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Search for time reversal invariance violation in neutron transmission
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Time reversal invariance violating (TRIV) effects in neutron transmission through a nuclear target are discussed.
We demonstrate the existence of a class of experiments that are free from false asymmetries. We discuss the
enhancement of TRIV effects for neutron energies corresponding to p-wave resonances in the compound nuclear
system. We analyze a model experiment and show that such tests can have a discovery potential of 102–104

compared to current limits.
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I. INTRODUCTION

Time reversal invariance violation (TRIV) in nuclear
physics has been studied for several decades. There are a num-
ber of TRIV effects in nuclear reactions and nuclear decays,
which are sensitive to either CP-odd and P-odd (or T- and P-
violating) interactions or T-violating and P-conserving (C-odd
and P-even) interactions. Here we consider TRIV effects in
nuclear reactions which can be measured in the transmission
of polarized neutrons through a polarized target [1,2]. Such
reactions can be described within the framework of neutron
optics (for a discussion of neutron optics, see, for example,
Refs. [3,4].) The transmitted neutron wave propagates through
a medium according to a spin-dependent index of refraction.
The index of refraction depends on any applied magnetic field
and the polarization of the medium. Because the state of the
medium does not change, the polarization of the medium can
be treated as a classical field. Because the initial and final
propagation vectors of the neutron are the same, the initial and
final states of the neutron can be time reversed in an experiment
by rotation of the apparatus.

The neutron and nuclei are both composite systems and
any measurement of a T-odd process in a particular system
may have accidental cancellation of TRIV effects or might
be relatively insensitive to one or more of the many possible
sources of T-odd amplitudes. A search for TRIV in neutron
transmission expands the variety of nuclear systems. This
provides assurance that possible “accidental” cancellation
of T-violating effects owing to unknown structural factors
related to the strong interactions in the particular system
can be avoided. Taking into account that different models
of the CP-violation may contribute differently to a particular
T/CP-odd observable, which may have unknown theoretical
uncertainties, TRIV nuclear effects could be considered com-
plementary to electric dipole moment (EDM) measurements,
whose status as null tests of T invariance is more widely
known. Moreover, there is the possibility of an enhancement
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of T-violating observables by many orders of magnitude in
neutron transmission owing to the complex nuclear structure
(see, i.e., Ref. [5] and references therein).

For the observation of TRIV and parity-violating (PV)
effects, we consider neutron optical effects related to the T-odd
correlation, �σn · (�k×�I ), where �σn is the neutron spin, �I is the
target spin, and �k is the neutron momentum, which can be
observed in the transmission of polarized neutrons through a
polarized target. This correlation leads to a P-odd and T-odd
difference between the total neutron cross sections [2] �σ�T �P
for �σn parallel and antiparallel to �k×�I and to the neutron spin
rotation angle [1] φ �T �P around the axis �k×�I ,

�σ�T �P = 4π

k
Im(f↑ − f↓),

dφ �T �P
dz

= −2πN

k
Re(f↑ − f↓). (1)

Here f↑,↓ are the zero-angle scattering amplitudes for neutrons
polarized parallel and antiparallel to the �k×�I axis, respec-
tively; z is the target length and N is the number of target nuclei
per unit volume. These TRIV effects can be enhanced [6] by
a factor as large as 106. Similar enhancement was already
observed for PV effects related to (�σn · �k) correlation in neutron
transmission through nuclear targets. For example, the PV
asymmetry in the 0.734 eV p-wave resonance in 139La has
been measured to be (9.56 ± 0.35)×10−2 (see, for example,
Ref. [7] and references therein).

The PV and TRI-conserving difference of total cross
sections �σ�P in the transmission of polarized neutrons through
unpolarized targets which is proportional to the correlation
(�σ · �k) can be written in terms of differences of zero-angle
elastic scattering amplitudes with negative and positive neu-
tron helicities as

�σ�P = 4π

k
Im(f− − f+). (2)

One can calculate both TRIV and PV amplitudes using
distorted-wave Born approximation to first order in the parity
and time reversal violating interactions (see, for example,
Ref. [6]). Thus, the symmetry-violating amplitudes can be
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written as

t
f i
�P,�P �T = 〈�−

f |V�P,�P �T |�+
i 〉, (3)

where �±
i,f are the eigenfunctions of the nuclear T-invariant

Hamiltonian with the appropriate boundary conditions [8]:

�±
i,f =

∑
k

a±
k(i,f )(E) φk +

∑
m

∫
b±

m(i,f )(E,E′) χ±
m (E′) dE′.

(4)

Here φk is the wave function of the kth compound resonance
and χ±

m (E) is the potential scattering wave function in the
channel m. The coefficient

a±
k(i,f )(E) = exp(±iδi,f )

(2π )
1
2

(
	

i,f
k

) 1
2

E − Ek ± i
2	k

(5)

describes compound nuclear resonances reactions and the
coefficient b±

m(i,f )(E,E′) describes potential scattering and
interactions between the continuous spectrum and compound
resonances. (Here Ek , 	k , and 	i

k are the energy, the total
width, and the partial width in the channel i of the kth
nuclear compound resonance, E is the neutron energy, and
δi is the potential scattering phase shift in the channel i;
(	i

k)
1
2 = (2π )

1
2 〈χi(E)|V |φk〉, where V is a residual interaction

operator.)
Because it is already known that the dominant mechanism

of symmetry violation in heavy nuclei is the mechanism of
symmetry mixing in the compound nuclear resonances [6],
only first term in Eq. (4) is important to include for our
estimates. For the sake of simplicity we consider the case
of a two resonance approximations, which is reasonably
good for many heavy nuclei in the low-neutron-energy region
E ∼ 1–100 eV. Then, symmetry-violating amplitudes owing
to mixing of nearby s-wave and p-wave resonances can be
written as

〈p|t |s〉 = − 1

2π

(v + iw)
(
	n

s 	
f
p

) 1
2

(E − Es + i	s/2)(E − Ep + i	p/2)
ei(δn

s +δn
p),

(6)

and

〈s|t |p〉 = − 1

2π

(v − iw)
(
	n

p	n
s

) 1
2

(E − Es + i	s/2)(E − Ep + i	p/2)
ei(δn

p+δn
s ),

(7)

where v and w are the real and imaginary parts of the matrix
elements for PV and TRIV mixing between s- and p-wave
compound resonances

v + iw = 〈φp|V�P + V�P �T |φs〉, (8)

owing to V�P (PV) and V�P �T (TRIV) interactions. One can see
that PV and TRIV matrix elements are real and imaginary
parts of the same matrix element calculated with exactly
the same wave functions. Also, the difference of amplitudes
(f− − f+) for the PV effect in Eq. (2) is proportional to the sum
of the symmetry-violating amplitudes [Eqs. (6) and (7)] but
the difference of amplitudes (f↑ − f↓) for the PT -violating

effect in Eq. (1) is proportional to the difference of the same
amplitudes [Eqs. (6) and (7)]. This results in the same energy
dependencies for both PV and TRIV effects. Indeed, taking
into account all numerical factors, one gets

�σ�P �T = −2πGT
J

k2

w
(
	n

s 	
n
p(S)

) 1
2

[s][p]
[(E−Es)	p + (E−Ep)	s],

(9)

and

�σ�P = 2πGP
J

k2

v
(
	n

s 	
n
p

) 1
2

[s][p]
[(E − Es)	p + (E − Ep)	s],

(10)

where [s,p] = (E − Es,p)2 + 	2
s,p/4, GT

J and GP
J are spin

factors, and J is the spin of compound nucleus (see details in
Refs. [5,6,9]). One can see that owing to the similarity of these
two equations, the TRIV effect has the same enhancement on
resonance as the PV one.

Now one can find the relation between the values of the PV
and TRIV effects as

�σ�T �P = κ(J )
w

v
�σ�P , (11)

where

κ(I + 1/2) = − 3

23/2

(
2I + 1

2I + 3

)3/2( 3√
2I + 3

γ −
√

I

)−1

,

κ(I − 1/2) = − 3

23/2

(
2I + 1

2I − 1

)(
I

I + 1

)1/2

×
(

− I − 1√
2I − 1

1

γ
+ √

I + 1

)−1

. (12)

Here γ = [	n
p(I + 1/2)/	n

p(I − 1/2)]1/2 is the ratio of the
neutron width amplitudes for the different channel spins. In
general, the parameter γ may be obtained from γ -ray angular
correlation measurements in neutron-capture reactions on
resonance [6,10]. Using standard unitary transformations, one
can rewrite the parameter γ in the neutron spin (j = l ± 1/2)
representation scheme 	n

p(j )1/2 as

γ = −√
2	n

p(1/2)1/2 + 	n
p(3/2)1/2

	n
p(1/2)1/2 + √

2	n
p(3/2)1/2

. (13)

One can see from Eq. (11) that larger values of the parameter
κ(J ) increase the sensitivity of the TRIV difference of total
cross sections compared to the PV. One can therefore enhance
the sensitivity of TRIV experiments in polarized neutron
transmission by choosing a p-wave resonance in a nucleus
with favorable properties.

II. ENHANCEMENT FACTORS

Let us recall the main features of the enhancement factors
for TRIV and PV effects using as an example the P-odd
difference �σ�P of total cross sections. The quantity �σ�P
displays resonance peaks near both s- and p-wave resonances,
increasing its value by a factor of (D/	)2 with respect to an
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energy between the resonances (D = |Es − Ep|). These peaks
are caused by the resonant enhancement of the wave-function
amplitude in the region of the interaction. The physical
meaning of the resonance enhancement is similar to the
estimates of the lifetime of the compound nucleus. This
lifetime τ can be understood as the additional time that the
neutron spends in the range of the nuclear interaction owing to
the resonant component of the neutron-nucleus interaction. In
terms of the neutron-scattering phase shift δ(E), one can write

τ = 2
dδ(E)

dE
, (14)

where the resonant part of the phase shift for the ith resonance
is δ(E) � − arctan [(	i/2)/(E − Ei)] near the resonance en-
ergy. In the resonance state, the particle remains within the
nucleus for a longer time of the order of the resonance lifetime
∼(1/	). Therefore, it is natural to expect an enhancement of
symmetry violation proportional to the ratio of the resonance
lifetime (1/	) to the lifetime of compound nucleus away from
the resonance (	/D2), that is, to (D/	)2.

Let us consider the ratio P = �σ�P /(2σtot), where σtot

is the total cross section and consists of the s-resonance,
p-resonance, and the potential scattering contributions. The
quantity σtot also displays a marked resonance peak in the
vicinity of s-wave resonance, which compensates completely
for the corresponding peak of the numerator P . Therefore,
the quantity P is not enhanced in the vicinity of the s-wave
resonance and remains approximately on the same level as the
value between the resonances. In general, σtot is dominated by
the smooth background of the s-wave resonance and potential
scattering cross section in the vicinity of the p-wave resonance,
because for the neutron energies under consideration here
(kR) � 1 (R is the nuclear radius). Therefore, the resonance
peak of �σ�P near the p-resonance is retained in the quantity
P , which is enhanced here by a factor of (D/	)2,

P (Ep) ∼ 8
v

D

√
	n

p

	n
s

D2

	s	p

[
1 + σp + σpot

σs

]−1

. (15)

The presence of the “penetration factor”
√

	n
p/	n

s ∼ (kR)
in Eq. (15) is characteristic of all correlations observed in
low-energy nuclear reactions which arise owing to initial-state
interference and, consequently, are proportional to the neutron
momentum in the correlation (�σ · �k). It should be noted that P
might have the maximal magnitude

Pmax � v

D

D

	
= v

	
, (16)

when the total cross-section contributions from the s- and
p-resonances have similar magnitudes in the vicinity of the
p-wave resonance.

In addition to the resonance enhancement factor, there is
also the so-called “dynamic” enhancement factor, which is
connected with the ratio v/D. For a crude estimate of this
ratio, one can expand the compound resonance wave function
φ in terms of simple-configuration wave functions (e.g., one-
particle wave functions) ψi which are admixed to compound

resonances by strong interactions:

φ =
N∑

i=1

ciψi. (17)

Using the normalization condition for the coefficients ci and
the statistical random-phase hypothesis for matrix elements
〈ψi |W |ψk〉, we obtain

v = 〈φs |W |φp〉 = 〈ψi |W |ψk〉rmsN
−1/2. (18)

Here 〈ψi |W |ψk〉rms is the root-mean-square value of the matrix
elements between simple configurations. In the black-nucleus
statistical model, the number of components N is estimated in
terms of the average spacing D of compound resonances and
the average spacing D0 of single-particle states:

N ≈ D0/D. (19)

One can estimate N from the experimental data on neutron
strength functions because, in the statistical model of heavy
nuclei, the neutron strength function is proportional to N−1

(see, e.g., Ref. [11]). The value of N is about 106. Hence,

v

D
� 〈ψi |W |ψk〉rms

D0

√
N, (20)

where the ratio of the single-particle weak matrix element
to the single-particle level distance is about 10−7 (or the
usual scale of the nucleon-nucleon weak interaction). The
enhancement factor

√
N occurs as a result of the small level

distance between compound nuclear resonances (D−1 ∼ N )
and the random-phase averaging procedure (∼N−1/2).

Using the one-particle formula (18) for the weak matrix
element,

v � 2×10−4
√

D(eV), (21)

one can see that the maximal possible P -odd effect is estimated
to be

Pmax ∼ 10−4
√

D(eV)/	 � 10% (22)

for the case of medium and heavy nuclei, which have typical
values of the parameters D ∈ (1–103) eV, 	 ∈ (0.05–0.2) eV.

Using one-particle PV and TRIV potentials,

VP = G

81/2M
{(�σ · �p),ρ(�r)}+, (23)

VPT = iGλ

81/2M
{(�σ · �p),ρ(�r)}−, (24)

where G is the weak interaction Fermi constant, M is the
proton mass, ρ(�r) is the nucleon density, and �p is the
momentum of the valence nucleon, one can get a relation
between the ratio of matrix elements λ = w/v and the ratio of
nucleon coupling constants λ = g �P �T /g �P :

λ = λ

1 + 2ξ
. (25)

Here ξ ∼ (1–7) (for detailed discussions, see Refs. [12–15]),
with

ξ = 〈φp|ρ(�σ �p)|φs〉
〈φp|(�σ �p)ρ|φs〉 . (26)

065503-3



J. DAVID BOWMAN AND VLADIMIR GUDKOV PHYSICAL REVIEW C 90, 065503 (2014)

φs,p are the s,p resonance wave functions of the compound
nucleus. The value of the matrix element in numerator can be
estimated [12] using the operator identity 2 �p = iM[Hsp,�r] as

〈φp|ρ(�σ �p)|φs〉 � iρM

2
Dsp〈φp|(�σ �p)|φs〉. (27)

Here Hsp is the single particle nuclear Hamiltonian, Dsp is
the average single particle level spacing, and ρ is the average
value of the nuclear density. For the denominator of Eq. (26)
one can show

〈φp|(�σ �p)ρ|φs〉 = −〈φp|(�σ �r)
1

r

∂ρ

∂r
|φs〉

= 2iρ

R2
〈φp|(�σ �r)|φs〉, (28)

where R is the nuclear radius. Then we obtain

ξ = 1
4MDspR2 = 1

4π (KR), (29)

where

Dsp = 1

MR2
πKR, (30)

for square-well potential model [11], with K the nucleon
momentum in the nucleus. This leads to a value of ξ � 1.
Taking into account that theoretical predictions for λ vary from
10−2 to 10−10 for different models of CP violation (see, for
example, Ref. [16] and references therein), one can estimate a
range of possible values of the TRIV observable and relate a
particular mechanism of the CP violation to their values.

III. ABSENCE OF FINAL-STATE INTERACTIONS
IN FORWARD SCATTERING

The unique feature of the TRIV neutron optical effects
in forward neutron-nucleus elastic scattering [as well as the
similar effects related to the TRIV and parity-conserving
correlation �σn · (�k×�I ) · (�k · �I )] is the absence of false TRIV
effects owing to the final-state interactions (FSIs) (see, for
example, Ref. [5] and references therein). The possibility to
construct a null test of T invariance in this case is related to
the fact that neutron optical effects involve elastic scattering
at zero angle. The general theorem about the absence of FSI
for TRIV effects in elastic scattering has been proved first by
Ryndin [17] (see also Refs. [5,18–20]). Because this theorem
is very important, we give a brief sketch of the proof for the
case of the zero-angle elastic scattering following Refs. [5,17].

It is well known that the T-odd angular correlations in
scattering and in particle decays are not sufficient to establish
TRIV; i.e., they can have nonzero values in any process with
strong, electromagnetic, and weak interactions. For example,
the parity-conserving analyzing power in the scattering of
polarized particles �σ · (�ki×�kf ) is formally odd under time
reversal judged superficially according to the change in signs
of the vectors under a T transformation and is known to
be O(1) for many systems. This is because TRI, unlike
parity conservation, does not provide a constraint on a single
amplitude for any process, but rather relates the amplitudes
for two different processes: for example, direct and inverse
channels of reactions. We can relate T-odd correlations to

TRIV interactions in such processes only in the first-order Born
approximation to the scattering amplitude: higher-order pro-
cesses can be sources of “final-state effects” which introduce
(formally) T-odd correlations from T-invariant interactions.
Indeed, the unitarity condition for the scattering matrix in
terms of the reaction matrix T , which is proportional to the
scattering amplitude, can be written as [21]

T † − T = iT T †. (31)

The first Born approximation can be used when the right side
of the unitarity equation is much smaller than the left side and
results in a Hermitian T matrix

〈i|T |f 〉 = 〈i|T ∗|f 〉, (32)

which, with TRI condition

〈f |T |i〉 = 〈−i|T | − f 〉∗, (33)

leads to the constraint on the T matrix as

〈f |T |i〉 = 〈−f |T | − i〉∗. (34)

This condition forbids T-odd angular correlations, as is the case
with the P-odd correlations when parity is conserved. (Here
the minus signs in matrix elements mean the opposite signs
for particle spins and momenta in the corresponding states.)
In the case of forward scattering relevant for neutron optics,
which corresponds to zero-angle elastic scattering, the initial
and final states coincide (i = f ). Combined with the TRI
condition (33), this condition gives Eq. (34) without the
violation of unitarity (32). Therefore, in this case, FSI cannot
mimic T-odd correlations originated from TRIV interactions.
Therefore, an observation of a nonzero value of TRIV effects
in neutron transmission directly indicates TRIV, exactly like
in the case of neutron EDM [22].

To measure TRIV effects for neutron propagation with the
simple changing of neutron and/or nucleus polarizations is
unpractical because it requires unobtainably precise control
for many parameters which can contribute to systematic errors
(see, for example, Refs. [23,24]. The approach to eliminate this
difficulties was suggested in Ref. [20] (see also Refs. [25–27]),
which are implemented and discussed later in this paper.

IV. TRIV TRANSMISSION THEOREM

We have shown in the previous section that a null test of T
invariance can, in principle, be constructed from transmission
differences involving the forward elastic amplitudes in neutron
optics. How best to conduct a practical experiment that makes
use of the full potential of this null test for T invariance is a
separate question. We now start to address this question in the
rest of the paper.

Many authors have considered this question and have
outlined various experimental strategies in the literature. The
first impulse one might have when presented with the triple
correlation of vectors of interest in the forward-scattering
amplitude is that one can simply reverse the sign of whatever
vectors are most convenient experimentally and measure the
resulting cross-section difference. Because it is typically much
easier to flip a spin without changing other aspects of the
apparatus, the great majority of these papers have analyzed
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procedures in which either the neutron spin or the target spin
are reversed. Unfortunately, detailed considerations of these
schemes have shown that this approach is very sensitive to the
alignment of the relevant vectors which are very difficult to
control to the required precision.

In this paper we advocate an experimental approach whose
essential reversal involves not only a spin flip but also a
rotation of the apparatus. This approach to the realization of the
experiment, which we advocate below, has also been suggested
before in the literature [25,26]. To clarify why we believe
that this approach can be superior to many of the previous
schemes proposed in the literature, we first prove a theorem for
polarized neutron motion in a medium in the presence of any
external fields (neutron optical, magnetic) whose interaction
with the neutrons can be treated in the classical limit.

Systematic errors in a transmission test of T invariance can
arise from one or more of the following sources: imperfect
alignment of polarizer, target, and analyzer; differences in the
polarizer and analyzer; inhomogeneity of the target medium;
rotations of the neutron spin owing to the holding field
of a polarized target; and the interaction of the neutron
spin with the target spin from the spin dependence of the
strong interaction (sometimes referred to in the literature as
nuclear pseudomagnetism) [28,29]. Masuda [26,30,31] and
Serebrov [32] have proposed experiments that involve adding
additional spin flips to the basic polarizer and polarized target
apparatus. The difficulty in these approaches is that each
added spin flip increases the number of parameters needed
to characterize the apparatus by three: two alignment angles
and an analyzing power. Lamoreaux and Golub [23] argue that,
“...it will be necessary to develop new methods to make very
precise absolute measurements of the neutron-spin direction. It
seems hopeless to devise a experiment that would convincingly
measure TRIV in the presence of such a wide variety of
potential sources of false effects.”

To resolve this problem we consider a configuration of
the apparatus related to the approach originally proposed by
Kabir [20,33], which is shown in Fig. 1, where the polarizer
and analyzer prepare and select spin perpendicular to neutron
momentum �k. The target is polarized perpendicular to both �k
and the polarizer direction.

To describe the transmission difference between these
two configurations with both the polarizer and the analyzer
reversed, we can use the equation of motion for the neutron spin
as the neutron propagates through a medium and an external
magnetic field, �B, given by Schrödinger’s equation with the
effective Hamiltonian (Fermi potential),

H = 2π�
2

mn

Nf − μ

2
(�σ · �B), (35)

where mn is the neutron mass, N is the number of scattering
centers per unit volume, f is the forward elastic scattering
amplitude, and �σ are the Pauli spin matrices. (For discussion of
the conditions under which Eq. (35) applies, see Ref. [23] and
references therein.) We can write f as the sum of four terms,

f = a0 + b0(�σ · �I ) + c0(�σ · �k) + d0(�σ · [�k×�I ]), (36)

where I is the polarization of the target medium, and
quantities other than the neutron spin �σ are treated as classical

Collimator
1

Collimator
2

guide
field, Bg

target
polarization, I
field, Bt

polarizer/
analyzer

insensitive
detector

unpolarized
source

target
polarization, -I
field, -Bt

guide
field, -Bg

polarization

FIG. 1. (Color online) Apparatus to search for time reversal sym-
metry violation. The collimators, polarizer/analyzer, and polarized
target are mounted on a turntable that rotates about a vertical axis.
In the forward configuration, the neutrons first pass through the
polarizer/analyzer, then through the target, and then are detected.
In the reversed configuration the neutrons pass through the polarized
target, then through the polarizer/analyzer, and then are detected.
The dashed line is the horizontal axis of symmetry of the apparatus.
The solid line is a neutron trajectory. The collimators select the same
bundles of trajectories in the two configurations. The signs of the
magnetic fields, the target polarization, and the polarizer/analyzer
direction are all opposite in the two configurations.

fields. Neutron spin-optics tests of TRIV have the goal of
measuring d, which is the only term that originates from a
TRIV interaction. Terms a and b give the strengths of the
spin-independent and strong spin-spin (pseudomagnetic)
interactions, while terms c and d give the degree of PV
and TRIV arising from symmetry mixing in the neutron
resonances in the target medium.

We now show that if �B and �I are reversed, the forward
and reversed transmissions for the apparatus configuration
presented in Fig. 1 are equal if d = 0. Note carefully that,
in this proposed approach, the magnetic field �B is reversed,
but the orientation of the target polarization �I with respect to �B
is unchanged. Therefore, one can rewrite Hamiltonian (35) as

H = a + b(�σ · �I ) + c(�σ · �k) + d(�σ · [�k×�I ]), (37)

where a = 2π�
2

mn
Na0, b = 2π�

2

mn
Nb0 − (μB)/2, c = 2π�

2

mn
Nc0,

and d = 2π�
2

mn
Nd0. The neutron beam phase space acceptance

of the apparatus is defined by a pair of collimators mounted
on a rigid rotatable platform with the polarizers (analyzer)
and target as shown in Fig. 1. Rotating the apparatus by an
angle π about an axis perpendicular to the symmetry axis
of the collimators reverses the sign of �k for neutrons. We
assume that the product of the neutron source strength and
neutron detector efficiency is symmetric with respect to the
plane of the symmetry axis and the rotation axis. Then, the
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time evolution operator for the forward neutron transmission,
UF , gives the relationship between the initial and final spin
wave functions for a neutron that propagates from the source
through the apparatus and ends on the detector.

Let us consider the case when we have only TRI interac-
tions. Then we divide the apparatus into m slabs and write the
time evolution operator UF as a time ordered product of the
evolution operators for each of the slabs:

UF =
m∏

j=1

exp

(
−i

�tj

�
HF

j

)
= α + ( �β · �σ ). (38)

Here HF
j is the Hamiltonian from Eq. (37) evaluated at slab j ,

and α and �β contain only TRI terms, because we temporarily
assume that the TRIV parameter d = 0. In the expression for
the reverse evolution operator, UR , the time ordering of the
product and the signs of the spin-dependent terms in HR

j

are reversed from those in HF
j . Then, the reverse evolution

operator is

UR =
1∏

j=m

exp

(
−i

�tj

�
HR

j

)
= α − ( �β · �σ ). (39)

The fact that the signs of the spin-dependent terms in the
reverse evolution operator are changed eliminates potential
systematic effects which may mimic TRIV effects in scattering
experiments. This analysis agrees with Kabir’s result about
the possibility to unambiguously [20] measure TRIV effects
in neutron scattering. Because the relation asserted in Eq. (39)
between forward and reverse evolution operators is very impor-
tant for further consideration and not obvious, we prove it here.

First, let us consider a two-slab medium. The forward and
reverse evolution operators are

UF = U
(1)
F U

(2)
F = exp

(
−i

�t1

�
HF

1

)
exp

(
−i

�t2

�
HF

2

)
,

(40)

UR = U
(2)
R U

(1)
R = exp

(
−i

�t2

�
HR

2

)
exp

(
−i

�t1

�
HR

1

)
.

For the case of infinitesimally small widths of the slabs,
each exponential operator in the above equations can be written
as

U
(j )
F =

(
1 − i

�tj

�
HF

j

)
= F (j ) + ( �A(j ) · �σ ),

U
(j )
R =

(
1 − i

�tj

�
HR

j

)
= F (j ) − ( �A(j ) · �σ ), (41)

correspondingly, where

F (j ) = 1 − i
�tj

�
a(j ),

�A(j ) = −i�tj

�
(b(j ) �I + c(j )�k). (42)

These one-slab evolution operators have exactly the same
structure as the operators in Eqs. (38) and (39), provided
F (j ) → α(j ) and �A(j ) → �β(j ). Substitution into Eq. (40) leads
to exactly the same form as for Eqs. (38) and (39), again,

with

α = α(1)α(2) + ( �β(1) · �β(2)),

�β = α(1) �β(2) + α(2) �β(1) − [ �β(1)× �β(2)]. (43)

Then, applying mathematical induction, one can prove the
proposition in the general (multislab) case as is given in
Eqs. (38) and (39). Applying this result for the calculations
of the forward and reverse transmissions, TF and TR , for our
experimental setup, we obtain the relation

TF = 1
2 Tr(U †

F UF )

= α∗α + ( �β∗ �β)

= 1
2 Tr(U †

RUR) = TR, (44)

which we call TRIV transmission theorem. This theorem
shows that if d = 0 and whole apparatus is rotated with �B
and �I being reversed, then the transmissions of (unpolarized)
neutrons through the apparatus in opposite directions are equal.

The proof of TRIV theorem makes no assumption con-
cerning the geometrical symmetry of the classical fields and
materials of the apparatus. Therefore, any deviation from
the equality of the forward and reversed transmissions in
Eq. (44) is a clear manifestation of the existence of TRIV
interactions [nonzero d coefficient in Eq. (37)]. It should be
noted that for nonzero d coefficient the difference between
TF and TR transmissions arises from both spin-dependent and
spin-independent parts of the evolution operators, which is in
agreement with Kabir’s [20,33] conclusion about the existence
of a number of possible unambiguous tests.

V. EVALUATION OF A MODEL EXPERIMENT

No TRIV experiment in neutron optics has been done to
date: Polarized targets of materials that have compound nuclear
resonances that exhibit large PV asymmetries are not easy to
construct. It has proved difficult to devise an experiment that
would eliminate false effects that arise from combinations of
instrumental imperfections and TRI interactions of the neutron
spin with materials and external fields. We believe that we have
made progress on the second issue with our TRIV transmission
theorem. Considerable progress has also been made on the
first problem: groups at Japan’s National Laboratory for High
Energy Physics [34,35], at Kyoto University [36], and at Paul
Scherrer Institute in Switzerland [37] have achieved substantial
polarizations of 139La nuclei in lanthanum aluminate crystals
as large as 10 cc. Thus, the 0.734 eV p-wave resonance
in 139La, which has a parity-odd longitudinal transmission
asymmetry of 9.5% [38], is a good candidate for TRIV studies.

To polarize the epithermal neutron beam for the proposed
experiment based on the TRIV transmission theorem, we can
use cells of polarized 3He as neutron polarizers and analyzers.
The direction of the 3He polarization in these polarizers,
based on spin-exchange optical pumping, is parallel to the
external magnetic field and will reverse direction when the field
direction is reversed adiabatically. Note that polarizers and
analyzers based on ferromagnetic materials can be difficult to
use in this experiment because hysteresis effects prevent their
precise reversal. Also, because Earth’s magnetic field cannot be
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FIG. 2. (Color online) Pseudomagnetic field in lanthanum
aluminate crystals.

reversed, it must be compensated for or shielded in this experi-
mental approach. It is also essential that the values of the clas-
sical fields be stable in time. Magnetic field strengths and the
polarizations of 3He and the target medium can be accurately
monitored using nuclear-magnetic-resonance techniques.

For the target we use 139La nuclei in lanthanum aluminate
crystals which have a very large PV effect in the vicinity of
0.734 eV resonance. Using the experimentally achieved value
of 139La polarization of 47.5% combined with the existing
knowledge of the spin dependence of the polarized neutron-
scattering amplitudes on polarized 139La nuclei in the J + 1/2
and J − 1/2 spin channels, we can estimate [28,39] the size
of the pseudomagnetic field inside the crystal as a function
of neutron energy (see Fig. 2); the pseudomagnetic field is
opposite the applied field. This gives an advantage for using
lanthanum aluminate crystals, because values of TRIV effects
in neutron optics, in general, are inverse proportional to the
sum of magnetic and pseudomagnetic fields [39,40].

As an example of the statistical accuracy that can be
achieved with present spallation neutron sources, we make
a rough estimate of the statistical uncertainty in the T-odd
cross section that could be achieved in 107 s of data collection
on the water moderator of Flight Path 16A at the Spallation
Neutron Source at Oak Ridge National Laboratory. At the
present time this beamline has not been instrumented. We
assume a proton current of 1.4 mA at 1 GeV proton energy.
We carry out the estimate for the 0.734-eV resonance in 139La.
We assume that the target consists of one neutron interaction
length of dynamically polarized lanthanum aluminate and that
the neutron beam is polarized by a one-interaction-length 70%
polarized 3He spin filter.

We were unable to find a calculation or measurement of
the neutron flux for FP16A. We estimated the neutron flux
using the measurement of the flux from the water moderator
of Flight Path 2 at the Los Alamos Neutron Scattering Center
at the Los Alamos National Laboratory. Roberson et al. [41]
found that the moderator brightness was well described by the
expression

d3N

dAdtd�
= k

�E

E

(
E

1 eV

)γ (
i

e

)
(neutrons cm−2 s−1 sr−1),

(45)

with k = 5.8×10−3 and γ = 0.1. E is the neutron energy, i is
the proton current, e is the charge quantum, A is the area of the

moderator that is viewed, �E is the range of neutron energies
accepted, and � is the solid angle acceptance of the apparatus.
We assume that the neutron production rate is proportional
to the proton energy and increase k by 1000/800, the ratio of
proton energies. We assume that Spallation Neutron Source
(SNS) will operate at 1.4 MW and i = 1.4 mA.

We assume that A = 100 cm2 and that the acceptance of
the apparatus is defined by a 10-cm-diameter polarized target
located 15 m from the moderator: � = 3.5×10−5 sr. We set
�E = 0.045 eV to cover the total width of the resonance.
The neutron flux within the 139La p-wave resonance width is
dN/dt = 7.8×107 neutrons/s.

To determine the uncertainty in the TRIV asymmetry
we must make some assumptions concerning running time,
source, polarizer, polarized target, detector, and cross sections.
We assume a running time of 107 s. We use a peak value of
the resonance cross section of 2.9 b, the potential scattering
cross section of 3.1 b, and the capture cross section at the
resonance energy of 1.6 b. We use cross sections of aluminum
and oxygen of 3.8 and 1.4 b [42]. We calculate that the neutron
polarization is 46% and the transmission of the polarizer is
46%. We assume a one-interaction-length LaAlO3 target. We
further reduce the transmission by a factor of 2 to account for
various windows. The transmission of the apparatus for 0.7 eV
neutrons is then estimated to be 11%. The transmitted beam
intensity in �E is flux =0.86×107 neutrons/s. The fractional
uncertainty in TRIV cross section is given by

δσ

σ
= 1√

flux×time

∑
σk

σp

. (46)

(The sum runs over all the cross sections given above.) If
we adopt a fractional PV asymmetry for the resonance of
9.5% [38], we obtain an uncertainty in λ and a ratio of the
TRIV to PV asymmetries of 6.0×10−6.

VI. DISCOVERY POTENTIAL

As noted in the Introduction, the question of how sensitive
any T-odd observable is to a particular source of T violation in
the nucleon system is theoretically nontrivial, owing in part to
our lack of quantitative understanding of many of the relevant
aspects of the strong interaction. As an example, to set the
scale for the potential sensitivity of a TRIV search in neutron
transmission, we start first with a case in which a quantitative
analysis is possible and has already been performed: the
neutron-deuteron system. Using the results of the recent
calculations of PV and TRIV effects in neutron deuteron
scattering [43,44], one can calculate the parameter λ for this
reaction and compare it to the case of the complex nuclei.
Let us consider the ratio of the TRIV difference of total cross
sections in neutron deuteron scattering given in Ref. [44],

P�T �P = �σ�P �T
2σtot

= (−0.185 b)

2σtot

[
ḡ(0)

π + 0.26ḡ(1)
π − 0.0012ḡ(0)

η

+ 0.0034ḡ(1)
η − 0.0071ḡ(0)

ρ + 0.0035ḡ(1)
ρ

+ 0.0019ḡ(0)
ω − 0.000 63ḡ(1)

ω

]
, (47)
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to the corresponding PV difference [43],

P�P = �σ�P
2σtot

= (0.395 b)

2σtot

[
h1

π + h0
ρ(0.021) + h1

ρ(0.0027)

+h0
ω(0.022) + h1

ω(−0.043) + h
′1
ρ (−0.012)

]
.

(48)
Here we use the one-meson exchange model, known as the
Desplanques, Donoghue, and Holstein (DDH) model for PV
nucleon-nucleon interactions, to calculate both effects; in
the above expressions, ḡ and h are meson- nucleon TRIV
and PV coupling constants, correspondingly (see, for details,
Refs. [43,44]). The dimensionless numerical constants multi-
plying these couplings come from the detailed evaluation of
n-D scattering given the measured properties of the strong NN
interactions. These factors naturally become progressively
more difficult to calculate for heavier nuclei. From these
expressions, one can see that, in this case, contributions from
pion exchange are dominant for both TRIV and PV parameters.
Taking into account only the dominant pion contributions, one
can estimate λ as

λ = �σ�T �P
�σ�P

� (−0.47)

[
ḡ(0)

π

h1
π

+ (0.26)
ḡ(1)

π

h1
π

]
. (49)

This result is in reasonable agreement with an estimate for
complex nuclei [12].

We can attempt to relate the parameter λ to the existing
experimental constrains obtained from EDM measurements,
with the understanding that even such a relative comparison is
highly model dependent. The CP-odd coupling constant ḡ(0)

π

can be related to the value of the neutron EDM dn generated
via a π loop in the chiral limit [45]. Using the experimental
limit [46] on dn, one can estimate ḡ(0)

π < 2.5×10−10. The
constant ḡ(1)

π can be bounded using the constraint [47] on the
199Hg atomic EDM as ḡ(1)

π < 0.5×10−11 [48].
The comparison of the λ parameter with the constraints

on the coupling constants from the EDM experiments gives
us the opportunity to estimate the possible sensitivity of
TRIV effects to the value of TRIV nucleon coupling constant,
which we call a “discovery potential” for neutron-scattering
experiments [49,50], because it shows a possible factor for
improving the current limits of the EDM experiments. Taking
the DDH “best value” of h1

π ∼ 4.6×10−7 and the nuclear
enhancement factors estimated above, and assuming that the
parameter λ could be measured with an accuracy of 10−5

on complex nuclei, one can see from Eq. (49) that the
existing limits on the TRIV coupling constants could be
improved in neutron-optics transmission measurements using
existing neutron sources by two orders of magnitude. To
obtain Eq. (49), we assumed that the π exchange contribution
dominates the PV effects. However, there is an indication
[51–53] that the PV coupling constant h1

π could well be much
smaller than the “best value” of the DDH. If this hint were
confirmed by the −→n + p → d + γ experiment, the estimate
for the sensitivity of λ to the TRIV coupling constant would be
increased, as can be seen from Eqs. (47)–(49), because in most
theoretical estimates the parameter λ is a ratio of TRIV to PV
pion coupling constants (λ). (Note that, to our knowledge, there
is absolutely no fundamental reason why the an effective TRIV
pion coupling should be suppressed if the PV pion coupling is

suppressed: Barton’s theorem, for example, suppresses neutral
pion exchange in PV meson-nucleon interactions but not in
TRIV interactions.) This increased sensitivity combined with
a possible choice of the target with large spin factor (13) might
increase the relative values of TRIV effects by two orders of
magnitude, and as a consequence, the discovery potential of
the TRIV experiments could be about 104.

The TRIV effects in neutron transmission through a nuclei
target are unique TRIV observables being free from FSI and
constitute null tests for time reversal invariance, as do EDM
experiments. These TRIV effects can be enhanced on certain
p-wave epithermal neutron resonances by about a factor
of 106 owing to the nuclear enhancement well-understood
mechanisms discussed above. In addition to this resonant
enhancement in complex nuclei, the sensitivity to TRIV inter-
actions in these effects might be structurally enhanced by about
102 if PV π -nucleon coupling constant is less than the “best
value” DDH estimate. Therefore, these types of experiments
with high-intensity neutron sources have a discovery potential
of about 102–104 for the improvement of the current limits on
the TRIV interaction obtained from the EDM experiments.

Another important feature of these experiments is the
complementarity to other searchers for TRIV. To illustrate
this, we use results of the calculations of neutron and proton
EDMs [54] and EDMs of few-body nuclei [55] presented
in terms of TRIV meson-nucleon coupling constants. Then,
assuming that TRIV pion, ρ, η, and ω meson coupling
constants have about the same order of magnitude, we can
write the main contributions to these EDMs in e fm units as

dn � 0.14
(
ḡ(0)

π − ḡ(2)
π

)
, (50)

dp � 0.14ḡ(2)
π , (51)

dD � 0.22ḡ(1)
π , (52)

d3He � 0.2ḡ(0)
π + 0.14ḡ(1)

π , (53)

d3H � 0.22ḡ(0)
π − 0.14ḡ(1)

π , (54)

4 2 0 2 4

4

2

0

2

4

g0

g2

FIG. 3. The dependence of neutron EDM (solid line), 3He EDM
(dot-dashed line), 3H EDM (dotted line), and parameter λ on TRIV
π mesons isoscalar and isotensor coupling constants.
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FIG. 4. The dependence of neutron EDM (solid line), 3He EDM
(do-dashed line), 3H EDM (dotted line), and parameter λ on TRIV π

mesons isoscalar and isovector coupling constants,

where ḡ(T )
π is pion-nucleon TRIV coupling constant with

isospin T . The comparison of these results with Eq. (47)
shows that all these observable have different sensitivities to
the models of TRIV. This becomes even more pronounced if we
relax the assumption about values of TRIV coupling constants.
These sensitivities of TRIV neutron-scattering effect and
neutron and light nuclei to TRIV π -meson coupling constants
are shown Figs. 3 and 4. Therefore, one can see that even for
the simplest case with the dominance of TRIV pion-nucleon
coupling constants, it is necessary to measure at least three
independent TRIV effects to constrain the source of CP
violation.

VII. CONCLUSIONS

We presented the summary of theoretical description of the
TRIV effects in neutron transmission through a nuclei target
and demonstrated that these TRIV observables are free from
FSI, and, as a consequence, are of the same quality as the
EDM experiments. The neutron transmission effects can be
enhanced by about 106 owing to the nuclear enhancement
factor. In addition to this enhancement, the sensitivity to TRIV
interactions in these effects compared to observed PV effects
might be enhanced by about 102 if the PV π -nucleon coupling
constant is less than the “best value” DDH estimate and by
choosing a target with large partial neutron width related to
TRIV observables.

The main result of this paper is the proof of the TRIV
transmission theorem showing that the transmission of neu-
trons through an apparatus with arbitrary spin-dependent
interactions that arise from time-reversal-invariant interactions
is unchanged when the signs of all classical fields that
interact with the neutron spin are reversed. We have used
this result to propose a specific experimental procedure to
test time reversal invariance, which is, in principle, free of
false asymmetries arising from combinations of time reversal
invariant interactions and asymmetries in the apparatus. These
types of experiments with high-intensity neutron sources have
a discovery potential of about 102–104 for the improvement of
the current limits on the TRIV interaction obtained from the
EDM experiments.
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