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BCS-BEC crossovers and unconventional phases in dilute nuclear matter
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We study the phase diagram of isospin-asymmetrical nuclear matter in the density-temperature plane, allowing
for four competing phases of nuclear matter: (i) the unpaired phase; (ii) the translationally and rotationally
symmetric, but isospin-asymmetrical BCS condensate; (iii) the current-carrying Larkin-Ovchinnikov-Fulde-
Ferrell phase; and (iv) the heterogeneous phase-separated phase. The phase diagram of nuclear matter composed
of these phases features two tricritical points, in general, as well as crossovers from the asymmetrical BCS phase
to a Bose-Einstein condensate (BEC) of deuterons plus a neutron gas, for both the homogeneous superfluid
phase (at high temperatures) and the heterogeneous phase (at low temperatures). The BCS-BEC-type crossover
in the condensate occurs as the density is reduced. We analyze in detail some intrinsic properties of these phases,
including the Cooper-pair wave function, the coherence length, the occupation numbers of majority and minority
nucleonic components, and the dispersion relations of quasiparticle excitations about the ground state. We show
by explicit examples that the physics of the individual phases and the transition from weak to strong coupling
can be well understood by tracing the behavior of these quantities.
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I. INTRODUCTION

The two-nucleon vacuum interactions at low energies are
well constrained by the phase-shift data derived from the
analysis of elastic nucleon-nucleon collisions. Therefore, the
main theoretical challenge of understanding nuclear matter
at subsaturation densities stems from the complexity of
the many-body physics. The attractive part of the nuclear
interaction is responsible for the formation of nuclear clusters,
as well as condensates of Bardeen-Cooper-Schrieffer (BCS)
type at low temperatures. The temperature, density, and isospin
asymmetry of such matter are relevant for the description
of supernovae and neutron stars. These two astrophysical
venues differ somewhat in the respective ranges of these
variables. For example, in supernovae the isospin asymmetries
are much smaller than in cold β-catalyzed neutron-star matter.
Consequently in neutron-star matter 1S0 pairing in the isospin-
triplet, spin-singlet state of neutrons is favored, whereas nearly
isospin-symmetrical matter supports 3S1-3D1 pairing in the
spin-triplet, isospin-singlet state.

Fermionic BCS superfluids, which form loosely bound
Cooper pairs at weak coupling, undergo a transition to
the Bose-Einstein condensate (BEC) state of tightly bound
bosonic dimers, once the pairing strength increases suffi-
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ciently [1,2]. This behavior has been confirmed in experiments
on cold atomic gases, where the interactions can be manipu-
lated via the Feshbach mechanism. In isospin-symmetric nu-
clear matter, the transition from the BCS to the BEC state of the
3S1-3D1 condensate may occur upon dilution of the system, in
which case the asymptotic state is a BEC of deuterons [3–16].
Isospin asymmetry, induced by weak interactions in stel-
lar environments and expected in exotic nuclei, disrupts
isoscalar neutron-proton (np) pairing, because the mismatch
in the Fermi surfaces of protons and neutrons suppresses
the pairing correlations [17]. The standard Nozières-Schmitt-
Rink theory [1] of the BCS-BEC crossover must also be
modified, such that the low-density asymptotic state becomes
a gaseous mixture of neutrons and deuterons [18]. The 3S1-3D1

condensates can be important in a number of physical settings.
(i) Low-energy heavy-ion collisions produce large amounts
of deuterons in final states as putative fingerprints of 3S1-3D1

condensation [4]. (ii) Large nuclei may feature spin-aligned
np pairs, as evidenced by recent experimental findings [19] on
excited states in 92Pd; moreover, exotic nuclei with extended
halos provide a locus for n-p Cooper pairing. (iii) Directly
relevant to the parameter ranges covered in the present study
are the observations that supernova and hot proto-neutron-star
matter at subsaturation densities have low temperature and low
isospin asymmetry and that the deuteron fluid is a substantial
constituent [20,21].

Two relevant energy scales for the problem domain under
study are provided by the magnitude of the shifts ±δμ =
±(μn − μp)/2 of the chemical potentials μn and μp of
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neutrons and protons from their common value μ̄ and the
pairing gap �0 in the 3S1-3D1 channel at δμ = 0. With
increasing isospin asymmetry, i.e., as δμ increases from zero
to values of order �0, a sequence of unconventional phases
may emerge. One of these is a neutron-proton condensate
whose Cooper pairs have nonzero center-of-mass (c.m.)
momentum [8,22,23]; this phase is the analog of the Larkin-
Ovchinnikov-Fulde-Ferrell (LOFF) phase in electronic super-
conductors [24,25]. Another possibility is phase separation
(PS) into superconducting and normal components, proposed
in the context of cold atomic gases [26]. An alternative to
the LOFF phase is the deformed Fermi surface (DFS) phase,
which, unlike the LOFF phase, is translationally invariant but
breaks the rotational symmetry [23,27]. Because these two
phases share many common properties, we shall concentrate
only on the LOFF phase. At large isospin asymmetry, where
3S1-3D1 pairing is strongly suppressed, a BCS-BEC crossover
may also occur in the isotriplet 1S0 pairing channel, notably
in neutron-rich systems and halo nuclei [28–35]. As inferred
from the experimental phase shifts, the pairing force in the
3S1-3D1 channel is stronger than in the 1S0 channel. Isotriplet–
spin-triplet pairing is prohibited by the Pauli principle;
accordingly, isotriplet pairing occurs only in the spin-singlet
channel. Because isosinglet, spin-triplet pairing is favored over
isotriplet–spin-singlet pairing for not very high asymmetries,
we neglect isotriplet pairing. For large asymmetries, isosinglet
pairing is strongly suppressed and pairing takes place mostly
in the isotriplet–spin-singlet channel. Simple 1S0 pairing only
occurs for chemical potentials in the continuum of two-particle
scattering states. However, pairing in the 3S1-3D1 channel can
arise for values of the chemical potentials below the continuum
edge, which is the case that corresponds to bound states
(deuterons).

In the first paper (I) of this series [36], the concepts of
unconventional 3S1-3D1 pairing and the BCS-BEC crossover
were unified in a model of isospin-asymmetrical nuclear matter
by including some of the phases mentioned above. A phase
diagram for superfluid nuclear matter was constructed over
wide ranges of density, temperature, and isospin asymmetry.
The coupled equations for the gap and the densities of the
constituents (neutrons and protons) were solved allowing for
the ordinary BCS state, its low-density asymptotic counterpart
BEC state, and two phases that owe their existence to the
isospin asymmetry: the phase with a current-carrying conden-
sate (LOFF phase) and the phase in which the normal fluid and
superfluid occupy separate spatial domains. The latter phase
is referred to as the phase-separated BCS (PS-BCS) phase
and, in the strong-coupling regime, the phase-separated BEC
(PS-BEC) phase. In this phase the asymmetry is accumulated
in the normal domains, whereas the superfluid domain is
perfectly isospin symmetric.

While the basic parameters of the superfluid phases, such
as the pairing gap and energy density, have been studied
extensively across the BCS-BEC crossover, as well as in
unconventional phases such as the LOFF phase, some intrinsic
features characterizing the condensate are less well known.
These include the Cooper-pair wave function, the occupation
probabilities of particles, the coherence length, and related
quantities. However, an understanding of the evolution of these

properties during the transitions from BCS to unconventional
(LOFF) phases as well as from weak to strong coupling
provide important insights into the mechanisms underlying
the emergence of new phases as well as into their nature. The
present paper reports results from a study of these aspects of
the pairing problem for the example of the 3S1-3D1 condensate
carried out within the framework developed in our previous
work [36]. The LOFF phase is chosen as a representative of
the unconventional phases. If PS takes place, one of the phases
involved is the isospin-symmetrical BCS phase, whereas the
other is the normal isospin-asymmetrical phase. Therefore, the
intrinsic features of the superfluid component of this phase,
as specified above, are identical to those of the BCS phase.
Hence, we do not discuss the intrinsic properties of the PS-BCS
phase.

To induce a BCS-BEC crossover in the condensate prop-
erties, we use as a control parameter the adjustable density
of the system. The relevant energies for scattering of two
nucleons in the medium are set essentially by their Fermi
energies and in turn by the density of the medium; hence,
the nuclear interaction strengths change with density as
well.

Accordingly, the BCS-BEC crossover is enforced by two
effects: a progressive dilution of the system and a concomitant
increase in the interaction strength in the 3S1-3D1 channel at the
lower energies involved. In the present study, we additionally
vary the isospin asymmetry to generate a mismatch in the
Fermi surfaces of paired fermions, and we change the tem-
perature to access the entire density-temperature-asymmetry
plane. It is worthwhile to note that in ultracold atomic
gases the BCS-BEC crossover is achieved in a controlled
manner by changing the effective interaction strengths via
the Feshbach mechanism, whereas the mismatch of Fermi
surfaces is achieved by trapping different amounts of atoms in
a different hyperfine states.

This paper is structured as follows. In Sec. II we give a brief
discussion of the theory of asymmetrical nuclear matter in the
language of imaginary-time finite-temperature Green’s func-
tions. In Sec. III we discuss the phase diagram of asymmetrical
nuclear matter (Sec. III A), the temperature/asymmetry behav-
ior of the gap in the weak-coupling regime (Sec. III B), the
kernel of the gap equation in BCS and LOFF phases in various
coupling regimes (Sec. III C), the Cooper-pair wave function
across the BCS-BEC crossover (Sec. III D), and occupation
numbers and quasiparticle dispersion relations (Secs. III E
and III F, respectively). Our conclusions are summarized in
Sec. IV.

II. THEORY

The Green’s function of the superfluid, written in the
Nambu-Gorkov basis, is given by

iG12 = i

(
G+

12 F−
12

F+
12 G−

12

)
=

( 〈Tτψ1ψ
+
2 〉 〈Tτψ1ψ2〉

〈Tτψ
+
1 ψ+

2 〉 〈Tτψ
+
1 ψ2〉

)
, (1)

where G+
12 ≡ G+

αβ(x1,x2), etc., x = (t,r) denotes the continu-
ous temporal-spatial variable, and Greek indices label discrete
spin and isospin variables. Each operator in Eq. (1) can be
viewed as a bispinor, i.e., ψα = (ψn↑,ψn↓,ψp↑,ψp↓)T , where
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the internal variables ↑ , ↓ label a particle’s spin and the
indices n,p label its isospin.

The matrix propagator (1) obeys the familiar Dyson
equation

(
G −1

0,13 − �13
)
G32 = δ12, (2)

where �12 is the matrix self-energy and the summation and
integration over repeated indices are implicit. Equation (2) can
be transformed into momentum space, where it becomes an
algebraic equation. For our purposes, translational invariance
cannot be assumed, so we proceed by defining relative r̃ =
x1 − x2 and c.m. R = (x1 + x2)/2 coordinates and Fourier
transforming with respect to the relative four-coordinate and
c.m. three-coordinate R. The associated relative momentum
is denoted below by k ≡ (ikν,k) and the three-momentum of
the c.m. is denoted by Q. The zero component of the vector
k takes on discrete values kν = (2ν + 1)πT , where ν ∈ Z and
T is the temperature.

The relevant Fourier transformations can be obtained by
first performing a variable transformation to the c.m. and
relative coordinates,

iG+
12 = iG+

τσ,τ ′σ ′(x1,x2,t̃)

=
〈
T ψτσ

(
R + r̃

2
,0

)
ψ+

τ ′σ ′

(
R − r̃

2
,t̃

)〉
, (3)

where to exploit the time translation invariance we have
defined the relative time variable t̃ = t ′ − t . The Fourier trans-
formations from the space-time to the momentum-frequency
domain are defined via

G+
τσ,τ ′σ ′(k, Q,t̃) = 1

(2π )3

∫
d3 R d3 r̃ e−i(r̃·k+R· Q)

×G+
τσ,τ ′σ ′(x1,x2,t̃). (4)

The Fourier transformation from the imaginary-time domain
to the frequency domain is given by

G+
τσ,τ ′σ ′(k, Q,t) = 1

β

∑
ν

e−ikν tG+
τσ,τ ′σ ′(ikν,k, Q). (5)

The Fourier transformations for the remaining elements of the
matrix Green’s function iG12 are constructed in an analogous
manner. With the definitions above, we obtain the Fourier
image of Eq. (2) as

[G0(k, Q)−1 − �(k, Q)]G (k, Q) = 18×8. (6)

Further reductions are possible owing to the fact that the
normal propagators for the particles and holes are diagonal
in the spin-isospin spaces, i.e., (G+,G−) ∝ δαα′ ; i.e., the
off-diagonal elements of G −1

0 are zero. Writing out the non-
vanishing components in the Nambu-Gorkov space explicitly,
we obtain [G0(ikν,k, Q)−1]11 = −[G0(−ikν,k, − Q)−1]22 =

G−1
0 (ikν,k, Q), where

G0(k, Q)−1 = diag(ikν − ε+
n↑,ikν − ε+

n↓,ikν − ε+
p↑,ikν − ε+

p↓),

(7)

with

ε±
n/p,↑/↓ = 1

2m∗

(
k ± Q

2

)2

− μn/p, (8)

which it is useful to separate into symmetrical antisymmet-
rical parts with respect to the time-reversal operation by
writing

ε±
n↑/↓ = ES − δμ ± EA, (9)

ε±
p↑/↓ = ES + δμ ± EA, (10)

where

ES = Q2/4 + k2

2m∗ − μ̄, (11)

EA = k · Q
2m∗ , (12)

are the symmetrical and antisymmetrical parts of the quasi-
particle spectrum and μ̄ ≡ (μn + μp)/2. The effective mass
m∗ is defined in the usual fashion in terms of the nor-
mal self-energy, bare mass m, and Fermi momentum pF ,
specifically,

m/m∗ = 1 − (m/p)∂p�11|p=pF
, (13)

if we neglect the small mismatch between neutron and proton
effective masses.

Keeping this mismatch implies the changes ES/A →
ES/A(1 ± δm) and δμ → δμ + μδm, where δm = (m∗

n −
m∗

p)/(m∗
n + m∗

p) � 1. In the analysis below, δm lies in the
range 0 � |δm| � 0.06, the upper bound being attained for
the largest asymmetries and densities relevant to this study.
The quasiparticle spectra in Eq. (7) are written in a general
reference frame moving with the c.m. momentum Q relative
to a laboratory frame at rest. The spectrum of quasiparticles
is seen to be twofold degenerate; i.e., the SU(4) Wigner
symmetry of the unpaired state is broken down to spin SU(2).
In fact, this Wigner symmetry is always approximate because
the phase shifts in the isoscalar and isotriplet S waves differ
such that isosinglet pairing is stronger than isotriplet pairing
in bulk nuclear matter.

The nucleon-nucleon scattering data indicate that the
dominant attractive interaction in low-density nuclear mat-
ter is the 3S1-3D1 partial wave, which leads to isoscalar
(neutron-proton) spin-triplet pairing. Accordingly, the anoma-
lous propagators have the property (F+

12,F
−
12) ∝ (−iτy) ⊗ σx ,

where σi and τi are Pauli matrices in spin and isospin
spaces. This implies that in the quasiparticle approxima-
tion, the self-energy � has only off-diagonal elements in
the Nambu-Gorkov space. Specifically, �12 = �+

21 = i�αβ ,
with �14 = �23 = −�32 = −�41 ≡ �, where � is the
(scalar) pairing gap in the 3S1-3D1 channel. Thus, the
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first multiplier on the left-hand side of Eq. (6) is given by

G −1
0 − � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ikν − ε+
n↑ 0 0 0 0 0 0 i�

0 ikν − ε+
n↓ 0 0 0 0 i� 0

0 0 ikν − ε+
p↑ 0 0 −i� 0 0

0 0 0 ikν − ε+
p↓ −i� 0 0 0

0 0 0 i� ikν + ε−
n↑ 0 0 0

0 0 i� 0 0 ikν + ε−
n↓ 0 0

0 −i� 0 0 0 0 ikν + ε−
p↑ 0

−i� 0 0 0 0 0 0 ikν + ε−
p↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

It is sufficient to consider only a 4 × 4 block of the full 8 × 8
matrix Dyson equation, as the remaining blocks do not contain
new information. We consider then
⎛
⎜⎜⎝

ikν − ε+
n 0 0 i�

0 ikν − ε+
p −i� 0

0 i� ikν + ε−
n 0

−i� 0 0 ikν + ε−
p

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

G+
n 0

0 G+
p

0 F−
np

F−
pn 0

0 F+
np

F+
pn 0

G−
n 0

0 G−
p

⎞
⎟⎟⎠ = diag(1,1,1,1). (15)

The solutions of this equation provide the normal and
anomalous Green’s functions

G±
n/p = ikν ± ε∓

p/n

(ikν − E+
∓/±)(ikν + E−

±/∓)
, (16)

F±
np = −i�

(ikν − E+
± )(ikν + E−

∓ )
, (17)

F±
pn = i�

(ikν − E+
∓ )(ikν + E−

± )
, (18)

where the four branches of the quasiparticle spectrum are given
by

Ea
r =

√
E2

S + �2 + rδμ + aEA, (19)

in which a,r ∈ {+,−}. When r = a and EA > 0, the shifts
owing to the isospin asymmetry δμ and owing to the c.m.
momentum Q add up; consequently, the branches E−

− and E+
+

are located farther away from the isospin-symmetrical spec-
trum than the branches with r �= a for which these two factors
compensate for each other. In mean-field approximation, the
anomalous self-energy (pairing gap) is determined by

�(k, Q) = 1

4β

∫
d3k′

(2π )3

∑
ν

V (k,k′)

×Im[F+
np(k′

ν,k
′, Q) + F−

np(k′
ν,k

′, Q)

−F+
pn(k′

ν,k
′, Q) − F+

pn(k′
ν,k

′, Q)], (20)

where V (k,k′) is the neutron-proton interaction potential.

We perform a partial-wave expansion in Eq. (20) and
compute the Matsubara sum, which yields

�l(Q) = 1

4

∑
a,r,l′

∫
d3k′

(2π )3
Vl,l′ (k,k′)

× �l′(k′,Q)

2
√

E2
S(k′) + �2(k′,Q)

[
1 − 2f

(
Er

a

)]
, (21)

where Vl,l′ (k,k′) is the interaction in the 3S1-3D1 partial wave,
f (ω) = 1/[exp (ω/T ) + 1], and �2 = ∑

l �
2
l .

The densities of neutrons and protons in any of the
superfluid states are obtained by observing that

ρn/p( Q) = 2

β

∫
d3k

(2π )3

∑
ν

G+
n/p(kν,k, Q)

= 2
∫

d3k

(2π )3

[
1

2

⎛
⎝1 + ES√

E2
S + �2

⎞
⎠ f (E+

∓)

+ 1

2

⎛
⎝1 − ES√

E2
S + �2

⎞
⎠ f (−E−

± )

]
. (22)

The magnitude Q of the c.m. momentum in Eqs. (22)
and (21) is a parameter to be determined by minimizing
the free energy of the system. For the homogeneous (but
possibly translationally noninvariant) cases it suffices to find
the minimum of the free energy of the superfluid (S) or
unpaired (N ) phase,

FS = ES − T SS, FN = EN − T SN, (23)

where E is the internal energy (statistical average of the system
Hamiltonian) and S denotes the entropy. The free energy
of the heterogeneous superfluid phase, which corresponds to
separation of the normal and superfluid phases, is constructed
as a linear combination,

F (x,α) = (1 − x)FS(α = 0) + xFN (α �= 0), (Q = 0),

(24)

where x here denotes the filling fraction of the unpaired
component and

α = ρn − ρp

ρn + ρp

(25)

065804-4



BCS-BEC CROSSOVERS AND UNCONVENTIONAL PHASES . . . PHYSICAL REVIEW C 90, 065804 (2014)

is the density asymmetry. In the superfluid phase (S) one
has ρ(S)

n = ρ(S)
p = ρ(S)/2, while in the unpaired phase (N )

the neutron and proton partial densities are rescaled to new
values ρ

(N)
n/p. Thus, the net densities of neutrons/protons per

unit volume are given by ρn/p = (1/2)(1 − x)ρ(S) + xρ
(N)
n/p.

The four possible states we consider are characterized as

Q = 0, � �= 0, x = 0, BCS phase,

Q �= 0, � �= 0, x = 0, LOFF phase,
(26)

Q = 0, � �= 0, x �= 0, PS phase,

Q = 0, � = 0, x = 1, unpaired phase,

and we assign the ground state to the phase with lowest free en-
ergy at any given temperature, density, and isospin asymmetry.
Inputs for the subsequent numerical calculations are the same
as in paper I. Specifically, the pairing interaction is given by the
bare nucleon-nucleon interaction in the 3S1-3D1 partial wave,
based on the (phase-shift equivalent) Paris potential [38]. The
nuclear mean field is modeled by a Skyrme-density functional,
with SkIII [39] and SLy4 [40] parametrizations yielding nearly
identical results. A computation of the effective mass from a
realistic (e.g., Paris) potential would require a larger numerical
effort within a beyond-mean-field microscopic many-body
approach. However, the effective masses computed from
microscopic approaches agree well with those derived from
Skyrme functionals and our results are not sensitive to small
(of order of a few percent) variations in the effective mass.

III. BCS PHASE, LOFF PHASE, AND CROSSOVER TO BEC

A. Phase diagram

The phase diagram of dilute nuclear matter is shown
in Fig. 1 for several values of isospin asymmetry α. Four
different phases of matter are present [see Eq. (26)]. (a)
The unpaired normal phase is always the ground state at
sufficiently high temperatures T > Tc0, where Tc0(ρ) is the
critical temperature of the normal/superfluid phase transition
at α = 0. (b) The LOFF phase is the ground state in a
narrow temperature-density strip at low temperatures and high
densities. (c) The domain of PS appears at low temperatures
and low densities. Finally, (d) the isospin-asymmetrical BCS
phase is the ground state at intermediate temperatures and
intermediate to low densities. It is convenient at this point
to define three regimes of coupling which are characterized
solely by the density of the system, because the boundaries
between these regimes are insensitive to the temperature. The
strong-coupling regime (SCR) corresponds to the low-density
limit where well-defined deuterons are formed, while the
weak-coupling regime (WCR) corresponds to the high-density
limit where well-defined Cooper pairs are present. In between
these limiting cases we identify the intermediate-coupling
regime (ICR). We delineate the boundaries between these
regimes in the following discussion.

At the extreme of low density corresponding to the SCR,
the BCS superfluid phases have two counterparts: The BCS
phase evolves into the BEC phase of deuterons, whereas
the PS-BCS phase evolves into the PS-BEC phase, in which
the superfluid fraction of matter is a BEC of deuterons. The

-2.5 -2 -1.5 -1 -0.5 0
log    (ρ/ρ10           0    )

0

1

2

3

4

5

T 
[M

eV
]

α=0.0
α=0.1
α=0.2
α=0.3
α=0.4
α=0.5

Unpaired

PS-BCS

BCS

BEC

PS-BEC

LOFF

FIG. 1. (Color online) Phase diagram of dilute nuclear matter
in the temperature-density plane for several isospin asymmetries α

(see also Ref. [36]). Here ρ0 = 0.16 fm−3 is the nuclear saturation
density for α = 0. Included are four phases: unpaired phase, BCS
(BEC) phase, LOFF phase, and PS-BCS (PS-BEC) phase. For each
asymmetry there are two tricritical points, one of which is always a
Lifshitz point [37]. For special values of asymmetry, these two points
degenerate into a single tetracritical point at log10(ρ/ρ0) = −0.22
and T = 2.85 MeV when α4 = 0.255 (shown by a square). The
LOFF phase disappears at the point log10(ρ/ρ0) = −0.65 and T = 0
(shown by a triangle) for α = 0.62. The boundaries between BCS
and BEC phases are identified by the change of sign of the average
chemical potential μ̄. The diamonds (red online) mark the density and
temperature values in the diagram that are used in the representative
study (see Table I) of weak-coupling, intermediate-coupling, and
strong-coupling regimes (from right to left).

superfluid/unpaired phase transitions and the phase transitions
between the superfluid phases are of second order (thin
solid lines in Fig. 1), with the exception of the PS-BCS to
LOFF transition, which is of first order (thick solid lines
in Fig. 1). The BCS-BEC transition and the PS-BCS to
PS-BEC transition are smooth crossovers. At nonzero isospin
asymmetry, the phase diagram features two tricritical points,
i.e., points where the simpler pairwise phase coexistence
terminates and three different phases coexist.

Consistent with the earlier studies of the BCS-BEC
crossover, one observes in the phase diagram of Fig. 1 a smooth
crossover to an asymptotic state corresponding to a mixture of
a Bose condensate of deuterons and a gas of excess neutrons.
This, however, occurs at moderate temperatures, where the
unconventional phases do not appear. The new ingredient of
the nuclear phase diagram is the crossover seen at very low
temperatures, where the heterogeneous superfluid phase is
replaced by a heterogeneous mixture of a phase containing
a deuteron condensate and a phase containing neutron-rich
unpaired nuclear matter.

B. Temperature and asymmetry dependence of the gap:
Contrasting the BCS and LOFF phases

Before turning to the main topic of this work, we would
like to recall and explore the behavior of the gap function as
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FIG. 2. (Color online) Gap as a function of temperature for
asymmetry values α = 0.0 (black), α = 0.1 (blue), α = 0.15 (red),
and α = 0.2 (magenta). Results allowing for the LOFF phase are
traced by solid lines; those restricted to the BCS phase are traced by
dashed lines.

a function of temperature and asymmetry at constant density.
We concentrate only on the WCR, as the behavior of the gap
function in SCR is self-similar to that of the WCR. For now,
we also neglect the possibility that the PS phase is the ground
state. Figure 2 shows the weak-coupling gap as a function of
temperature for a range of asymmetries. The plotted results for
each nonzero value of α reveal different regimes of relatively
low and relatively high temperature that reflect the different
behaviors of the gap when the possibility of a LOFF phase is
taken into account (solid curves) and when it is not (dashed
curves). Two branches existing at lower temperatures merge
at some point to form a single segment existing at higher
temperatures. This high-temperature segment corresponds to
the BCS state, and the temperature dependence of the gap
is standard, with d�(T )/dT < 0 and asymptotic behavior
�(α,T ) ∼ {Tc(α)[Tc(α) − T ]}1/2 as T → Tc(α), where Tc(α)
is the (upper) critical temperature. In the low-temperature
region below the branch point, there are two competing
phases (BCS and LOFF), with very different temperature
dependencies of the gap function. The quenching of the BCS
gap (dashed lines) as the temperature is decreased is caused by
the loss of coherence among the quasiparticles as the thermal
smearing of the Fermi surfaces disappears. Consequently, in
the low-temperature range below the branch point, the BCS
branch shows the unorthodox behavior d�(T )/dT > 0, and
for large enough asymmetries there exists a lower critical
temperature T ∗

c [17]. On the contrary, one finds d�(T )/dT <
0 for the LOFF branch, as is the case in ordinary (symmetrical)
BCS theory [41]. It should be mentioned that the “anomalous”
behavior of the BCS gap below the point of bifurcation leading
to the LOFF state gives rise to a number of anomalies in
thermodynamic quantities, such as negative superfluid density
or excess entropy of the superfluid [42]. These anomalies
are absent in the LOFF state [43]. Figure 3 shows the
dependence of the gap function on asymmetry for several
pertinent temperatures. In accord with Fig. 2, there are two
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FIG. 3. (Color online) Gap as a function of asymmetry at con-
stant density ρ = 0.1 fm−3 for T = 0.5 (black), T = 1.0 MeV (blue),
T = 1.5 MeV (red), T = 2.0 MeV (magenta). Results allowing for
the LOFF phase are traced by solid lines; those restricted to the BCS
phase are traced by by dashed lines.

curves (or segments) for each temperature: one in the low-α
domain where only the BCS phase exists and the other in the
large-α domain where both BCS (dashed lines) and LOFF
states (solid lines) are possible. Clearly, the LOFF solution,
for which the gap extends to larger α values, is favored in the
latter domain.

For small α the gap function is linear in α. At the other
extreme of large α, the gap has the asymptotic behavior
�(α) ∼ �00 (1 − α/α1)1/2, where α1 ∼ �00/μ̄ and �00 is the
value of the gap at vanishing temperature and asymmetry. The
critical asymmetry α2 at which the LOFF phase transforms
into the normal phase is a decreasing function of temperature,
whereas that for termination of the BCS phase (denoted α1

above) increases up to the temperature where α1 = α2. For
larger temperatures, α1 decreases with temperature. Conse-
quently, in the dominant phase the critical asymmetry always
decreases with temperature.

C. The kernel of the gap equations

The first intrinsic quantity chosen for detailed study is the
kernel of the gap equation,

K(k,θ ) ≡
∑
a,r

P a
r

4
√

ES(k)2 + �2(k,Q)
. (27)

This kernel is proportional to the imaginary part of the retarded
anomalous propagator and the Pauli operator represented by
P a

r = 1 − 2f (Ea
r ). Physically, K(k) can be interpreted as

the wave function of the Cooper pairs, because it obeys a
Schrödinger-type eigenvalue equation in the limit of extremely
strong coupling. Note that at Fermi surface ES vanishes. The
ranges of momenta which contribute substantially to the gap
equation in different regimes of the phase diagram can be
identified from Figs. 4–7. We now discuss the insights that can
be gained from these figures in some detail.
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FIG. 4. (Color online) Dependence of the kernel K(k) on mo-
mentum in units of Fermi momentum for fixed T = 0.2 MeV,
α = 0.3, and various densities indicated in the plot.

Figure 4 shows the function K(k) at constant temperature
and asymmetry for various densities. The high densities
correspond to the BCS regime, and the low densities to the BEC
regime, allowing us to follow the evolution of this function
through the BCS-BEC crossover. In the BCS regime, K(k)
has two sharp maxima which are separated by a depression
of width δμ around the Fermi momentum. Referring to the
discussion of occupation numbers in Sec. III E below, this
feature originates from the Pauli operator. Because of their
strong localization in momentum space, the Cooper pairs have
an intrinsic structure that is broad in real space, implying
a large coherence length. This is characteristic of the BCS
regime. The picture is reversed in the strong-coupling (low-
density) limit, where K(k) is a broad function of momentum,
corresponding to the presence of bound states (deuterons),
which are well localized in real space. This is characteristic of
the BEC regime. In addition, as the density decreases, the lower
peak moves toward k = 0, owing to the fact that μ̄ changes its
sign from positive to negative at the transition from the BCS to
the BEC regime. As a consequence, the prefactor of the Pauli
operator P r

a peaks at k = 0 in the BEC regime, rather than at
the Fermi surface as in the BCS regime.

Figure 5 shows the function K(k) for various temperatures,
now at constant asymmetry and constant density, such that the
system is situated in the BCS regime. At low temperatures,
K(k) is seen to have two maxima separated by a depression
around the Fermi momentum, as already discussed above.
Increasing the temperature smears out the structures charac-
teristic of the low-temperature case, owing to temperature-
induced blurring of the Fermi surface. Close to Tc, the
temperature effects dominate over the effects of asymmetry.
Consequently, the double-peak structure disappears and the
isospin asymmetry does not affect the properties of the
condensate.

Figure 6 shows the function K(k) for various asymmetries
at constant temperature and the same density as above (thus
again implying the BCS regime). We can now follow how the
double-peak structure builds up as the asymmetry is increased.
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FIG. 5. (Color online) Dependence of the kernel K(k) on mo-
mentum in units of Fermi momentum for fixed ρ = 0.04 fm−3,
α = 0.3, and various temperature indicated in the plot.

Because the width of the depression is proportional to δμ,
it increases with increasing isospin asymmetry, a behavior
consistent with the facts that the Fermi surfaces of neutrons
and protons are pulled apart by the isospin asymmetry and that
in the BCS regime the available phase space is constrained to
the vicinity of the corresponding Fermi surface.

Finally, in Fig. 7 we show K(k) for fixed values of
temperature, asymmetry, and density for the LOFF phase
at two values of the angle formed by the relative and c.m.
momenta, as defined in Eq. (27). It is seen from the figure that
in the orthogonal case (θ = 90◦) the double-peak structure
present in the BCS phase remains, although the effects of
asymmetry are weaker compared to the BCS case. This
is easily understood by noting that EA = 0 for θ = 90◦;
therefore, finite momentum induces only a shift in the energy
origin according to μ̄ → μ̄ − Q2/8m∗. The case θ = 0◦
exposes an interesting feature of the LOFF phase: For a
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FIG. 6. (Color online) Dependence of the kernel K(k) on mo-
mentum in units of Fermi momentum for fixed ρ = 0.04 fm−3,
T = 0.2 MeV, and various values of asymmetry indicated in the plot.
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FIG. 7. (Color online) Dependence of the kernel K(k) on mo-
mentum in units of Fermi momentum at fixed ρ = 0.04 fm−3,
T = 0.2 MeV, and α = 0.3 for the LOFF phase, where θ is the angle
formed by the c.m. and relative momenta in Eq. (27). In the case
θ = 0◦ the full result (solid line with circles) is decomposed into
components with r = −a (long dashed line) and r = a (dash-dotted
line).

range of orientations of the c.m. momentum of Cooper pairs
(θ ∼ 0◦), the effects of asymmetry are mitigated and the kernel
obtains a maximum at k/kF = 1, which is a combination of the
contribution from r = −a, which acts to enhance the pairing
correlations in the vicinity of the Fermi surface, and the r = a
contribution, which vanishes in this region.

D. The Cooper-pair wave function across the BCS-BEC
phase transition

The transition to the BEC regime of strongly coupled
neutron-proton pairs, which are asymptotically identical with
deuterons, occurs at low densities. The criterion for the
transition from BCS to BEC is that either the average chemical
potential μ̄ changes its sign from positive to negative values, or
the coherence length ξ of a Cooper pair becomes comparable to
the interparticle distance; i.e., ξ becomes of order d ∼ ρ−1/3.
(In the BCS regime ξ � d, whereas in the BEC regime
ξ � d.)

The coherence length can be related to the root mean square
of the Cooper-pair wave function, as we show below. The wave
function of a Cooper pair is defined in terms of the kernel of
the gap equation according to

�(r) =
√

N

∫
d3p

(2π )3
[K( p,�) − K( p,0)]ei p·r , (28)

where N is a constant determined by the normalization
condition

N

∫
d3r|�(r)|2 = 1. (29)

In Eq. (28) we subtract from the kernel its value K( p,0) in
the normal state to regularize the integral, which is otherwise
divergent. Cutoff regularization of this strongly oscillating
integral is not appropriate. The mean-square radius of a Cooper

TABLE I. For each of the three regimes of coupling strength,
corresponding values are presented for the density ρ (in units of
nuclear saturation density ρ0 = 0.16 fm−3), Fermi momentum kF ,
temperature T , interparticle distance d , and coherence parameters
ξrms and ξa . The values of the gap and effective mass (in units of
bare mass) at α = 0 in these three regimes are 9.39, 4.50, 1.44 MeV
and 0.903, 0.989, 0.999, respectively. In the regime WCR, the LOFF
phase is found in the vicinity of asymmetry α = 0.49, for which
� = 1.27 MeV and Q = 0.4 fm−1.

log10( ρ

ρ0
) kF (fm−1) T (MeV) d (fm) ξrms (fm) ξa (fm)

WCR −0.5 0.91 0.5 1.68 3.17 1.41
ICR −1.5 0.42 0.5 3.61 0.94 1.25
SCR −2.5 0.20 0.2 7.79 0.57 1.79

pair is defined via the second moment of the probability
density,

〈r2〉 =
∫

d3r r2|�(r)|2. (30)

The coherence length, i.e., the spatial extension of a Cooper
pair, is then defined as

ξrms =
√

〈r2〉. (31)

Thus, the change in the coherence length is related to the
change of the condensate wave function across the BCS-BEC
crossover. The regimes of strong and weak coupling can be
identified by comparing the coherence length to the mean
interparticle distance d = (3/4πρ)1/3. In the BCS regime
the coherence length is given by the well-known analytical
formula

ξa = �
2kF

πm∗�
. (32)

Table I lists the analytical and root-mean-square values of
the coherence length for several densities and temperatures,
chosen to represent the different regimes WCR, ICR, and SCR,
together the corresponding values of the mean interparticle
distance. It is seen that in the case of neutron-proton pairing,
one of the criteria for the BCS-BEC transition is fulfilled,
namely, the mean distance between the pairs becomes larger
than the coherence length of the superfluid as one goes from
WCR to SCR. We have verified that the average chemical
potential changes its sign accordingly, so that the second
criterion is fulfilled as well.

Figure 8 shows the wave function of Cooper pairs as a
function of radial distance across the BCS-BEC crossover
for various densities. In weak coupling, the wave function
has a well-defined oscillatory form that extends over many
periods of the interparticle distance. Such a state conforms to
the familiar BCS picture, in which the spatial correlations
are characterized by scales that are much larger than the
interparticle distance. For intermediate and strong coupling
the wave function is increasingly concentrated at the origin
with, at most, a few periods of oscillation. The strong-coupling
limit corresponds to pairs that are well localized in space
within a small radius. This regime clearly has BEC character,
with the pair correlations extending only over distances
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FIG. 8. (Color online) Dependence of �(r) on r for the three
coupling regimes and various values of asymmetry (see Table I for
values of density and temperature).

comparable to the interparticle distance. It is seen that in
weak coupling the wave function is almost independent of
the asymmetry, whereas in strong coupling this dependence
is substantial. Figure 9, complementary to Fig. 8, displays
the quantity r2|�(r)|2. The spatial correlation in the regime
SCR is dominated by a single peak corresponding to a tightly
bound state close to the origin. The existence of residual
oscillations indicates that there is no unique bound state formed
at such coupling, but the tendency towards its formation is
clearly seen. An oscillatory structure appears in the ICR as a
fingerprint of the transition from BEC the to the BCS regime.
In the WCR we observe oscillations over many periods, i.e.,
over large distances, indicative of the coherent BCS state. At
low and high asymmetries the strong-coupling peaks are well
defined, whereas at intermediate asymmetries the weight of
the function is distributed among several peaks.

Figures 10 and 11 demonstrates the same quantities �(r)
and r2|�(r)|2 for the case of the LOFF phase computed at the
WCR point of the phase diagram (as specified in Table I).
At this point the LOFF phase is the ground state of the
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FIG. 9. (Color online) Dependence of r2|�(r)|2 on r for the three
coupling regimes. Conventions are the same as in Fig. 8.
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FIG. 10. Dependence of �(r) on r in the regime WCR for two
different angles θ for asymmetry α = 0.49 at which the LOFF phase
is the ground state.

matter at asymmetry α = 0.49 (δμ = 6.45 MeV), where � =
1.27 MeV and Q = 0.4 fm−1. For slightly lower asymmetries
(α � 0.48) the system is in the PS phase, whereas for α > 0.5
the gap is vanishingly small, the system being in the normal
state. In the case θ = 0◦ the perfect oscillatory behavior seen
in �(r) in the BCS case is replicated, as in this case the
finite momentum of the condensate does not contribute to
the spectrum of the Cooper pairs. In the case θ = 90◦�(r)
is distorted in the LOFF phase by the presence of a second
oscillatory mode with the period 2π/Q in addition to the first
mode, with the period 2π/kF . The additional periodic structure
is more pronounced in the quantity r2|�(r)|2, where the rapid
oscillations are modulated with a period ∼16 fm.

E. Occupation numbers

The integrand of Eq. (22) defines the occupation numbers
nn/p(k) of the neutrons and protons. These quantities are shown
in different coupling regimes of the BCS-BEC crossover in
Fig. 12. In the WCR (leftmost panel) the occupation numbers
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FIG. 11. Dependence of r2|�(r)|2 on r in the regime WCR for
two different angles θ for asymmetry α = 0.49 at which the LOFF
phase is the ground state.
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FIG. 12. (Color online) Dependence of the neutron and proton
occupation numbers on momentum k (in units of Fermi momentum)
for the three coupling regimes and various asymmetries indicated in
the legend.

of protons exhibit a “breach” [44] or “blocking region” for
large asymmetries, i.e., the minority component is entirely
expelled from the blocking region (np = 0), while the majority
component is maximally occupied (nn/2 = 1). In the small-α
limit the occupation numbers are clearly fermionic (with some
diffuseness owing to the temperature) in that all single-particle
states below a certain mode (the Fermi momentum at T = 0)
are almost filled, while all states above are nearly empty. We
have verified that in the high-temperature limit the breach is
filled in, the occupation numbers becoming smooth functions
of momentum; consequently, the low-momentum modes are
less populated.

In the ICR (middle panel) the fermionic nature of the
occupation numbers is lost. The low-momentum modes are not
fully populated and, accordingly, high-momentum modes are
more heavily occupied. A Fermi surface cannot be identified
because of the smooth population of the modes. Moreover,
a breach no longer appears for the parameters chosen. It
is also to be noted that for large asymmetries α � 0.4, the
momentum dependence of the occupation numbers becomes
nonmonotonic; for the minority component this is a precursor
of the change in the topology of the Fermi surface under
increase of coupling strength.

The SCR (rightmost panel) can be identified with the
BEC phase of strongly coupled pairs. At large asymmetries
the distribution of the minority component undergoes a
topological change. First there develops an empty strip within
the distribution function, which is reorganized at larger asym-
metries into a distribution in which the modes are populated
starting from a certain nonzero value. Thus, the Fermi sphere
occupied by the minority component in the weakly coupled
BCS limit evolves into a shallow shell structure in the strongly
coupled Bose-Einstein-condensed limit. This behavior was
already revealed in the case of the 3S1-3D1 condensate in
Ref. [18].
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FIG. 13. (Color online) Dependence of the neutron and proton
occupation numbers on momentum k (in units of Fermi momentum)
in the WCR for two asymmetries where the LOFF phase is the ground
state. The three angles indicated refer to the neutron occupation
numbers. The proton occupation numbers are plotted for angles
180◦ − θ .

Figure 13 depicts the occupation numbers in the WCR at
asymmetries corresponding to a LOFF-phase ground state
for three fixed angles θ = 0◦, 45◦, and 90◦. In the case
θ = 90◦ we have EA = 0, and the LOFF spectrum differs
from the asymmetrical BCS spectrum only by a shift in the
energy origin, μ̄ → μ̄ − Q2/8m∗. Therefore, the occupation
numbers do not depart qualitatively from their BCS behavior;
moreover, the “breach” is clearly seen. For θ = 45◦ the
difference between the occupation numbers disappears; i.e.,
the superconductor behaves as if it were isospin symmetric.
This result follows from the fact that the nonzero c.m.
momentum of the LOFF phase compensates for the mismatch
of the Fermi spheres and restores the coherence needed for
pairing. In the case θ = 0◦ the effect of EA attains its maximal
value, but the occupation numbers are intermediate between
those of the two cases previously addressed. This is attributable
to the fact that the overlap between the spectra of neutron and
proton quasiparticle branches is better for θ = 45◦ than for
θ = 0◦, in which case the quasiparticle spectra “overshoot” the
optimal overlap (see the discussion in the following section).

F. Quasiparticle spectra

Finally, let us consider the dispersion relations for quasipar-
ticle excitations about the 3S1-3D1 condensate. We first examine
in some detail the spectra Ea

± in the BCS case defined in
Eq. (19), which are then independent of the sign of a and we
take a = +. These are shown in Fig. 14 for the three coupling
regimes of interest. In the isospin-symmetric BCS case, the
dispersion relation has a minimum at E+

+ = E+
− = � for k =

kF . For finite asymmetries one has E+
± =

√
E2

S + �2 ± δμ;
hence, the minima of the dispersion relations of neutron and
proton quasiparticles are given by an asymmetry-dependent
gap value modified by the shift in chemical potential, i.e.,
�(α) ± δμ. For protons this leads to a gapless spectrum, which
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FIG. 14. (Color online) Dispersion relations for quasiparticle
spectra in the case of the BCS condensate as functions of momentum
in units of Fermi momentum. For each asymmetry, the upper branch
corresponds to E+

+ and the lower to the E+
− solution.

does not require a finite minimum energy for excitation of
two modes (say k1 and k2) for which the dispersion relation
intersects the zero-energy axis. This phenomenon is well
known as gapless superconductivity. The momentum interval
k1 � k � k2 corresponds to the interval in Fig. 12 where the
occupation numbers of majority and minority components
separate and the “breach” in the occupation of the minority
component becomes prominent.

Consider now the SCR, in which case we are dealing with
a gas of deuterons and free neutrons. In the symmetrical limit
(i.e., when only deuterons are present), the dispersion relation
has a minimum at the origin that corresponds to the (average)
chemical potential, which asymptotically approaches half the
binding energy of a deuteron in vacuum [18]. The effect of
asymmetry is to shift the average chemical potential down-
wards and to introduce the separation δμ in the quasiparticle
spectra.
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FIG. 15. (Color online) Dispersion relations for quasiparticle
spectra in the LOFF phase for three angles and α = 0.49.

Because the minimum is now at the origin, there is only one
mode for which the dispersion relation crosses zero at a finite
k. The dispersion relations in the ICR experience a transition
from the WCR to the SCR, such that their key features resemble
those of the WCR, but with a shallower minimum and a larger
momentum interval [k1,k2] over which the excitation spectrum
becomes gapless.

The dispersion relations for quasiparticles in the LOFF
phase for special angles θ are shown in Fig. 15 in the WCR
and for an α value corresponding to the LOFF phase as
ground state. In this case, we show all four branches of
quasiparticle spectrum. Consistent with the earlier discussion
of Fig. 13 for θ = 90◦, the LOFF phase resembles the BCS
phase and there is a large mismatch between the spectra of
protons and neutrons. In this case the branches a = + and
a = − are degenerate. For other angles we see again that the
nonzero c.m. momentum mitigates the asymmetry and brings
the quasiparticle spectra closer together; i.e., the LOFF phase
resembles the symmetrical BCS phase for the two branches
with a �= r . This is particularly clear for θ = 45◦, in which
case two of the four dispersion relations coincide in the vicinity
of the Fermi momentum. It is clear that the optimal mitigation
of the isospin mismatch by the finite moment does not need to
be for θ = 0◦, but can occur at some angle 0◦ � θ � 90◦; it is
seen that for θ = 0◦ the branches cross and, hence, “overshoot”
the optimal compensation.

The restoration of the coherence (Fermi-surface overlap) in
the LOFF phase can be illustrated by looking at the solutions of
εn/p,↑/↓ = 0 [see Eq. (8)] which define the Fermi-surface in the
limit � → 0 but Q �= 0. These are illustrated in Fig. 16 in two
cases, Q = 0 and Q �= 0. In the first case the Fermi surfaces are
concentric spheres which have no intersection. In the second
case the nonzero c.m. leads to an intersection of the Fermi
spheres; in these regions of intersection the pair correlations
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0

1

kz

FIG. 16. (Color online) Illustration of Fermi surfaces in the
asymmetrical BCS state (solid lines) and LOFF phase (dashed
lines). The LOFF phase is characterized by the following values of
parameters: α = 0.49, δμ = 6.45 MeV, � = 1.27 MeV, and Q =
0.4 fm−1.
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are restored to the magnitude characteristic to the BCS phase.
Of course, the c.m. momentum costs positive kinetic energy,
which must be smaller than the negative condensation energy
for LOFF phase to be stable.

IV. CONCLUSION

Low-density nuclear matter is predicted to feature a rich
phase diagram at low temperatures and nonzero isospin
asymmetry. The phase diagram contains at least the following
phases: the translationally and rotationally symmetric, but
isospin-asymmetrical BCS phase, the BEC phase containing
neutron-proton dimers, the current-carrying LOFF phase, and
associated phase-separated phases.

Our analysis of these phases can be summarized as follows.

(1) The phase diagram of nuclear matter composed of these
phases has two tricritical points in general, one of which
is a Lifshitz point. These can combine in a tetracritical
point for a special combination of density, temperature,
and isospin asymmetry. The phase diagram contains
two types of crossovers from the asymmetrical BCS
phase to the BEC of deuterons and an embedded
neutron gas: a transition between the homogeneous
BCS-BEC phases at relatively high temperatures and
between the heterogeneous BCS-BEC phases at low
temperatures. We have shown that the LOFF phase
exists only in a narrow strip in the high-density,
low-temperature domain and at nonzero asymmetries.

(2) The crossovers of BCS-BEC type are smooth and
are characterized by lines in the temperature-density
plane that are insensitive to the isospin asymmetry.
These lines were obtained by examining the sign of the
average chemical potential.

(3) Detailed analysis of key intrinsic quantities, including
the kernel of the gap equation along with the Cooper-
pair wave function and its probability density, clearly
establishes that in the BCS limit one deals with a
coherent state, whose wave function oscillates over
many periods with a wavelength characterized by
the inverse Fermi momentum k−1

F . In the opposite
limit the wave function is well localized around the
origin, indicating that one is then dealing with a Bose
condensate of strongly bound states, namely deuterons.

(4) The analysis of the kernel of the wave function, the
occupation probabilities of neutrons and protons, and
the quasiparticle dispersion relations demonstrates the
prominent role played by the Pauli-blocking region
(called “the breach”) [44] that appears in these quan-
tities. In the BCS phase and the low-temperature limit
of the WCR, the blocking region embraces modes
in the range k1 � k � k2 around the Fermi surface.

In this modal region, it has been found that (a) the minor
constituents (protons) are extinct; (b) there are no contributions
to the kernel of the gap equation from these modes; and (c) the
end of points of this region corresponds to the onset of gapless
modes that can be excited without any energy cost. The LOFF
phase appearing in this regime substantially mitigates the
blocking mechanism by allowing for nonzero c.m. momentum
of the condensate. As a consequence, all the intrinsic quantities
studied are much closer to those of the isospin-symmetric BCS
state.

(5) We have traced the evolution of the targeted intrinsic
properties into the SCR as the system crosses over
from the BCS condensate to a BEC of deuterons plus
a neutron gas. In the SCR the long-range coherence of
the condensate is lost. The dispersion relations change
their form from a spectrum having a minimum at the
Fermi surface to a spectrum that is minimal at k = 0, as
would be expected for a BEC, independent of isospin
asymmetry. With increasing isospin asymmetry, the
proton dispersion relation acquires points with zero
excitation energy in this regime. The occupation
numbers reach a maximum for finite k and reflect a
change of topology at large asymmetries: The filled
“Fermi sphere” becomes an empty “core.”

The present investigation of BCS-BEC crossovers with
inclusion of unconventional phases, such as the LOFF phase
and the heterogeneous phase-separated phase, could be useful
in the studies of spin/flavor-imbalanced fermionic systems in
ultracold atomic gases (for recent studies, see, e.g., Refs. [45–
47]), dense quark matter (e.g., Refs. [48–52]), and other related
quantum systems.
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