Reexamining shell-model predictions for the mass of ¹⁷Na(g.s.)

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 29 September 2014; published 1 December 2014)

A new shell-model calculation for ¹⁷C provides spectroscopic factors for use in a computation of mirror energy differences between ¹⁷C and ¹⁷Na. Results are compared with previous predictions.

DOI: 10.1103/PhysRevC.90.067302

PACS number(s): 21.10.Dr, 21.10.Sf, 21.60.Cs, 27.20.+n

Three recent papers [1-3] have presented predictions for the ground-state (g.s.) mass of ¹⁷Na and for energies of some excited states. Reference [1] used the two-center microscopic cluster model (MCM) and an interaction V2, whose parameters had been tailored to fit the properties of the low-lying states of ¹⁷C, the mirror of ¹⁷Na. Reference [2] used the experimental ¹⁷C energies as input to a calculation of Coulomb energies in ¹⁷Na in a potential model. The nuclear potential was of Woods-Saxon shape with r_0 , a = 1.25, 0.65 fm. The Coulomb potential was that of a uniform sphere. Both papers considered s and d nucleons coupled to various core states of ${}^{16}C$ and ¹⁶Ne. As only the 0^+ g.s. and the 2^+ first-excited state were known in ¹⁶Ne, the energies of the other ¹⁶Ne states were calculated in Ref. [2] from the mirrors in ${}^{16}C$ and by using published wave functions [4]. Reference [2] took spectroscopic factors for ¹⁷C from Ref. [1] for both V2 and shell-model (sm) interactions. Amos et al. [3] presented calculations of energies and widths for ¹⁷Na by using the multichannel algebraic scattering (MCAS) theory. Reference [3] treated ¹⁷C as a neutron coupled to collective 0^+ , 2^+ , and 4^+ states of ${}^{16}C$ and treated 17 Na as a proton coupled to their mirrors in 16 Ne.

Results in Ref. [2] were similar for the V2 and sm models for the two excited states. The g.s. mass prediction differed by 340 keV in the two calculations, but proton resonance energies for both $3/2^+$ and $5/2^+$ differed by only 3 and 18 keV, respectively. Perhaps more importantly, V2 results in Refs. [1,2] differed by 310, 810, and 770 keV for $1/2^+$, $3/2^+$, and $5/2^+$, respectively. All calculations agreed that the g.s. of ¹⁷Na will be $1/2^+$. In addition to an overall energy shift, it seems that the MCM results do not fully account for the lowering of the $s_{1/2}$ proton energy (the so-called Thomas-Ehrman effect). Predicted energies of Amos *et al.* were quite different from those in the other two papers. After I pointed out some problems [5] with the Pauli principle in their approach, Amos *et al.* restated their belief in the validity of their method [6]. I do not intend to reopen those discussions here. Rather, I present results of a new shell-model calculation to investigate the robustness of the shell-model predictions. This calculation is smaller than the previous one [1,2] in scope, but it is complete within the $d_{5/2}s_{1/2}$ space as is the coupling of ¹⁷C states to ¹⁶C core states.

The differences mentioned above prompted me to repeat the calculations with spectroscopic factors from a completely different sm interaction. Relevant states are the ¹⁷Na mirrors of the first three states in ¹⁷C. The present sm is in the spirit of Lawson [7], who explicitly computed levels of ¹⁹O in a basis of $(sd)^3$ where the *sd* orbitals were restricted to $s_{1/2}$ and $d_{5/2}$ only. I have used this procedure to compute wave functions in ¹⁷C as ¹⁴C(g.s.) × $(sd)^3$. As the first-excited state of ¹⁴C is above 6 MeV, this is expected to be a reasonable assumption for low-lying levels of ¹⁷C. I took single-particle energies from the $1/2^+$ and $5/2^+$ states of ¹⁵C. The two-body residual interaction matrix elements were taken from Ref. [8] where they first arose in a consideration of the properties of ¹⁸O. This interaction and space restriction is the same as in Ref. [4].

TABLE I. Spectroscopic factors for ${}^{16}C + n = {}^{17}C$ (V2 and SM are from Ref. [1]).

Core	sp	3/2+			$1/2^+$			5/2+		
		V2	SM	Present	V2	SM	Present	V2	SM	Present
0_{1}^{+}	S				0.828	0.644	0.465			
	d	0.010	0.035	~ 0				0.558	0.701	0.821
0_{2}^{+}	S				Na ^a	Na ^a	0.534	Na ^a	Na ^a	
	d	Na	Na	~ 0	Na ^a	Na ^a		Na ^a	Na ^a	0.0008
2_{1}^{+}	S	0.328	0.163	0.174				0.037	0.096	0.197
	d	1.260	1.445	1.647	0.034	0.415	0.507	0.520	0.226	0.166
2^+_2	S	0.030	0.225	0.270				0.050	0.014	0.163
	d	0.127	0.090	0.137	0.366	0.372	0.327	0	0.631	0.279
4^{+}	d	0.372	0.381	0.477				0.969	0.916	0.802
3+	S							0	0.301	0.543
	d	0.026	0.285	0.371	0.091	1.027	1.167	0.060	0.003	0.0005

^aNa stands for not available.

The present model differs from Ref. [2] in two other minor features: (1) The current geometrical parameters of the Woods-Saxon well are r_0 , a = 1.26, 0.60 fm, and the Coulomb potential has $r_0 = 1.40$ fm; (2) I have included the second 0⁺ core state, which was omitted in both Refs. [1,2]. As the energy of this state is not known in ¹⁶Ne, it was necessary to compute its energy. I did this by using the wave functions [4] referred to earlier. The resulting excitation energy in ¹⁶Ne is 2.735 MeV. With this inclusion, the current set of six core states for A = 16, T = 2 are all that exist in our *sd* space, so there is no missing strength. In Refs. [1,2], the different interactions resulted in different amounts of the total strength that reside in the chosen set of core states.

Present spectroscopic factors are listed in Table I where they are compared with two sets from Ref. [1] that were used in Ref. [2]. Numerical results are not drastically different, apart from the discrepancies already noted in Ref. [2], but some differences do exist. One difference is that the present S's sum to 3.0 for each of the three final states. In Ref. [1], this sum ranged from 1.32 to 2.15 for V2 and from 2.46 to 2.89 for sm.

TABLE II. Calculated proton energies (MeV) of the three lowest resonances in 17 Na = 16 Ne + p.

J^{π}	Reference [1]	Reference [2]		Present	MCAS	
	V2	V2	SM	Brief Report	(Ref. [3])	
$1/2^{+}$	2.40	2.71	3.05	3.02	1.03	
$3/2^{+}$	2.57	3.38	3.39	3.22	2.26	
$5/2^{+}$	2.97	3.74	3.72	3.47	1.13	

Final energies are listed in Table II where they are compared with previous values [1–3]. Despite the strong differences in the input of the two sm calculations, differences in the final energies are smaller than the differences between V2 and either shell model. It would appear that the sm differences for the excited states can be traced to the smaller $s_{1/2}$ parentage in the sm of Refs. [1,2]. (For the g.s., the *s* parentage was already large there.) The MCAS results are seen to bear little resemblance to the other predictions. The differences between the various calculations are large enough to be easily tested if a suitable reaction can be found to produce ¹⁷Na. I still await an experimental test of these predictions.

- [1] N. K. Timofeyuk and P. Descouvemont, Phys. Rev. C 81, 051301(R) (2010).
- [2] H. T. Fortune and R. Sherr, Phys. Rev. C 82, 027310 (2010).
- [3] K. Amos et al., Nucl. Phys. A 879, 132 (2012).
- [4] H. T. Fortune et al., Phys. Rev. Lett. 40, 1236 (1978).
- [5] H. T. Fortune, Nucl. Phys. A **890-891**, 25 (2012).
- [6] K. Amos, L. Canton, P. R. Fraser, S. Karataglidis, J. P. Svenne, and D. van der Knijff, Nucl. Phys. A 912, 7 (2013).
- [7] R. D. Lawson, *Theory of the Nuclear Shell Model* (Clarendon, Oxford, 1980), p. 63ff.
- [8] R. D. Lawson, F. J. D. Serduke, and H. T. Fortune, Phys. Rev. C 14, 1245 (1976).