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Short-range correlation effects on the nuclear matrix element of neutrinoless double-β decay
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We report the results of a calculation of the nuclear matrix element of neutrinoless double-β decay of 48Ca,
carried out taking into account nucleon-nucleon correlations in both coordinate and spin space. Our numerical
results, obtained using nuclear matter correlation functions, suggest that inclusion of correlations may lead to a
∼20% decrease of the matrix element, with respect to the shell-model prediction. This conclusion is supported
by the results of an independent calculation, in which correlation effects are taken into account using the
spectroscopic factors of 48Ca, obtained from an ab initio many-body approach, to renormalize the shell-model
states.

DOI: 10.1103/PhysRevC.90.065504 PACS number(s): 23.40.Hc, 24.10.Cn, 27.40.+z

I. INTRODUCTION

A fully quantitative approach to the calculation of the
nuclear matrix element (NME) determining the neutrinoless
double-β (0νββ) decay rate (see, e.g., Refs. [1,2]) requires the
inclusion of correlation effects, not taken into account in the
mean-field approximation underlying the nuclear shell model.

High-resolution electron-induced nucleon knock-out exper-
iments have provided unambiguous evidence of the inade-
quacy of the independent particle model (IPM) to describe
the full complexity of nuclear dynamics. While the peaks
associated with knock out from shell-model orbits can be
clearly identified in the measured missing energy spectra, the
integrated strengths, yielding the corresponding spectroscopic
factors, turn out to be significantly lower than the IPM
predictions, independent of the nuclear mass number [3,4].

Long-range correlations are usually included within the
framework of the quasiparticle random phase approximation
(QRPA) and its extension, or carrying out large-scale shell-
model calculations. The procedure routinely employed to take
into account the effect of short-range correlations is based
on the modification of the shell-model states entering the
two-body transition matrix element through the action of a
correlation function (see, e.g., Refs. [5–8]).

Many existing calculations have been performed using the
somewhat oversimplified correlation function referred to as
Miller-Spencer (MS), depending on the magnitude of the in-
ternucleon distance only. More advanced correlation functions,
obtained using the Brueckner-Goldstone (BG) formalism [9]
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Università di Roma, I-00185 Roma, Italy.
†Present address. Dipartimento di Scienze Fisiche e Chimiche,
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or the unitary correlation operator method (UCOM) [10] and
projecting onto the two-nucleon channel of total spin and
isospin S = 0 and T = 1, have been used in Refs. [5–7].

The results of Refs. [5–7] exhibit a strong dependence on
the shape of the correlation function. The authors of Ref. [5],
who carried out calculations for 48Ca and 76Ge, report a
30–40% reduction of the NME, with respect to the shell-model
prediction, obtained using the MS model, to be compared
to a 7–16% effect resulting from calculations carried out
with the UCOM correlation function. In Ref. [7], different
choices of the correlation function result in qualitatively
different predictions for 48Ca. The MS model yields a ∼20%
suppression of the NME, while use of BG correlation functions
leads to a ∼20% enhancement.

Nuclear matter studies carried out within ab initio many-
body approaches, based on state-of-the-art models of the
nuclear hamiltonian, clearly show that the correlation function
features a complex operator structure, reflecting the strong
spin and isospin dependence of the NN potential as well as its
non-spherically-symmetric nature.

As a first step towards the development of a fully realistic
and consistent implementation of short-range correlations in
calculations of the 0νββ NME, we have studied the effect
of spin- and isospin-dependent correlations on the NME of
the 48Ca → 48Ti 0νββ decay using the results of accurate
nuclear matter calculations, carried out within the correlated
basis function (CBF) approach. The inclusion of isospin
dependence is needed to take into account the differences
between the correlation functions acting in the neutron-neutron
and proton-neutron channels. Moreover, spin-dependent cor-
relations affect the Fermi and Gamow-Teller character of
the transition matrix elements, leading to a mixing of the
corresponding contributions.

Being the simplest case from the point of view of nu-
clear structure, the 48Ca → 48Ti decay appears to be best
suited for our exploratory analysis of correlation effects. In
addition, searches of this decay are being carried out by the
CANDLES [11] and CARVEL [12] experiments.

To gauge the robustness of our approach and assess the
role of finite-size and shell effects—neglected when using
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nuclear matter correlation functions—we have also carried out
an independent calculation, in which correlations have been
taken into account through renormalization of the shell-model
states of 48Ca.

In Sec. II, after recollecting the expressions of the Fermi and
Gamow-Teller contributions to 0νββ decay within the closure
approximation, we discuss the shell-model structure of the
two-nucleon matrix elements (Sec. II A) and the modifications
arising from the inclusion of nucleon-nucleon correlations
(Sec. II B). The results of our calculations, including those
obtained from the alternative approach based on spectroscopic
factors, are reported in Sec. III, while in Sec. IV we summarize
our findings and state the conclusions.

II. 0νββ DECAY

The half life associated with the 0νββ decay of a nucleus
of mass A and charge Z

(A,Z) → (A,Z − 2) + 2e−, (1)

τ , can be written in the form (see, e.g., Ref. [2])

1

τ
= G|M|2

( 〈mββ〉
me

)2

, (2)

where G is a phase-space factor, me is the electron mass and
the so called effective neutrino mass is defined in terms of
neutrino mass eigenvalues and elements of the mixing matrix
according to

〈mββ〉 =
∣∣∣∣∑

k

U 2
ekmk

∣∣∣∣2

. (3)

The NME can be cast in the form

M = MGT −
(

gV

gA

)2

MF, (4)

where gV and gA are the vector and axial-vector coupling
constant, respectively, while MF and MGT denote the Fermi
(F) and Gamow-Teller (GT) transition matrix elements.

Within the closure approximation (see, e.g., Ref. [1]) MF

and MGT can be written in the general form

Mα = 〈
�f ,J π

f

∣∣∑
jk

τ+
j τ+

k Oα
jk(r)

∣∣�i,J π
i

〉
, (5)

where α = F, GT, τ+
i is the charge-raising operator acting in

the isospin space of the ith nucleon and �i and �f are the
initial and final nuclear states, the total angular momentum
and parity of which are labeled J π

i and J π
f .

The transition operators Oα
jk(r) are defined as

OF
jk(r) = 1 H (rjk), OGT

jk (r) = (σ j · σ k) H (rjk), (6)

where H (rjk) is the so-called neutrino potential, given by

H (rjk) = RA

2

π

∫ +∞

0

j0(qrjk)

q + 〈E〉 qdq, (7)

with j0(x) = sin x/x. In the above equations, rjk = |rj − rk|
is the magnitude of the distance between the two nucleons
involved in the decay process, RA is the nuclear radius and

〈E〉 is the average energy of the virtual intermediate states
employed in the closure approximation.

Note that the above equations do not take into account
the effect of nucleon form factors, which—based on the
results available in the literature—is expected to be small.
For example, the authors of Ref. [6] report a change of less
that 2% in the NME of 76Ge →76 Se 0νββ decay.

A. Two-body matrix elements

We assume that two neutrons of the initial-state nucleus
decay, while the other nucleons act as spectators. Owing to the
two-body nature of the transition operators, the matrix element
in Eq. (5) can be reduced to a sum of products of two-body
transition densities (TBTD) and antisymmetrized two-body
matrix elements [7]

Mα =
∑

j1,j2,j
′
1,j

′
2,J

π

T BT D (j1,j2,j
′
1,j

′
2; Jπ )

×〈j ′
1j

′
2; Jπ T | τ+

1 τ+
2 Oα

12(r) |j1j2; Jπ T 〉a . (8)

Here, the indices 1 and 2 label the quantum numbers of the
two decaying neutrons, while 1′ and 2′ refer to the final-state
protons. The angular momentum of a nucleon participating
in the decay is denoted ji or j ′

i (i = 1,2), while Jπ and T
specify the total angular momentum, parity and isospin of the
nucleon pair, respectively. Finally, the notation | · · · 〉a refers
to antisymmetrized two-particle states.

The coefficients T BT D (j1,j2,j
′
1,j

′
2; Jπ ) describe how the

spectator nucleons rearrange themselves as a result of the
decay process. They are computed in a model space using
an effective nucleon-nucleon interaction.

In order to carry out the calculation, the two-body matrix el-
ement in Eq. (8) must be decomposed into products of reduced
matrix elements of operators acting in spin and coordinate
space. In addition, the coordinate-space two-nucleon state is
rewritten in terms of relative and center of mass coordinates,
r12 = r1 − r2 and R12 = (r1 + r2)/2, according to

〈r1|k1l1〉〈r2|k2l2〉 =
∑

k,l,K,L

〈kl,KL|k1l1, k2l2〉�

×〈R12|KL〉〈r12|kl〉, (9)

where ki and li are the principal and angular momentum
quantum numbers, respectively, while 〈. . .〉�, � being the
angular momentum of the proton pair in the final nucleus,
are the coefficients of the Talmi-Moshinski transformation of
the harmonic oscillator basis [13,14].

B. Correlated wave functions

Within CBF, the correlated nuclear states, |�n〉, are obtained
from the shell-model eigenstates, |	n〉, through the transfor-
mation

|�n〉 = F |	n〉, (10)

where the operator F , embodying the correlation structure
induced by the NN interaction, is written in the form

F = S
∏
ij

fij . (11)
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Note that, in general, [fij ,fik] �= 0. As a consequence, the
product in the right-hand side of Eq. (11) has to be symmetrized
through the action of the operator S.

The two-body correlation functions fij , the operator struc-
ture of which reflects the structure of the NN potential, can be
cast in the form

fij =
6∑

m=1

f (m)(rij )O(m)
ij , (12)

with

O
(m)
ij = [1,(σ i · σ j ),Sij ] ⊗ [1,(τ i · τ j )] (13)

where σ i and τ i are Pauli matrices acting in spin and isospin
space, respectively, and

Sij = 3

r2
ij

(σ i · rij )(σ j · rij ) − (σ i · σ j ). (14)

The scheme routinely employed to include correlations in
the nuclear matrix elements of Eq. (5)—which can be loosely
related to the lowest-order (i.e., two-body) approximation
of the cluster expansion formalism (see, e.g., Ref. [15])—
amounts to modifying the state describing the relative motion
of the nucleon pair involved in the decay process, appearing
in Eq. (9), according to

|kl〉 → f12|kl〉. (15)

Note that the above prescription can be seen just as well
as a replacement of the Fermi and Gamow-Teller transition
operators with the effective operators Õα

12, defined as

Õα
12 = f12O

α
12f12. (16)

Equation (16) implies that using the correlation function
defined by Eqs. (12) and (13) affects the operator structure
of the transition operators. To see this, consider, for example,
the somewhat simplified case of a correlation function in-
cluding contributions with m � 4 only. Because for nucleons
participating in double-β decay (τ 1 · τ 2) = 1, the resulting
correlation functions can be rewritten in the form [see Eqs. (12)
and (13)]

f12 = f (r12) + g(r12)(σ 1 · σ 2), (17)

with

f (r12) = f (1)(r12) + f (2)(r12), (18)

g(r12) = f (3)(r12) + f (4)(r12). (19)

From the above definitions and the relation (σ 1 · σ 2)2 = 3 −
2(σ 1 · σ 2), it follows that inclusion of correlations in the two-
body matrix elements leads to the appearance of a Gamow-
Teller contribution to the matrix element of OF

12, along with a
Fermi contribution to the matrix element of OGT

12 .
Substituting Eq. (17) into Eq. (16) one finds

ÕF
12 = [f 2(r12) + 3g2(r12)]OF

12

+ 2g(r12)[f (r12) − g(r12)]OGT
12 , (20)

and

ÕGT
12 = [f 2(r12) − 4f (r12)g(r12) + 7g2(r12)]OGT

12

+ 6g(r12)[f (r12) − g(r12)]OF
12. (21)

III. RESULTS

As stated in Sec. I, our analysis is aimed at studying
the effects of nucleon-nucleon correlations. Therefore, we
have kept the complications associated with the shell-model
description of the nuclear states to a minimum.

We focused on the reaction

48
20Ca → 48

22T i + 2e−, (22)

in which the initial and the final nucleus are both in their ground
states, having J π = 0+. Note that 48Ca is the lightest nucleus
that can undergo double-β decay, and its shell structure is quite
simple, Z = 20 and (A − Z) = 28 being both magic numbers,
corresponding to closed shells.

We consider the case in which the neutrons and protons
involved in the decay process occupy the 1f7/2 shell. As
a consequence, in the matrix element of Eqs. (8) and (9)
j1 = j2 = j ′

1 = j ′
2 = 7/2, k1 = k2 = k′

1 = k′
2 = 0, and l1 =

l2 = l′1 = l′2 = 3. Numerical calculations have been carried
out using the TBTD reported in Ref. [16] and harmonic
oscillator wave functions corresponding to �ω = 45A−1/3 −
25A−2/3MeV. The vector and axial-vector coupling constant
and the average energy of Eq. (7) have been set to the values
reported in Ref. [7]: gV = 1, gA = 1.25 and 〈E〉 = 7.72MeV.
Note that the dependence of the NME on the average energy is
quite weak. Changing the value of 〈E〉 from 2.5 MeV to 12.5
MeV results in a variation of the NME of less than 5% [7].

The correlation operator employed in this work includes
the components with m � 4 of Eq. (12), needed to take into
account spin and isospin dependence. The radial dependence
of the functions f (m)(r12) has been obtained from a realistic
nuclear hamiltonian including the Argonne v′

6 NN potential,
solving the set of Euler-Lagrange equations derived from the
minimization of the ground-state energy of isospin-symmetric
nuclear matter at equilibrium density [17].

In Fig. 1 the correlation functions f (r12) and g(r12) (the
latter multiplied by a factor 5) of Eq. (17) are compared to
those employed in the study of the 48Ca → 48Ti 0νββ decay

FIG. 1. (Color online) Radial behavior of the correlation func-
tions of Eq. (17). The MS (solid line), AV 18 (dot-dash line), and CD
Bonn (dashed line) correlation functions employed in Ref. [7] are
also shown, for comparison.
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TABLE I. Ratio between the 0νββ NME of Eq. (4), computed
including central and central plus spin-dependent correlations and the
corresponding quantity obtained setting f (r12) = 1 and g(r12) = 0.

f (r12) f (r12) + g(r12)(σ 1 · σ 2)

M/MSM 0.77 0.79

described in Ref. [7]. The solid, dot-dash, and dashed line
correspond to the correlation functions referred to as MS, AV
18, and CD Bonn, respectively [7].

The numerical values of the ratio M/MSM , where MSM

is the NME computed without including correlations—which
amounts to setting f (rij ) = 1 and g(rij ) = 0—are listed in
Table I. It appears that inclusion of central correlations
leads to a �20% decrease of the NME, while the effect of
spin-dependent correlations is small, and goes in the opposite
direction.

Our result turns out to be close to that obtained in Ref. [7]
using the MS correlation function, while the the authors
of Ref. [5] find an even larger effect. On the other hand,
Ref. [7] also reports a ∼10% and ∼20% enhancement of the
ratio M/MSM , resulting from calculations carried out with
the CD-Bonn and AV 18 correlation functions, respectively.
Comparison between the shapes of the correlation functions,
displayed in Fig. 1 suggests that the qualitative differences
in the calculated M/MSM ratios reflect the differences in
shape of the correlation functions. The enhancement of the
NME, yielding M/MSM > 1, appears to be associated with
the use of correlation functions that sizeably overshoot unity
at intermediate distance, while exhibiting a less pronounced
correlation hole at short distance. The authors of Ref. [5] also
attribute the small reduction of the NME obtained using the
UCOM approach to the reduced correlation hole exhibited by
the corresponding correlation function.

Valuable insight on the behavior of nucleon-nucleon cor-
relations can be obtained from theoretical studies of infinite
nuclear matter. The simplifications arising from translation
invariance allow one to carry out accurate calculations of the
two-nucleon distribution functions—yielding the probability
distribution of finding two nucleons at separation distance r−
in both the neutron-neutron (nn) [or, equivalently, proton-
proton (pp)] and proton-neutron (pn) channels. They are
defined as

gnn(r) = 1

4πr2

〈∑
j>i

δ(r − rij )
1

2

(
1 − τ 3

i

)1

2

(
1 − τ 3

j

)〉
, (23)

gpn(r) = 1

4πr2

〈∑
j>i

δ(r − rij )
1

2

(
1 + τ 3

i

)1

2

(
1 − τ 3

j

)〉
, (24)

where τ 3
i is the matrix describing the third component of

the isospin of particle i, while 〈. . .〉 denotes the ground-state
expectation value.

Figure 2 shows the radial dependence of the distribution
functions gnn(r) (solid line) and gpn(r) (dashed line), at nuclear
matter equilibrium density, computed using the Fermi hyper-
netted chain (FHNC) summation scheme and the Argonne v′

6

FIG. 2. (Color online) Radial dependence of the neutron-neutron
(solid line) and proton-neutron (dashed line) distribution functions of
Eqs. (23) and (24), computed within the FHNC approach using the
Argonne v′

6 NN potential [17]. The dot-dash line corresponds to the
results obtained at two-body cluster level using a correlation function
defined as in Eqs. (17)–(19).

NN potential [17]. The dot-dash line corresponds to the results
obtained at lowest order of the cluster expansion with the
correlation function of Eqs. (17)–(19).

In comparing Figs. 1 and 2, it has to be kept in mind that
they show different quantities. The leading term in the cluster
expansion of the distribution functions, defined by Eqs. (23)
and (24), is quadratic in the correlation functions displayed
in Fig. 1. Moreover, owing to the effect of Pauli’s exclusion
principle, the distribution functions have longer range.

It clearly appears that inclusion of higher-order cluster
contributions does not appreciably affect the shape of the
neutron-neutron correlation function in uniform matter. Most
notably, it does not lead to either a reduction of the correlation
hole or to the appearance of a region in which f (r) > 1.
However, surface and shell effects are expected to play a role,
and their importance needs to be estimated.

A different procedure to include correlation effects in the
NME of the 0νββ decay, based on concept of quasiparticle in
interacting many-body systems, exploits the renormalization
of the shell-model states. Within this scheme the single nucleon
state of quantum numbers kiliji is modified according to
[compare to Eq. (15)]

|kiliji〉 → √
Zki li ji

|kiliji〉. (25)

The spectroscopic factor Zki li ji
is the residue of the Green’s

function at the single-particle pole, not to be confused with the
occupation probability [18]. It is defined as [19]

Zα
ki li ji

=
∫

d3x
∣∣φα

ki li ji
(x)

∣∣2
, (26)

where the superscript α = p, n specifies the third component
of the isospin, while the quasihole wave function φα

ki li ji
is given

by

φα
ki li ji

(x1) =
√

A

Nα
ki li ji

〈
�α

ki li ji
(x2, . . . ,xA)

∣∣�0(x1, . . . ,xA)〉. (27)
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In the above equation, |�0〉 and |�α
ki li ji

〉 denote the nuclear
ground state and the (A − 1)-nucleon state obtained removing
a nucleon with quantum numbers kiliji and isospin projection
α, respectively. The normalization factor is

Nα
ki li ji

= 〈
�α

ki li ji

∣∣�α
ki li ji

〉1/2〈�0|�0〉1/2. (28)

It is important to realize that using renormalized single-particle
states is conceptually equivalent to using correlated states. In
the absence of correlations, Zki li jj

= 1 for all occupied shell-
model states, and Zki li ji

= 0 otherwise.
The authors of Ref. [19] have carried out an ab initio

calculation of the spectroscopic factors of 48Ca within the
FHNC approach, using a nuclear hamiltonian including the
Argonne v′

8 NN potential supplemented with the UIX three-
nucleon potential. It has to be pointed out that their results
take into account both finite-size and shell effects and the
contributions of many-nucleon correlations.

We have employed the results of Ref. [19] to describe
correlation effects in the NME of 0νββ decay through the
replacement

Mα → M̃α = Z
p
1f7/2

(48Ti)Zn
1f7/2

(48Ca)Mα, (29)

which, under the additional assumption

Z
p
1f7/2

(48Ti) ≈ Zn
1f7/2

(48Ca), (30)

yields

M̃α = [
Zn

1f7/2
(48Ca)

]2
Mα. (31)

The correspondence between the above result and the ex-
pression of the NME involving the correlation functions can
be easily grasped substituting correlated states in Eq. (27),
and using the two-body cluster approximation to evaluate the
overlap.

Substitution of the numerical value reported in Ref. [19],
Zn

1f7/2
(48Ca) = 0.91, in the NME of Eq. (31) yields M/MSM =

0.83, in fair agreement with the results listed in Table I.
Note that, although the validity of the approximation of

Eq. (30) should be carefully investigated, nuclear matter results
clearly support its accuracy [20].

IV. CONCLUSIONS

We have carried out a study aimed at analyzing the effects
of short-range NN correlations on the NME of the 0νββ decay
of 48Ca.

The results of calculations performed using spin- and
isospin-dependent correlation functions, obtained from the
minimization of the ground-state energy of isospin symmetric
nuclear matter at equilibrium density, indicate that inclusion
of correlations leads to a ∼ 20% decrease of the NME, with
respect to the shell-model prediction. A similar or larger
reduction has been obtained by the authors of Ref. [5,7] using
the MS correlation function.

Comparison between our results and those of Ref. [5–7]
suggests that the radial behavior of the correlation function
plays a critical role. Using correlation functions that sizeably
overshoot unity and feature a reduced correlation hole leads to

predict a small decrease [5,6], or even an enhancement [7] of
the NME.

The approach employed to obtain the correlation functions
used in our work provides a realistic description of the
short-range structure of two-nucleon states in nuclear matter,
properly taking into account the differences between nn and
pn pairs. Moreover, Fig. 2 shows that in uniform nuclear
matter the lowest-order result is close to that obtained taking
into account many-body contributions within the FHNC
summation scheme.

The accuracy of the two-body cluster approximation has
been recently questioned on the basis of isospin considera-
tions [8]. The authors of Ref. [8] have shown that, owing to the
sizable overshoot, the correlation function of Ref. [6] preserves
isospin symmetry better than the nuclear matter correlation
function of Akmal and Pandharipande, which turns out to be
very similar to the one employed in our work. However, as
correctly pointed out in the concluding section of Ref. [8], this
feature does not arise from many-body cluster contributions,
which are not taken into account in the Brueckner-Goldstone
approach. In this context, it is worth noting that the summation
of ladder diagrams carried out to obtain the correlation function
of Ref. [6] has long been shown to be equivalent to the use of
a correlated two-nucleon state, defined as in Eq. (15) [21].

The differences between the correlation function employed
in this work and those referred to as CD-Bonn and AV 18 can
be probably traced back to the fact that, while the former has
been obtained from a nuclear matter calculation, the derivation
of the latter explicitly takes into account finite-size and shell
effects [6].

In order to gauge the robustness of our result against
inclusion of these effects, we have estimated the 0νββ decay
NME using the spectroscopic factors of 48Ca computed in
Ref. [19] within the framework of the FHNC approach. The ∼
20% suppression obtained from the alternative approach turns
out to be remarkably close to that obtained from modifying the
two-nucleon matrix elements through the action of the nuclear
matter correlation function.

In view of the correspondence of the two approaches,
pointed out in Sec. III, the agreement between the results
obtained using the spectroscopic factors and those obtained
from modifying the two-nucleon states entering the transition
matrix element is likely to reflect the fact that the correlation
functions of Ref. [19], derived within a framework in which
finite-size and shell effects—as well as many-body cluster
contributions—are taken into account, turn out to be similar to
the nuclear matter correlation functions displayed in Fig. 1.

A fully consistent implementation of the formalism based
on spectroscopic factor would require that the renormalization
procedure be extended to all the shell-model states, not just
those entering the two-nucleon transition matrix element.
However, it is important to realize that the formalism founded
on the modification of the two-nucleon states suffers from the
same lack of consistency, as it ignores correlations between the
spectator particles, not involved in the decay process. Using
spectroscopic factors or correlation functions in the two-body
matrix element is in fact conceptually equivalent.

The inconvenient truth is that, whatever the theoreti-
cal approach taken, the consistent inclusion of short-range
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correlations in the shell-model picture is a longstanding and
still very elusive issue.

While the results reported in this paper appear to be
encouraging, further studies, aimed at firmly establishing the
relation between the two schemes employed in our work, are
certainly called for. These studies will have to involve the
analysis of higher-order contributions to the cluster expansion
of the quasihole wave function, discussed in Ref. [19], as
well as the use of a correlation function obtained from the

minimization of the ground-state energy of 48Ca, and the
inclusion of the full operator structure of Eqs. (12)–(13).
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