
PHYSICAL REVIEW C 90, 065808 (2014)

Modification of the Brink-Axel hypothesis for high-temperature nuclear weak interactions
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We present shell-model calculations of electron capture strength distributions in A = 28 nuclei and
computations of the corresponding capture rates in supernova core conditions. We find that in these nuclei the
Brink-Axel hypothesis for the distribution of Gamow-Teller strength fails at low and moderate initial excitation
energy but may be a valid tool at high excitation. The redistribution of GT strength at high initial excitation
may affect capture rates during collapse. If these trends which we have found in lighter nuclei also apply for the
heavier nuclei which provide the principal channels for neutronization during stellar collapse, then there could
be two implications for supernova core electron capture physics. First, a modified Brink-Axel hypothesis could
be a valid approximation for use in collapse codes. Second, the electron capture strength may be moved down
significantly in transition energy, which would likely have the effect of increasing the overall electron capture
rate during stellar collapse.
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I. INTRODUCTION

The Brink-Axel hypothesis posits that the electromagnetic
giant dipole resonance in nuclei resides at the same relative en-
ergy from excited states as it does from the ground state [1,2].
That is, if a given nucleus in its ground state has the resonance
at 10 MeV excitation, then that same nucleus in an excited state
would have that resonance at 10 MeV above the excited level,
and indeed experiment bears this out [3]. The idea that the
response properties of excited states might be similar to those
of the ground state is alluring, especially for astrophysical
weak interaction calculations, in part because it can be difficult
to measure or calculate excited-state properties and relatively
easier to study ground-state properties. Moreover, in stellar
collapse environments, nuclei can reside in highly excited
states, and an approximation like Brink-Axel for Gamow-
Teller (GT) transitions is widely applied [4–19]. (In fact,
for isovector Fermi transitions, the Brink-Axel hypothesis
holds exactly insofar as isospin is a good quantum number
of the nucleus.) In this paper we examine electron capture
strength on nuclei with high initial excitation energy and
its effect on the electron capture rate, with a particular
emphasis on adapting the Brink-Axel hypothesis for use in this
channel.

Neutronization of the collapsing core through electron
capture is pivotally important in the supernova problem, as
electrons provide pressure support within the core. During
infall, the mass of the homologous inner core (that portion
which collapses subsonically) is set by the electron-to-baryon
ratio Ye. This mass, which acts as a sort of piston at core
bounce, sets the initial postbounce shock energy. Moreover, Ye

figures into the nuclear composition of the outer core, which
dissipates much of the shock energy through photodissociation
of its nuclei and affects neutrino transport through coherent
interaction with nuclei [20–32].

During supernova core collapse, the density is very high,
starting at around 1010 g/cm3 at the onset of collapse and
proceeding to >1014 g/cm3 at bounce. The temperature is very

high at ∼1–2 MeV, but the entropy per baryon is extremely low
at ≈1 unit of Boltzmann’s constant per baryon [33]. Although
electrons are most readily captured onto free protons, the
low entropy favors large nuclei, which are then, in turn, the
principal sites for electron capture [20,33,34]. The core is
initially cooled during collapse by neutrino emission [35–38],
so the entropy remains low. Furthermore, the high temperature
puts the nuclei into extremely highly excited states. Using the
Bethe approximation for nuclear level density [39], the average
excitation energy is

E ≈ a(kBT )2, (1)

where a ≈ A
8 MeV−1 is the level density parameter. With a

typical nuclear mass of ∼120, we find the average excitation
energy to be between 15 and 60 MeV. Finally, as the collapse
progresses, the core electron fraction tends toward Ye ≈ 0.32,
which implies neutron-rich nuclei. To understand neutron-
ization during core collapse, we must therefore consider the
capture of electrons onto large, highly excited, and eventually
neutron-rich nuclei.

Large, highly excited, neutron-rich nuclei are, unfortu-
nately, problematic to understand both experimentally and
theoretically. Experimental data on these nuclei are sparse [40],
and while large nuclei certainly exist in abundance, there
are as of yet no experimental means by which to put them
into high-energy states without utterly destroying them. The
(n,p), (p,n), (3He,t), (d,2He), and similar charge exchange
channels give information on the GT structure [41–43], but
these experiments can only probe nuclei in the ground state,
whereas low-entropy, high-temperature environments favor
much higher excitations. The Extreme Light Infrastructure
may eventually be able to provide some insight into the
structure and behavior of highly excited nuclei through the
use of multiple-MeV-photon lasers, but it is not yet in
operation [44]. Of course, even when high-energy states
become readily attainable, we still face the problem that nuclei
of the appropriate neutron richness are highly unstable in

0556-2813/2014/90(6)/065808(14) 065808-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.90.065808


G. WENDELL MISCH, GEORGE M. FULLER, AND B. ALEX BROWN PHYSICAL REVIEW C 90, 065808 (2014)

the laboratory; it is the high density and low entropy of the
supernova core that allow them to exist in that environment.

From the theoretical direction, we should look for trends
in the GT electron capture strength distribution, as the Brink-
Axel hypothesis has had experimental success in the elec-
tromagnetic channel. Fuller, Fowler, and Newman [4,45–47]
(hereafter FFNI, FFNII, FFNIII, and FFNIV, respectively, for
those specific papers, and FFN for the body of work as a
whole) were the first to adopt the Brink-Axel hypothesis for
use in the GT charged current channel (we call this and similar
techniques the GT Brink-Axel hypothesis to distinguish it
from the experimentally verified giant dipole electromagnetic
phenomenon). This approach and modifications thereof have
since been widely used to compute weak rates. Variations
include essentially copying the FFN approach [5], using
a broad GT resonance that is the same for all excited
states [6,7], computing in detail only the lowest few states
in the parent and/or daughter nuclei and employing the GT
Brink-Axel hypothesis to treat the bulk of the strength at high
excitations or neglecting highly excited states entirely [8–16],
and using thermal averaging techniques [17,18]. Recently,
electron capture rates have been tabulated using combinations
of these approaches over a wide range of nuclear masses and
stellar conditions [19].

However, there is mounting evidence that we would be
unwise to take the Brink-Axel hypothesis at face value. Angell
et al. [48] have shown experimentally that Brink-Axel does
not hold for the pygmy dipole resonance, and Nabi and
Sajjad [49–51] have observed in their theoretical calculations
the failure of Brink-Axel for the GT interaction even at modest
excitation energies. Thus, whenever it is computationally
feasible, we should avoid use of the GT Brink-Axel hypothesis.
Oda et al. [52] performed full sd shell-model computations
of the first 100 excited states in each sd shell nucleus,
while others have taken to the random phase approximation
to examine heavier nuclei [53,54]. However, the Oda et al.
approach of neglecting states higher than the 100th excitation
may miss some important features of higher-lying states, and
while random phase approximation does well at determining
the overall strength distribution, it is unable to accurately
reproduce the detailed distributions to which electron capture
rates are sensitive. We are therefore well served by scrutinizing
detailed strength distributions up to very high initial excitation
to learn in what ways the distribution evolves. We show that,
at least in the sd shell, a modified form of the GT Brink-Axel
hypothesis derived from large-scale shell-model calculations
can both be computationally tractable and capture features
of the strength distribution at low and high excitation with
consequences for core collapse.

Computationally, large nuclei are difficult to study simply
because of the large number of nucleons involved; the sheer
combinatorics of so many nucleons rapidly drives up the
computational requirements. In practice, this difficulty is
usually circumvented by holding most of the nucleons fixed
and only allowing a few to occupy single-particle states above
the lowest energy. While this approach works reasonably well
for the lowest-lying nuclear states, its efficacy breaks down at
higher energies (higher nuclear energies imply more nucleons
above the lowest single-particle energies) and when the model

has too few single-particle states, i.e., is restricted, allowing
too few basis states to yield a realistic set of total nuclear
eigenstates.

Because of these computational obstacles and the fact that
we want to understand the GT structure of very highly excited
nuclei, we are relegated in this work to studying relatively light
nuclei. The biggest drawback of this approach is that although
light nuclei are abundant prior to the onset of collapse, they
are disfavored during infall. In our favor, Ref. [38] found that
in some respects, heavy nuclei and light nuclei exhibit similar
weak transition characteristics. In any case, light nuclei are at
present the only option for computing highly excited states,
and we will ideally learn something that will shed light on the
behavior of all nuclei, including heavier, more neutron-rich
species.

In Sec. II, we provide a brief overview of the nuclear
shell-model and GT transitions, as it will be convenient in
later sections to have that picture in mind. Section III outlines
the historical approach to the problem at hand and discusses
its weaknesses. The results of our electron capture strength
computations are in Sec. IV, and using those results, we
show calculations of electron capture rates in Sec. V. We give
discussion and conclusions in Sec. VI.

II. NUCLEAR SHELL-MODEL AND GT TRANSITIONS

In the shell model, individual nucleons are considered to
occupy noninteracting single-particle states, with the sets of
occupied states (configurations) coupled to have good spin
J and isospin T . Energy, angular momentum, and isospin
eigenstates can be constructed by diagonalizing a residual
nucleon-nucleon Hamiltonian in the configuration basis. This
mixes many configurations into a single nuclear state,

|�J,T 〉i =
∑

k

Aik|CJ,T 〉k, (2)

where |�J,T 〉i is nuclear eigenstate i with spin J and isospin
T , the Aik are complex amplitudes, and |CJ,T 〉k is the kth
configuration with spin J and isospin T .

One-body nuclear transitions—such as the GT transition—
consist of a single nucleon changing its single-particle state.
There are three qualitatively different single-particle GT
transitions: spin-flip transitions (from an l + 1

2 state to an
l − 1

2 state), back spin-flip transitions (from l − 1
2 to l + 1

2 ),
and lateral transitions (no change in total angular momentum).
Respectively, these represent a net gain, loss, and no change
in single-particle energy up to differences in energy between
neutron and proton single-particle states. If a nuclear state
has as one of its components a configuration resulting from a
single-particle transition in a particular initial state, then the
nucleus can transition to that final state. The strength of the
transition from an initial nuclear state |i〉 to a final state |f 〉 is
given by ∣∣∣∣∣〈f |

∑
k

ôk|i〉
∣∣∣∣∣
2

, (3)

where ôk is a one-body operator on the kth nucleon. Through-
out this paper, “GT strength” or “electron capture strength”
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refers to the reduced nuclear transition probability B(GT)if ,
given by

|〈f ||�k(�στ−)k||i〉|2
2Ji + 1

, (4)

where �στ− is the one-body GT lowering operator and the sum
is over nucleons.

III. PREVIOUS ADAPTATION OF GT
BRINK-AXEL HYPOTHESIS

FFNII [45] approached the problem of GT transition
strength distributions by using experimental values of the
strength where known, supplementing that with estimated
allowed and forbidden strength to known states in the
daughter nucleus and placing the remainder of the GT strength
computed from a zero-order shell model into a single narrow
resonance at an energy also computed using a zero-order shell
model. Using two simple assumptions, FFNII took the strength
and relative energy of the resonance to be the same for all
excited states as it is for the ground state. First, assume that the
individual nucleons are distributed among the single-particle
states in a way that is on average independent of nuclear
excitation energy. Second, assume that the transition energy of
the GT resonance is principally attributable to a single nucleon
undergoing a spin flip and thus is similar in excited states to
that of the ground state. To the extent that these approximations
are valid, they are extremely useful, as the partition function
becomes algebraically irrelevant in determining the resonant
electron capture rate. From FFNII, the total electron capture
rate through resonant transitions is given by

�res =
∑

i

Piλ
res
i , (5)

where Pi is the probability that the nucleus is in state |i〉
(given by the product of the degeneracy and the Boltzmann
factor, divided by the partition function) and λres

i is the
resonant transition rate from state |i〉, itself a function of
nuclear structure and electron distribution in the supernova
core. However, under the assumption that the GT resonances
are the same—irrespective of nuclear excitation energy—all
of the λres

i are identical; we call them λres. We now have

�res =
∑

i

Piλ
res

= λres
∑

i

Pi

= λres. (6)

So the total resonant transition rate is simply the resonant
transition rate of any single state, which we take to be the
ground state. Of course, highly excited states in the parent
would be in the GT resonances of lower energy states in the
daughter, leading to “back-resonant” transitions. Accounting
for the fact that the Pi will not sum to unity for back-resonant
transitions (low-lying initial states have no back resonance)
and otherwise treating them identically to resonant transitions,

we eventually arrive at

�back res = λback res Gd

Gp
e

−R
kT , (7)

where Gp (Gd ) is the partition function of the parent (daughter)
nucleus and R is the characteristic transition energy of the GT
resonance from the daughter nucleus to the parent. Finally,
Fermi transitions are handled in an identical manner to the GT
transitions, and the Fermi and GT resonance rates are summed
along with the rates from known and estimated transitions to
get the total capture rate.

A priori, we might expect the GT Brink-Axel hypothesis
to fail. If we keep the assumption that single particles
are distributed roughly independently of nuclear excitation
energy, we should be unsurprised if the GT resonance moves
dramatically or is redistributed in transition energy, because at
sufficiently high initial excitation, there will be strength for the
daughter nucleus to be at many energies relative to the parent,
without any particular single-particle transition dominating
the strength. By assumption, the single particles in all of these
daughter states are also arranged similarly, so we would rather
expect the GT strength to be broadly distributed in transition
energy. The question, then, is in what way does the hypothesis
fail? Do strength distributions evolve in some characteristic
way as initial excitation energy increases, or must we abandon
the hypothesis completely and replace it with a thermal mean
strength distribution?

IV. GT STRENGTH COMPUTATIONS

Using the shell-model code OXBASH [55], we performed
shell-model calculations of A = 28 nuclei using a closed 16O
core and 12 valence nucleons in the sd shell. Although A = 28
is unrealistically light for the supernova core environment, we
chose to use it because it provides a good balance of complexity
and computability; that is, we have many valence nucleons
and holes (implying many single-particle configurations), but
there are few enough configurations that we can compute
nuclear eigenstates in a reasonable time. We also performed
a computation of 24Mg using the same interaction, but with
eight valence nucleons.

The sd shell consists of the single-particle sates 0d5/2,
1s1/2, and 0d3/2. In these computations, we used the USDB
Hamiltonian [56], with single-particle energies −3.9257,
−3.2079, and 2.1117 MeV, respectively. In the GT interaction,
nucleons can transition from 2s1/2 to 2s1/2 and from either
d suborbital to either d suborbital.

To make a comparison with the FFN results, we need to
address quenching [57]. FFN implemented quenching as fol-
lows: (1) experimentally determined and “guessed” relatively
low-lying vector and axial vector transitions are, of course,
already “quenched”; (2) calculated GT resonance transitions
were deliberately not quenched. To facilitate comparison with
FFN, we follow the same procedure of using experimental
and estimated strength, then augment it with unquenched
computed strength. As detailed in FFNIV, inspection of
the effective log-ft values indicate if stellar weak rates are
dominated by low-lying transitions (regime 1) or resonance
transitions (regime 2). Because we are mostly concerned here
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FIG. 1. 28Si density of states per 1 MeV as functions of isospin.
The inflection points for T = 0 and T = 1 near 30 MeV—which
indicate a marked departure from the expected exponential growth—
suggest we should be wary of results for states with energies above
the mid-20s.

with high density and temperature, usually the stellar weak
rates are resonance-dominated, i.e., in regime 2. Here we do
not quench our calculated rates where unmeasured, calculated
GT strength is involved, again, simply to facilitate comparison
with FFN. However, we recommend quenching wherever sd
and fp shell-model strength is used to compute rates for
astrophysical or any other use.

A. 28Si

We first examined 28Si. Although this nucleus is neutron
poor by supernova collapse standards, it has the most single-
particle configurations among sd-shell nuclei and therefore
computationally is the most realistic. Figure 1 shows the
density of states per 1 MeV for this nucleus broken down
by isospin. The inflection points mark the regions where the
density of states departs radically from an exponential form,
indicating a departure from our expectation for reality, in turn
implying that results for states with energies near and above
the inflection point may be significantly impacted by the model
space restriction. The inflection points on the T = 0 and T = 1
curves occur a little above 30 MeV, so we treat states with
energies above the mid-20s of MeV with circumspection.

Figure 2 shows the electron capture strength distribution
in 0.5 MeV transition energy bins as a function of excitation
energy and nuclear transition energy (that is, the total energy
input required make the transition, including the change in
nuclear mass); the distributions are averaged over the indicated
number of states in each parent nucleus excitation energy bin.
We found that the GT Brink-Axel hypothesis as originally
formulated does not obtain in that the strength distributions
of excited states bear no resemblance to the ground state.
However, the GT strength distribution is almost independent
of initial-state energy for transitions proceeding from initial
excitations greater than 12 or 16 MeV. There appears to be

FIG. 2. Average GT strength distribution in 28Si as a function of
initial excitation energy Ei . Strength is binned in 0.5-MeV increments
of transition energy. Also shown are fits of the distributions to the
double Gaussian in Eq. (8). The dependence on initial excitation
energy becomes small at high excitation. The distributions in each
panel are averages over 2, 7, 42, 156, 435, 239, 296, and 329 initial
states, respectively.

some energy dependence above 24 MeV excitation, though
this may be attributable to the limitations of the model space.
Figure 2 also shows fits of the strength distributions to a double
Gaussian of the form

C1e
−(�E−�E1)2/2σ 2

1 + C2e
−(�E−�E2)2/2σ 2

2 . (8)

The fit parameters for strength density are shown in Table I.
Note that the computed strength distributions in Fig. 2 are

TABLE I. Double Gaussian fit parameters and total strength of
each peak for 28Si. E0 is the initial excitation energy in MeV, and the
parameters are as shown in Eq. (8). The Ci are dimensionless, and
the other parameters are in units of MeV.

E0 C1 �E1 σ1 B(GT)1 C2 �E2 σ2 B(GT)2

0–4 – – – – 0.70 8.7 2.1 3.7
4–8 0.28 7.5 3.6 2.5 0.38 8.9 1.1 1.0
8–12 0.13 −1.8 2.6 0.85 0.44 7.2 3.3 3.6
12–16 0.14 −2.3 3.3 1.2 0.40 6.7 3.3 3.3
16–20 0.18 −2.2 3.8 1.7 0.36 6.6 3.3 3.0
20–24 0.19 −2.3 3.9 1.9 0.34 6.1 3.4 2.9
24–28 0.28 1.1 6.4 4.5 0.13 6.2 2.2 0.72
28–32 0.30 0.24 6.5 4.9 0.11 5.8 1.8 0.50
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FIG. 3. (Color online) Total GT strength in 28Si as a function
of excitation energy. Each point corresponds to an individual state
computed from the shell model, giving a GT sum rule for that state.
The black line shows the average total strength in 1-MeV bins.

weighted histograms, so the fit curves are scaled vertically
to account for the effect of the particular choice of transition
energy bin width. This analysis confirms that the distributions
are weak functions of parent nucleus energy at high excitation.

Figure 3 shows the total GT strength vs excitation energy
for our shell-model states, with each point corresponding to
a single initial state. The vertical stripes are attributable to
sampling; all shell-model states up to 20 MeV are included,
as are many states near 24 and 28 MeV. The black line shows
the total strength for all included states averaged over 1-MeV
bins. Where the sampling is dense, there is an overall positive
trend in total strength with excitation energy.

Decomposing the strength distributions into contributions
from states with specific initial spin and isospin reveals that the
trend of Fig. 2 holds; that is, regardless of choice of a particular
initial spin and/or isospin, the Brink hypothesis fails at low
excitation, but is recovered at high excitation. Furthermore,
nuclear spin is not an important contributor in determining
either the shape or the total strength of the distribution. Figure 4
shows the distributions for a representative selection of spins
with initial isospin Ti = 0 in the Ei = 20–24-MeV bin. We
observed this pattern of Ji independence at all excitation
energies and isospins.

Turning our attention now to isospin, we find that isospin
does play a role in the distribution of GT strength. In Fig. 5
we show strengths for the Ei = 20–24-MeV bin. Each panel
gives the distribution for a different Ti , but because nuclear
spin does not strongly affect the distribution, we include in
Fig. 5 all values of Ji . As isospin increases, the locations and
strengths of the peaks and plateaus in the distribution shift.

The shapes of the single initial isospin strength distribu-
tions can be partially understood by decomposing them into
contributions from final states with specific isospin. Although

FIG. 4. Gamow-Teller strength distribution in 28Si at initial
excitation energy Ei = 20–24 MeV with initial isospin Ti = 0 as
a function of initial spin Ji . The strength distribution is not strongly
dependent on Ji . We saw this trend in all nuclei we studied. The
distributions in each panel are averages over 10, 10, and 12 initial
states, respectively.

the level density is dominated by T = 0 and T = 1 states in
the energy range of interest for the supernova problem, we
examine here Ti = 2 because it has a greater number of final
isospins and therefore is more illustrative of the effect. Figure 6
shows the Tf decomposition for Ti = 2 states in the Ei =
20–24-MeV bin. Evidently, the strength distribution is strongly
dependent on the final isospin with distinct consequences on
the shape of the full distribution. For example, the large peak
in the total strength distribution at �E ≈ 5 MeV for states
with Ti = 2 is attributable to transitions to final states with
Tf = 2, and the small peak at �E ≈ 13 MeV is attributable
to transitions to final states with Tf = 3.
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FIG. 5. Gamow-Teller strength distribution in 28Si at initial
excitation energy Ei = 20–24 as a function of initial isospin Ti . The
strength distribution has an apparent dependence on initial isospin.
The distributions in each panel are averages over 108, 97, and 34
states, respectively.

Finally, we sought an understanding of the similarity of the
strength distributions in the high-excitation-energy regime. To
this end, we examined single-particle distribution as a function
of nuclear excitation energy. Figure 7 shows the average single-
particle state occupations as functions of excitation energy
for T = 0 states in 28Si. The most salient features are that
the 1d state occupations have a linear dependence on nuclear
excitation with slopes of roughly 1 particle per 12 MeV (which
is approximately the spin-orbit splitting energy + particle-hole
repulsion energy in this subshell), while the 2s1/2 occupation
is independent of excitation; this is in contrast to FFNII [45],
which assumed that the average occupations of all single-
particle states were independent of nuclear excitation energy.
While Fig. 7 shows only T = 0 states, the trends are consistent

FIG. 6. Strength distribution for 28Si with initial isospin Ti = 2
as a function of final-state isospin. Comparison with Fig. 5 shows that
certain features of the total strength distribution are consequences of
the distributions to specific final-state isospins. The distributions are
averages over 34 initial states.

for all isospins, with the exception that the intercept of the
1d3/2 (1d5/2) occupation gradually shifts by −1 (1) particle as
T goes from 0 to 3 and shifts an additional −1 (1) particle
as T goes from 3 to 4, but this shift may be attributable to
model space restrictions. We found no apparent dependence
on nuclear spin.

Because we did the computations in this paper with isospin
as a good quantum number, we can take the single-particle
occupations in Fig. 7 to be split proportionately between
the valence protons and neutrons. In the case of 28Si, then, the
proton and neutron single-particle occupation numbers are
each 1/2 the total occupation. This implies that the 1 particle
per 12 MeV slope in Fig. 7 is split evenly between protons
and neutrons, giving a slope for each species of 1 particle
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FIG. 7. 28Si single-particle state occupation for nuclear states
with isospin T = 0. The occupation numbers are the sum of protons
and neutrons. The linear dependence on excitation energy of the d

orbital occupation numbers is understood to arise from the spin-
orbit splitting and particle-hole repulsion energies of those orbitals.
This dependence is consistent across all values of T , although the
intercepts of the d orbitals do shift as T increases.

per 24 MeV. Perhaps, then, the assumption in Ref. [45] that
the single-particle distributions are all similar to the ground
state can be simply revised to say that above a certain nuclear
excitation energy, the single-particle distributions change only
very slowly with excitation energy, resulting ultimately in
similarly slowly changing strength distributions. This leaves
us to challenge the second assumption in that work: that the
transition energy of the GT resonance does not change with
nuclear excitation energy.

The spin-flip single-particle transition dominates in electron
capture from the ground state, resulting in the resonance at
the observed energy. However, at higher excitation energies

FIG. 8. (Color online) Total GT strength in 24Mg as a function
of excitation energy. The black line shows the average total strength,
computed from 1-MeV bins.

there is an abundance of final nuclear states that are reachable
by the other single-particle transitions that can leave the
daughter nucleus at similar or lower excitation. Thus, the GT
strength distribution changes with increasing initial excitation,
spreading to lower transition energy. Comparing the relative
positions of the peaks in the strength distributions of all nuclei
considered in this paper suggests there may be a correlation
between the single-particle state and particle-hole repulsion
energies with the locations of the peaks in the strength
distributions, but we do not further explore that in this paper.

Ultimately, given that single-particle state occupations vary
slowly at high excitation energy, it is unsurprising that over a
broad range of energy (above the rapid variation at low energy
and below where the density of states falls below exponential
growth), the strength distributions are largely independent of
excitation.

B. 24Mg

For the sake of connecting our 28Si results with earlier work,
we computed the GT strengths for 24Mg. Frazier et al. [58]
examined total strength as a function of excitation and found
results similar to ours, given in Fig. 8. The gradual increase of
total strength with initial excitation corroborates the result for
28Si (Fig. 3) and suggests it is a general feature of nuclei, at
least in the sd shell.

The density of states for 24Mg (Fig. 9) has an inflection
point near 28 MeV, so strength distributions for states with
initial energies above the low 20s are suspect. The strength
distributions for 24Mg behave qualitatively the same as 28Si.
That is, above 12 MeV (and below the model space restriction
range), the distributions (Fig. 10) are not strong functions of
initial excitation. Table II shows that where the distribution is
stable (between 12 and 20 MeV excitation), the fit parameters
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FIG. 9. 24Mg density of states. The inflection point is near
28 MeV, indicating that we cannot be confident of strength distri-
butions for initial-state energies above the low 20s.

FIG. 10. Computed average GT strength distribution in 0.5-MeV
transition-energy bins and fits to a double Gaussian in 24Mg as a
function of initial excitation energy Ei . As in the analysis of 28Si,
the fit curves are scaled to account for the choice of transition-energy
bin width. Between the Ei = 12–16-MeV and 20–24-MeV bins, the
strength varies slowly with excitation. The distributions in each panel
are averages over 2, 8, 33, 127, 322, 689, 1265, and 1847 initial states,
respectively.

TABLE II. Double Gaussian fit parameters and total strength
of each peak for 24Mg. The good agreement with 28Si means
extrapolation to other nuclei may be tenable.

E0 C1 �E1 σ1 B(GT)1 C2 �E2 σ2 B(GT)2

0–4 0.48 8.0 1.8 2.2 0.19 13.1 0.70 0.33
4–8 0.16 7.7 4.8 1.9 0.14 9.8 1.3 0.46
8–12 0.15 −1.7 2.1 0.79 0.30 7.0 4.0 3.0
12–16 0.15 −2.1 3.3 1.2 0.26 6.7 4.1 2.7
16–20 0.20 −2.0 3.9 2.0 0.24 6.7 3.8 2.3
20–24 0.26 −1.6 4.5 2.9 0.20 7.0 3.5 1.8
24–28 0.30 −1.6 5.0 3.8 0.15 7.1 3.3 1.2
28–32 0.36 −1.9 5.4 4.9 0.11 7.2 2.9 0.80

agree with those for 28Si. This bodes well for extrapolating to
other nuclei.

C. 28Mg

Figure 11 shows the density of states for 28Mg; the inflection
point occurs at E ≈ 22 MeV. The low energy of the inflection
crowds the region where we expect the strength distribution
to be stable, and this indeed manifests in Fig. 12. The high-
transition-energy peak in the distribution appears to stabilize
briefly around 8–16 MeV, but it rapidly falls off and the low
transition strength grows as the initial excitation goes into the
model space restricted region.

D. 28Na

With only three protons and three neutron holes in the
sd shell, 28Na pushes the limits of the model space; we see
in Fig. 13 that the density of states is very low, with the
inflection point at 12 MeV or less. While the sd shell may
yield acceptable results for low-lying states in 28Na, we cannot
rely on it to get the high initial excitation strength distributions.

FIG. 11. 28Mg density of states. The inflection point at ∼22 MeV
predicts that the region where the strength distribution is stable will
be narrow.
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FIG. 12. 28Mg strength distribution. The distribution stabilizes
briefly between 8 and 16 MeV before model space restriction impacts
the results. The distributions in each panel are averages over 2, 28,
102, 160, 199, 250, 338, and 385 initial states, respectively.

Figure 14 shows that there is essentially no initial energy region
with a stable strength distribution, as per expectation from
the low-lying inflection point in the density of states, though
we might speculate at some observable stability between the

FIG. 13. 28Na density of states. Model space restrictions make
the density of states very low, with the departure from exponential
growth occurring at low excitation.

FIG. 14. Strength distribution for 28Na. There is no obvious
energy regime where the strength is independent of initial excitation.
The distributions in each panel are averages over 20, 60, 81, 91, 103,
125, 149, and 168 initial states, respectively.

Ei = 4–8-MeV and 8–12-MeV bins. This observation and
the results from the other nuclei make it clear that when
model space restrictions severely limit the density of states,
the computed strength distribution is not independent of initial
excitation energy.

V. COMPUTATION OF CAPTURE RATE

Throughout this section, we use natural units such that
� = c = kB = 1. Following FFNI, the electron capture rate
for a given initial nuclear state is

λif = ln(2)
fif (T ,μe)

(f t)if
, (9)

where (f t)if is the ft value appropriate for the transition from
parent nucleus state i to daughter nucleus state f . Here (f t)if
is computed from the corresponding GT (MGT

if ) and Fermi
(MF

if ) matrix elements by

log10

(
f tGT

if

) = 3.596 − log10

(∣∣MGT
if

∣∣2)
, (10)

log10

(
f tF

if

) = 3.791 − log10

(∣∣MF
if

∣∣2)
, (11)

1

(f t)if
= 1

f tGT
if

+ 1

f tF
if

. (12)

The factor fif (T ,μe) is the phase-space integral for the
incoming electron and outgoing neutrino. T is the temperature,

065808-9



G. WENDELL MISCH, GEORGE M. FULLER, AND B. ALEX BROWN PHYSICAL REVIEW C 90, 065808 (2014)

and μe is the electron Fermi energy, including rest mass. The
numerical values “3.596” and “3.791” correspond to choices of
axial vector and vector couplings chosen to match those used
in FFN, to facilitate comparison. The phase-space integral is

fif =
∫ ∞

wl

w2(w − q)2G(Z,w)fe(w,μe,T )(1−fν)dw, (13)

where w is the total electron energy in units of electron mass,
q is the change in total nuclear energy Mf + Ef − Mi − Ei

in units of electron mass, Z is the nuclear charge, and fe

and fν are the electron and neutrino occupation probabilities,
respectively. The lower limit wl is a function of q, as the
incoming electron must supply enough energy to the nucleus
to make the transition; if q < 1, then wl = 1 (corresponding
to zero electron kinetic energy), while if q > 1, wl = q. G is
related to the Coulomb barrier factor and is detailed in FFNI;
rather than use the limiting approximations described in that
work, we use the form given by Eq. (5b) therein. Note that that
work defines q in the negative sense of its use here; that is to
say, q in that work is defined as the parent energy minus the
daughter energy.

Up until neutrino trapping sets in at ρ ∼ 1012 g/cm3,
we may take fν ≈ 0. Here fe(w,μe,T ) is the Fermi-Dirac
distribution (1 + e(wme−μe)/T )−1. Using this and our definition
of wl and integrating over final states, we at last arrive at

λi = ln(2)
∫ 1

−∞

[
BGT

i (q)

103.596
+ BF

i (q)

103.791

]
dq

×
∫ ∞

1
fe(w,μe,T )w2(w − q)2G(Z,w)dw

+ ln(2)
∫ ∞

1

[
BGT

i (q)

103.596
+ BF

i (q)

103.791

]
dq

×
∫ ∞

q

fe(w,μe,T )w2(w − q)2G(Z,w)dw, (14)

where BGT
i (q) ≡ ∑

f ∈{q} |MGT
if |2 and BF

i (q) ≡ ∑
f ∈{q} |MF

if |2,
where the sums are over final states f with dimensionless
(units of electron mass) Q value q. To compute the total capture
rate, we sum over population index weighted initial states,

� =
∑

i

λi

(2Ji + 1)e−Ei/T

G(T )
, (15)

where G is the partition function. Recall, however, that above
∼12 MeV, the strength distributions look similar. Therefore,
we propose a modification to the GT Brink-Axel hypothesis
by applying a cutoff energy below which all states are included
and weighted by their population index and with all remaining
statistical weight carried by a single high-energy average state.
This is in contrast to the FFN approach of placing the bulk of
the strength in a single resonant transition that is identical for
all states. In other words, where FFN treated all states as having
an identical giant GT resonance, we treat all states above the
cutoff energy as having exactly the same distribution.

The difference in these two treatments is profound; Fig. 15
shows the strength distributions in the ground state for the
FFN approach and the shell model; the large peak in the FFN
distribution is the GT resonance. The two major differences

FIG. 15. (Color online) 28Si ground-state strength distribution.
The solid line shows the distribution using our shell-model cal-
culations, and the dotted line shows the strength from the FFN
prescription. The large peak in the FFN distribution is the GT
resonance used in those works.

are that the shell-model result has less total strength, and the
strength is spread to lower transition energies; the former will
have the effect of decreasing the capture rate, while the latter
will tend to increase it.

Despite the overestimate of the total strength and the
misplacement of the resonance, the power of FFN is that it
used experimental strengths wherever they were available,
and any other technique of computing rates would be well
served by following that example. We wish to compare
our results against the standard of FFN, so the strength
distributions that we ultimately use to compute capture rates
are defined as follows. (1) For each initial state, we take
the same experimentally measured and estimated strength
distribution that FFN used, leaving out the resonant transition
and neglecting more recent experimental results. (2) To ensure
that we do not exceed the GT sum rule from our shell-
model calculations, we sum the experimental and estimated
strength, then (3) we subtract that much strength from the
corresponding computed total shell-model strength. This is
done by removing strength from the low-transition-energy end
of the computed strength distribution. (In this procedure we
do not correct for quenching.) (4) Finally, we combine the
experimental and estimated distribution with what remains of
the computed distribution for that state. This procedure not
only captures the detailed experimental strength structure, but
also gives an estimate of both the capture strength sum rule
and the (nonexperimental) strength distribution. However, it is
only applicable to experimentally measured initial states. For
transitions from higher, unmeasured initial states, we simply
used our shell-model distributions. We do not include any
unmeasured computed parent states with an excitation energy
lower than the highest included experimentally measured state.
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FIG. 16. (Color online) Electron capture rates for 28Si as a func-
tion of electron Fermi energy and temperature. Solid lines show rates
with all states up to 12 MeV considered individually and the rest of
the statistical weight carried by a single high-energy average state,
while dashed lines correspond to the rates when all states are assumed
to have the same narrow GT resonance, in accordance with the FFN
approach to the GT Brink-Axel hypothesis.

We now require the nuclear partition function to obtain
appropriate initial-state occupation indexes. There are a few
approaches to the partition function problem, but in our case,
the simplest and most self-consistent is to include only the
sd shell states, i.e., only include in the partition function
those states that can be constructed from configurations in
the sd shell. The biggest weaknesses of this approach are
that at high-enough energies, the density of shell-model
states actually decreases to zero, and all negative-parity
states are neglected, as well as any other states that include
configurations with one or more particles promoted into or
out of the sd shell. By the same token, those states will also
not be considered to contribute to the electron capture rate,
thereby compensating for the overestimate of the included
states’ occupation indexes. With the partition function in hand,
we can compute the total capture rate from Eq. (15).

The electron occupation probability consists of two qual-
itatively different domains: When 1 � w � μe/me, it varies
slowly from a maximum of at most 1 at w = 1 down to a
minimum of 0.5 at w = μe/me (we call this the “shoulder”),
and when w > μe/me, it is exponentially damped (“tail”). We
numerically integrated the inner integrals of Eq. (14) using a
combination of two methods, one for each domain. When the
shoulder was part of the integration domain (i.e., q < μe/me),
we integrated the shoulder with a 64-point Gauss-Legendre
quadrature. Some or all of the tail is always in the integration
domain, and we integrated it with a 64-point Gauss-Laguerre
quadrature.

Figure 16 shows electron capture rates for 28Si as a function
of electron Fermi energy and temperature. The solid lines
were computed using a cutoff energy of 12 MeV and a high-
energy average state strength distribution computed from the
spin-weighted (2J + 1) average of every state between 12 and
14 MeV, and the dashed lines are the rates computed using

FIG. 17. (Color online) Electron capture rates for 28Si as a func-
tion of electron Fermi energy and temperature. Solid lines show rates
with all states up to 12 MeV considered individually and the rest of the
statistical weight carried by a single high-energy average state, while
dashed lines correspond to the rates when all states are assumed
to have the same bulk GT strength distribution as our shell-model
calculation of the ground state.

the FFN resonance prescription. At sufficiently high Fermi
energy, there are enough electrons above the GT resonance
used in the FFN approach for the rates to outstrip those of
our shell-model results, as the large amount of strength in the
resonance outcompetes the shell model. However, at low Fermi
energy, the spread of strength to low transition energies found
in the shell-model approach serves to boost the rates above the
FFN estimates.

Figure 17 compares the shell-model capture rates with a
cutoff of 12 MeV against a GT Brink-Axel approach (as in

FIG. 18. (Color online) Thermodynamically unweighted elec-
tron capture rates for high-energy average states in 28Si. The solid
lines are the rates for an HEA state with a cutoff energy of 12 MeV,
the dashed lines show a cutoff of 15 MeV, and the dotted lines are for
a cutoff of 20 MeV.
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TABLE III. Statistical weights of the high-energy average state
as a function of temperature and cutoff energy.

T (MeV) Cutoff = 12 MeV 15 MeV 20 MeV

0.8 2.86×10−5 1.70×10−6 1.23×10−8

1.0 6.30×10−4 7.76×10−5 1.88×10−6

1.5 3.49×10−2 1.11×10−2 1.31×10−3

2.0 2.00×10−1 9.94×10−2 2.53×10−2

Fig. 16), but with the single resonance in the FFN model
replaced with the shell-model strength distribution for the
ground state. That is, in the “Brink” approach here, we used
experimental values of the transition strength for each initial
state, where known, and the rest of the strength in each
excited state is carried by the ground-state distribution. In
contrast to the behavior of the FFN approach, the shell-model
Brink-Axel curves lack the marked jump above the more
comprehensive shell-model rates as Fermi energy increases,
and they eventually converge. It is notable that the GT Brink-
Axel results are not uniformly greater or less than the more
comprehensive shell-model rates; in the Fermi-energy region
between 5 and 15 MeV, the T = 0.8- and 1.0-MeV Brink-Axel
rates just peek above the corresponding shell-model rates.

In light of the apparent sensitivity to how excited states
are handled in rate calculations, we compare in Fig. 18
the thermodynamically unweighted (meaning the population
factor is not included) capture rates of the high-energy average
states corresponding to several cutoff energies (the HEA state
being that which carries all of the statistical weight above the
cutoff). The solid lines show rates for an HEA state including
all shell-model states between 12 and 14 MeV, as in the
previous calculations. The dashed lines give the rates of an
HEA state computed from all states between 15 and 16 MeV,
and the dotted lines are for an HEA state composed of states

FIG. 19. (Color online) Electron capture rates for 28Si comparing
two choices of cutoff energy. The solid lines correspond to a cutoff
energy of 12 MeV, while the dashed lines are for a cutoff of 20 MeV.
The dotted lines show the ratio of the cutoff = 12 rates to the cutoff =
20 rates. That the rates are nearly identical lends credence to the
technique of using a high-energy average state.

between 20 and 20.3 MeV. The widths for the averaging were
chosen such that each HEA state was composed of at least
50 individual states.

The rates for all three HEA states differ from one another by
at the most a factor of 3 in the range considered, which is offset
by the reduction in statistical weight carried by the HEA state
as the cutoff energy increases. The HEA statistical weight is
simply the remaining probability after the occupation indexes
of all lower-energy states are accounted for:

wHEA = 1 − 1

G(T )

∑
Ei<Ecutoff

e−Ei/T . (16)

The weights for the given cutoff energies and temperatures
are shown in Table III. Over most of the temperature range,
the weight falls off much faster than the unweighted HEA
rate grows with cutoff energy. Figure 19 shows the total
capture rates for cutoff energies of 12 and 20 MeV, as well as
the ratio of the low cutoff rates to the high cutoff rates. Over a
broad range of temperature and electron Fermi energy, the two
choices produce nearly identical results; up to temperatures
of 1.5 MeV, the rates agree to within 3% and differ by only
∼10% in the extreme case of T = 2 MeV and Ef < 5 MeV.
The evidently small errors introduced by a particular choice
of cutoff energy will ultimately be washed out by other
uncertainties, including the eventual treatment of quenching

The rates provided in this analysis are intended to qual-
itatively compare the effects of the modified Brink-Axel
hypothesis detailed above and are not appropriate for use in
astrophysical calculations for two reasons. First, where com-
puted strength was used, no attempt was made to ensure that
the transition energies matched experiment. Second, none of
the computed strengths included quenching (again, this was
to make a more direct comparison with FFN). To address the
second of these weaknesses, Fig. 20 compares the capture rates
for 28Si with a cutoff of 12 MeV. The solid lines are the rates

FIG. 20. (Color online) Electron capture rates for 28Si showing
the effect of quenching. Both sets of lines use a cutoff energy of
12 MeV. Solid lines show rates for unquenched strength, and dotted
lines show the rates when a quenching factor of 0.6 is applied to
computed strengths.
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when the strength is unquenched, while the dotted lines show
the rates when the computed strength is quenched by a factor
of 0.6 [57,59]. At low temperature and low electron Fermi
energy, the rates are in reasonably good agreement because in
this regime, they are dominated by low-lying, experimentally
measured transitions. However, as temperature and Fermi
energy increase, computed transitions dominate the rate, and
the effects of quenching become much more important.

VI. DISCUSSION AND CONCLUSIONS

The three principle observations from this work are that
(1) at high excitation energies the GT strength distribution does
not depend sensitively on nuclear excitation energy (though
it is a function of isospin), (2) the GT strength distribution
spreads to low and negative transition energies, and (3) the
spreading of the strength tends to increase the electron capture
rate, as not only does it decrease the electron capture energy
threshold, but for a given incoming electron, it also increases
the phase space of the outgoing neutrino.

As seen in Figs. 16 and 17, point (3) above is contradicted in
some regimes of temperature and Fermi energy. To understand
why the shell-model rates sometimes fall short of other
approaches, we return to the total strength, i.e., sum rule,
as a function of excitation energy. Considering first the FFN
approach, comparing Figs. 15 and 3 reveals that the strength in
the GT resonance employed by FFN is about twice the average
total strength at all excitation energies computed from the shell
model, resulting in an overestimate of the capture rate at high
Fermi energies.

The sources of the deviations in the shell-model Brink-Axel
approach are a little more subtle. There are regimes of
temperature and density where the rates derived from our
shell-model treatment are greater than those derived using the
Brink-Axel assumption. This stems in part from transitions
from the parent nucleus to relatively low-lying discrete states
in the daughter nucleus. These low-lying daughter states have
more favorable Q values (see Fig. 2). Furthermore, Fig. 3
shows that, on average, the total strength increases slowly with
parent nucleus excitation energy [roughly, from B(GT) ∼ 4 in
the ground state to B(GT) ∼ 5.5 at 30 MeV], further enhancing
the rate relative to that of the parent ground state. However,
Fig. 3 also shows that at relatively low excitation energies,
there are two significant drops in the total strength, which
account for the regions where the Brink-Axel rate exceeds
the shell-model rate. Recall that the GT Brink-Axel approach
treats all excited states as having the same bulk GT strength

distribution as the ground state, but the more comprehensive
model includes contributions from those states that have less
total strength. Importantly, some of those states are at low
initial excitation. Hence, they do not have the low-lying
strength (low Q value) seen in higher states, and they have
a comparatively large population factor. The combination of
low total strength, no low-lying strength, and a large population
factor yield temperature and Fermi-energy regimes where the
Brink-Axel approach overestimates the rate.

Ultimately, we must conclude that the GT Brink-Axel
hypothesis, as it has been traditionally used, is likely inap-
propriate for obtaining accurate electron capture rates—and
by extension, all nuclear weak rates—at the high temperatures
and densities characteristic of collapsing supernova cores. We
must be circumspect, however, as the nuclei examined here are
very light by supernova core standards. If later work is able to
demonstrate that the trends found here are applicable to larger
nuclei, then we will have found a useful technique for simpli-
fying the accurate computation of weak rates in those nuclei.

The analysis of 28Si in this work is essentially a cruder
version of the work of Oda et al. We performed no careful
matching of the energies of the daughter states relative to the
parent states, meaning that where experimental data were not
used, the distributions shown here will not have precise tran-
sition energies. This imprecision is unimportant for the sake of
our goal here, which was to demonstrate the failure of the GT
Brink-Axel hypothesis and how it can be modified for use at
high initial excitation. With these results and the 20 or so years
of experimental data collected since the Oda et al. rate survey,
though, it is worth reexamining the weak rate calculations for
sd-shell nuclei, which are important in the late phases of stellar
evolution leading up to core collapse.

This leaves us with two major directions to follow up. First,
we will recompute the weak rates for all sd-shell nuclei over a
wide range of temperatures and densities relevant to late stellar
evolution and core collapse using our modification to the GT
Brink-Axel hypothesis and the most recent experimental data.
Second, we will seek ways to extend the results presented in
this paper to the large, neutron-rich nuclei that are abundant
during collapse.
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