorption <0.2 <0.2 <0.2 Half-life time 0.96 γ -ray branching ratio I_{γ}	Uncertainty	¹²⁴ Xe (%)	Monitors (%)
Reference cross sections $1-2.7$ Neutron flux correction<2	Counting statistics	0.1-0.2	0.35-0.62
Neutron flux correction<2Detector efficiency1-44-5Source geometry and self-absorption<0.2	Reference cross sections		1-2.7
Detector efficiency1-44-5Source geometry and self-absorption <0.2 <0.2 Half-life time 0.96 0.01 γ -ray branching ratio I_{γ} $<$	Neutron flux correction	<2	
Source geometry and self-absorption <0.2 <0.2 Half-life time0.960.01 γ -ray branching ratio I_{γ} $<$	Detector efficiency	1–4	4–5
Half-life time0.960.01 γ -ray branching ratio I_{γ} 0.960.01	Source geometry and self-absorption	< 0.2	< 0.2
γ -ray branching ratio I_{γ}	Half-life time	0.96	0.01
	γ -ray branching ratio I_{γ}		

energy measured with the neutron monitor positioned at 0° ,

or calculated from the reaction kinematics at 0° . A Monte Carlo code was written to obtain the effective neutron fluence,

average neutron energy, and its associated energy spread seen

by the ¹²⁴Xe gas. Because of the shorter distance between the

neutron production target and the ¹²⁴Xe sphere, the fluence

correction factors were up to 12% for the data obtained with the ${}^{3}\text{H}(p,n){}^{3}\text{He}$ and ${}^{3}\text{H}(d,n){}^{4}\text{He}$ reactions, but did not exceed

The activity of the ¹²⁴Xe gas was measured with the center

of the stainless steel sphere positioned at a distance of 50 mm

from the front face of the 68 mm diameter HPGe detector.

The absolute efficiency of the HPGe detector was measured with standard test sources, including a multi- γ -ray source

(consisting of 54 Mn, 57 Co, 65 Zn, 88 Y, 109 Cd, 113 Sn, 134 Cs, 137 Cs, 139 Ce, 203 Hg, and 241 Am), also positioned at a distance

of 50 mm. However, because of the geometry difference between these test sources (a few mm diameter and very

thin) and the ¹²⁴Xe gas (20 mm diameter) and the monitor

foils, Monte Carlo calculations were performed to correct for

this geometry effect, as well as for the self-absorption of the

 γ -ray lines of interest in the gas and the stainless steel wall of the sphere. Depending on the γ -ray test source diameter and γ -ray energy (from ¹²⁵I and ¹²³I), the total corrections varied

between 15% and 47%. The correction factors for the monitor

in the fourth column of Table I. The quoted uncertainty

reflects the total uncertainty obtained by adding the individual uncertainties specified in Table II in quadrature. The present

results are shown in Fig. 5 in comparison to predictions based

on the evaluations ENDF-B/VII.1 [8] and JENDL-4.0 [24] and

the model calculation TENDL-2012 and TENDL-2013 of the

TALYS nuclear reaction code [25]. As can be seen, none of

the predictions are in good agreement with the experimental

The results for the 124 Xe (n, γ) 125 Xe cross section are given

2% for the ${}^{2}\text{H}(d,n){}^{3}\text{He}$ reaction.

foils varied between 1% and 2%.

FIG. 6. (Color) 124 Xe $(n,2n){}^{123}$ Xe cross-section data in comparison to evaluations [8,24,25] and previous data [11–13]. The calculations of TENDL-2012 and TENDL-2013 are identical.

data. The magnitude of the 124 Xe (n, γ) 125 Xe cross section is described best by the most recent TALYS calculation.

The results for the 124 Xe $(n, 2n)^{123}$ Xe cross section are given in the fourth column of Table III. The uncertainty budget is summarized in Table IV. The present results are compared in Fig. 6 to the two evaluations and the model calculation referred to above, and the previous data at around 14 MeV. The present data follow the predicted energy dependence and are only slightly lower in magnitude than the ENDF-B/VII.1 [8] evaluation. In the 14 MeV region our data are slightly below the datum of Sigg *et al.* [12] and Kondaiah *et al.* [11], while the data of Bazan [13] are inconsistent with both the new data and the two previous data sets.

In summary, the ${}^{124}Xe(n,\gamma){}^{125}Xe$ and ${}^{124}Xe(n,2n){}^{123}Xe$ cross-section data obtained in the present work provide for the first time an accurate basis for interpreting measurements of the ${}^{125}Xe/{}^{123}Xe$ intensity ratio performed at NIF in laser shots on ${}^{124}Xe$ loaded DT capsules. It is anticipated that the extracted information will add to the understanding of the exciting physics governing the inertial confinement fusion plasma.

We thank Ronald Schwengner, Technical University Dresden, Germany, for providing the ¹²⁴Xe filled and empty spheres. The authors acknowledge valuable contributions from A. P. Tonchev, LLNL; M. Boswell, LANL; and S. W. Finch, Duke University. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliance Program through the U.S. Department of Energy Grant No. DE-NA0001839, and by the U.S. Department of Energy, Office of Nuclear Physics, under Grant No. DE-FG02-97ER41033.

- [1] J. A. Frenje et al., Nucl. Fusion 53, 043014 (2013).
- [2] P. A. Bradley, G. P. Grim, A. C. Hayes, G. Jungman, R. S. Rundberg, J. B. Wilhelmy, G. M. Hale, and R. C. Korzekwa, Phys. Rev. C 86, 014617 (2012).
- [3] J. Lindl et al., Phys. Plasmas 21, 020501 (2014).
- [4] D. A. Shaughnessy, C. Cerjan, K. J. Moody, L. Bernstein, R. Hoffman, M. A. Stoyer, R. Fortner, and D. Schneider, Lawrence

Livermore National Laboratory Report No. LLNL-TR-472995, 2011 (unpublished).

- [5] D. A. Shaughnessy, C. A. Velsko, D. R. Jedlovec, C. B. Yeamans, K. J. Moody, E. Tereshatov, W. Stoeffl, and A. Riddle, Rev. Sci. Instrum. 83, 10D917 (2012).
- [6] https://str.llnl.gov/Dec12/shaughnessy.html.
- [7] D. A. Shaughnessy (private communication).

- [8] M. B. Chadwick *et al.*, Nucl. Data Sheets **112**, 2887 (2011).
- [9] M. Bhike and W. Tornow, Phys. Rev. C 89, 031602(R) (2014).
- [10] http://www.nndc.bnl.gov/exfor.
- [11] E. Kondaiah, N. Ranakumar, and R. W. Fink, Nucl. Phys. A 120, 337 (1968).
- [12] R. A. Sigg and P. K. Kuroda, Nucl. Sci. Eng. 60, 235 (1976).
- [13] F. Bazan, LLNL Internal Report UCRL-53929, 1989 (unpublished), p. 162.
- [14] http://www.tunl.duke.edu/.
- [15] M. Bhike, B. Fallin, and W. Tornow, Phys. Lett. B 736, 361 (2014).
- [16] C. Bhatia *et al.*, Nucl. Instrum. Methods Phys. Res. A 757, 7 (2014).
- [17] http://www.detectors.saint-gobain.com.

- [18] http://www.nndc.bnl.gov.
- [19] http://www.canberra.com.
- [20] J. Theuerkauf, S. Esser, S. Krink, M. Luig, N. Nicolay, O. Stauch, and H. Wolters, Program TV, Institute for Nuclear Physics, University of Cologne, 1993 (unpublished).

PHYSICAL REVIEW C 91, 011601(R) (2015)

- [21] A. B. Smith, S. Chiba, D. L. Smith, J. W. Meadows, P. T. Guenther, R. D. Lawson, and R. J. Howerton, ANL/NDM-115, 1990 (unpublished).
- [22] A. N. Davletshin, E. V. Teplov, A. O. Tipunkov, S. V. Tikhonov, and V. A. Tolstikov, Vop. At. Nauki i Tekhn. Ser. Yadernye Konstanty **1993**, 13 (1993).
- [23] K. I. Zolotarev et al., INDC(NDS)-526 (2008).
- [24] K. Shibata et al., Nucl. Sci. Technol. 48, 1 (2011).
- [25] A. J. Koning, S. Hilaire, and M. C. Duijvestijin, AIP Conf. Proc. 769, 1154 (2005).