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Parametric enhancement of flavor oscillation in a three-neutrino framework
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When neutrinos travel through matter with a periodic density profile, the neutrino oscillation probability
can be enhanced if certain conditions are satisfied. In a two-neutrino framework, the condition for parametric
resonance is known. Herein, we consider the analogous parametric resonance condition within the context of
a full three-neutrino framework with two oscillation scales. For energies in the range of hundreds of MeV to
a few GeV, we find that neutrino oscillation can be parametrically enhanced if two approximate relations are
satisfied. The first is similar to the two-neutrino parametric resonance condition while the second involves the
other oscillation scale. Treating the Earth’s density as piecewise constant, we show that oscillations in this energy
range can be enhanced between two- and threefold.

DOI: 10.1103/PhysRevC.90.065502 PACS number(s): 14.60.Pq

I. INTRODUCTION

Now that the existence of neutrino mass is firmly estab-
lished, experimentalists are tasked with the job of improving
the precision of our knowledge of the parameters which
characterize three-flavor neutrino oscillations: three mixing
angles, one Dirac charge-parity (CP) phase, and two mass-
squared differences. Though the CP phase is ill constrained and
the ordering of the mass eigenstates is unknown, global anal-
yses indicate that the three mixing angles and mass-squared
differences are known to a precision on the order of a few
percent [1,2]. Before reaching such a level of precision, a single
oscillation experiment could be reasonably understood within
the context of two neutrinos, but the improved precision of
accelerator neutrino experiments [3,4] requires one to consider
terms beyond the effective two-neutrino approximation.

Since the full three-neutrino spectrum must be considered
in current analyses of oscillation experiments, we wish to
examine the phenomenon of parametric enhancement of flavor
oscillation in a three-neutrino framework. Though matter is
largely transparent to neutrinos, the oscillation parameters
for neutrinos traveling through matter are effectively mod-
ified in an energy and density dependent way [5,6]. If the
matter through which neutrinos travel has the appropriate
periodic density profile, then the flavor oscillation probability
can be parametrically enhanced [7,8]. This phenomenon of
parametrically enhanced neutrino oscillations has an analog in
mechanical systems. For mechanical oscillators, the amplitude
of oscillation can be enhanced if the oscillation parameters
change at roughly twice the natural frequency of the oscillator.
As an example, a pendulum whose support oscillates vertically
at twice the pendulum’s natural frequency will increase in
amplitude no matter how small the initial amplitude [9].

Since its initial discovery, parametric enhancement of
neutrino oscillations has been extensively studied through both
analytical and numerical means [7,8,10–24]. In Refs. [11,12],
it was determined that the Earth’s interior might provide a
suitable matter density profile for which to realize parametric
resonance. As a first approximation, the Earth’s density can
be divided into two regions: a high density core surrounded
by a lower density mantle [25]. Neutrino trajectories which
pass through the core sample one and one-half periods of a

periodic matter profile. Despite traveling through fewer than
two full periods, the Earth’s density profile can parametrically
enhance the oscillation probability of atmospheric neutrinos
[15,19–24].

A periodic potential consisting of two piecewise constant
regions of differing densities is often referred to as a “castle-
wall” potential because, when plotted, the function resembles
these walls’ crenellation. In a two-neutrino scheme, exact
analytic solutions through such castle-wall profiles exist, and
these results serve as a fundamental tool for understand-
ing parametric enhancement for core-crossing trajectories
[8,14,16]. Relatively exhaustive semi-analytic and numerical
studies for neutrino oscillations in the Earth were done in
Refs. [20,21] where resonance regions are shown to follow
from generalized amplitude and phase conditions. To consider
analytically parametric resonance in a three-neutrino frame-
work, one typically introduces relevant approximations as a
means to reduce the problem to an effective two-neutrino sys-
tem. In this manner, one may incorporate the Dirac CP phase
into the analysis, something not possible in a pure two-neutrino
theory. Using these techniques, the authors of Refs. [21,22]
study the consequences of CP violation to the oscillation
probability for multi-GeV neutrinos traveling through the
Earth; particular attention is paid to the interference between
oscillations due to the �21 and �31 mass-squared differences.
In Ref. [24], the authors use approximations relevant for
sub-GeV atmospheric neutrinos to study the impact of CP
violation on the parametric resonance condition for neutrinos
traveling through the Earth.

The exact solution for the parametric resonance condition
in the two-neutrino framework with the castle-wall potential
is tractable because simple expressions exist for the single
effective mixing angle and mass-squared difference in matter.
This makes it rather easy to determine the time evolution
of a neutrino state through a region of constant density.
Using well known identities for Pauli matrices, the time
evolution operator through constant density matter can simply
expressed, and then, the time-evolution operator through one
period of a castle-wall profile can be expressed in a compact
analytical form. In a three-neutrino framework, this is not the
case. Expressions do exist for the effective two independent
mass-squared differences and three mixing angles in matter
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of constant density, but they are rather opaque. Furthermore,
compact expressions for the time evolution of a neutrino state
through matter of constant density do not exist.

In order to study three-neutrino parametric resonance,
we will develop a relatively simple expression for the time
evolution operator relevant for neutrinos traveling through
matter of constant density. By making our matter Hamiltonian
traceless, we can express it in terms of the Gell-Mann
matrices, and then through exponentiation, we are able to
write the time-evolution operator as a linear combination of the
identity and the Gell-Mann matrices with coefficients given by
elements of the Hamiltonian. We will then use this formulation
to consider the propagation of neutrinos through a varying
density profile in pursuit of the parametric resonance condition
within a full three-neutrino framework. For a castle-wall
profile, we will first consider active mixing amongst two of the
neutrinos, effectively recovering the two-neutrino results from
Refs. [8,14,16]. Then, we continue to consider the more gen-
eral three-neutrino picture. We conclude with an application
of the results to neutrinos which traverse the Earth’s core.

II. OSCILLATION IN MATTER OF CONSTANT DENSITY

Neutrinos produced in weak interactions have definite
flavor: electron, muon, or tau; yet these flavor states are
superpositions of states of definite mass mj . If one such mass
state νj is an energy eigenstate, then it evolves, in vacuum,
according to

i∂tνj = Ejνj , (1)

where we employ natural units, c = � = 1. Since neutrinos
are ultrarelativistic, we approximate the energy as Ej ≈ p +
m2

j /2E. The flavor states νσ (with σ = e,μ,τ ) are related to the
mass eigenstates via a unitary mixing matrix U , νσ = Uσjνj

(summation implied). A column vector, ν, representing the
flavor states then evolves, in vacuum, according to

i∂tν = 1

2E
UMU †ν, (2)

where we define the matrix M = diag(m2
1,m

2
2,m

2
3). To sim-

plify notation, we have subtracted from the Hamiltonian a
multiple of the identity, p1. This common momentum results
in an overall unmeasurable phase, so we omit it.

Defining the vacuum Hamiltonian H0 := 1
2E

UMU †, the
time evolution of a flavor state is ν(t) = U(t)ν(0), where the
time evolution operator is given by U(t) := exp[−iH0t]. An
explicit expression for the time evolution operator can be easily
achieved by rotating the Hamiltonian to the mass basis

U(t) = U

⎛
⎜⎝

e−im2
1L/2E 0 0

0 e−im2
2L/2E 0

0 0 e−im2
3L/2E

⎞
⎟⎠ U †. (3)

With this expression, we can compute the neutrino flavor
oscillation probability.

Supposing that a source produces neutrinos of σ -flavor,
ν(0) = νσ , the probability that they are detected as ρ-flavor at
a time t is given by

Pσρ(t) = |〈νρ |ν(t)〉|2 = |[U(t)]ρσ |2. (4)

Typically, the oscillation probability is expressed in terms of
the baseline L between the source and detector; with c =
1, then the travel time and baseline are related via L = t .
Using Eq. (4), we explicitly compute the vacuum oscillation
probability in terms of the elements of the mixing matrix and
the neutrino masses:

Pσρ(L) = δσρ − 4
3∑

j>k
j,k=1

Re
[
C

σρ
jk

]
sin2(ϕjk)

+2
3∑

j>k
j,k=1

Im
[
C

σρ
jk

]
sin(2ϕjk), (5)

with C
σρ
jk := UσjU

∗
σkUρkU

∗
ρj and ϕjk := �jkL/(4E), where

the neutrino mass-squared differences are �jk := m2
j − m2

k . It
is worth noting that the oscillation probability depends on only
the differences in the square of the mass eigenstates. Again,
this reflects the fact that adding a multiple of the identity to
the Hamiltonian in Eq. (2) does not impact the oscillation
probability.

A general 3×3 unitary matrix can be parametrized with nine
real parameters: three mixing angles, which would parametrize
an orthogonal matrix, and six phases. Not all of these phases
are physically meaningful, and in fact, only one phase is of
consequence in three-flavor oscillation. Hence, to describe the
oscillation of three neutrinos, the mixing matrix U can be
parametrized in terms of four real quantities; one convenient
parametrization is

U = U1(θ23)DδU2(θ13)U3(θ12), (6)

where Uj (θ ) is a proper rotation by angle θ about the j th
axis and Dδ = diag(1,1,eiδ) [26]. This is different from, but
equivalent to, the standard parametrization found in Ref. [27].
It is the goal of neutrino oscillation experiments to measure
the six independent parameters which characterize neutrino
oscillations: three mixing angles θjk , the CP phase δ, and two
of the mass-squared differences �jk . Present values for the
parameters can be found in Refs. [1,2], global analyses of the
world’s data.

Matter, even if it is relatively dense, is largely transparent
to neutrinos. Despite this fact, the presence of background
matter can modify the neutrino oscillation probability [5,6].
Neutrinos forward scatter off the background matter through
either the charged-current or neutral-current weak interaction.
The forward scattering amplitude mediated by the neutral
current is independent of neutrino flavor. To account for this
interaction, we add to the vacuum Hamiltonian an effective
potential, but since this potential is merely a multiple of the
identity, it will not impact the neutrino oscillation probability.
On the other hand, only electron (anti)neutrinos can forward
scatter off the background electrons via the charged current;
these charged current interactions do impact the oscillation
probability. We include this effective potential in the evolution
equation

i∂tν =
[

1

2E
UMU † + V(x)

]
ν. (7)
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The operator V(x) = diag(V (x),0,0) exclusively acts on the
electron flavor with a magnitude V = √

2GF Ne(x), where GF

is the Fermi coupling constant and Ne is the local electron
number density. We note that, for antineutrinos, we need to
change the algebraic sign of this potential and the CP phase δ.

In matter of constant density, the Hamiltonian is indepen-
dent of position H = 1

2E
UMU † + V , and the time evolution

of the neutrino state is, again, simply ν(t) = exp[−iH t]ν(0).
To actually compute the time evolution operator, we recall
that in the vacuum case it was useful to shift to the mass
eigenstate basis, Eq. (3). The same construction holds in
matter if we construct a set of effective mass states by
diagonalizing the matter Hamiltonian. The eigenvalues of the
matter Hamiltonian H are related to the effective masses in
matter m̃j , and the eigenvectors form the effective mixing
matrix relating these states to the flavor basis. Effective mixing
angles can be extracted from this mixing matrix Ũ [28], though
in practice this is not necessary since the oscillation probability
in constant density matter can be determined from Eq. (5) using
only Ũjk and �̃jk .

Numerical subroutines which effect the diagonalization of
the matter Hamiltonian are sufficient tools for phenomenolo-
gists wishing to model neutrino oscillation experiments. On the
other hand, if one wishes to study neutrino propagation through
matter with a arbitrary variable density profile, compact
analytical expressions for the time evolution operator U(t) are
advantageous. To arrive at a tractable analytical expression,
one must simplify the infinite sum of products of the Hamil-
tonian involved in the exponential. This has been effected
in Refs. [28,29] by applying the Cayley-Hamilton theorem.
Assuming the neutrino propagates through matter of constant
density, the authors express the time evolution operator as
the linear combination of three matrices–the identity, the
Hamiltonian, and the square of the Hamiltonian. We take a
different tack and arrive at an equivalent expression for the
time evolution operator expressed as a linear combination of
the identity and the Gell-Mann matrices.

Our expression for the time evolution operator in constant
density matter is based upon one of the parametrizations of
an element of SU (3) found in Ref. [30]. Since we are only
concerned with oscillation physics, our Hamiltonian can be
made traceless, and it is, of course, Hermitian. As such it can be
written in terms the Gell-Mann matrices λj with j = 1, . . . ,8
which span the Lie algebra su(3). The Hamiltonian is the
generator of time translations; upon exponentiation, we arrive
at the time evolution operator, an element in fundamental
representation of SU (3).

Generally, we decompose the Hamiltonian into a linear
combination of Gell-Mann matrices H := cjλj , where sum-
mation over j = 1, . . . ,8 is implied. The coefficients cj are
real and can be easily computed by exploiting the product rule
for the Gell-Mann matrices

λjλk = 2
3δjk + (djk� + ifjk�)λ�, (8)

where the totally symmetric tensor is found from the anticom-
mutator of Gell-Mann matrices djk� = 1

4 tr[{λj ,λk}λ�] and the
totally antisymmetric structure constants are determine by the
commutator fjk� = 1

4i
tr[[λj ,λk]λ�]. Tracing over the product

of H and a Gell-Mann matrix isolates one of the coefficients
cj = 1

2 tr[Hλj ].
Exponentiating this operator yields the time evolution

operator U(L) = exp[−iHL]. Following Ref. [30], we aim to
decompose the time evolution operator as a linear combination
of the identity and Gell-Mann matrices

U = u01 + iujλj , (9)

where u0 and uj are expressed in terms of the Hamiltonian
and baseline. Using the product rule in Eq. (8), we find

u0 = 1

3
tr[U], uj = 1

2i
tr[Uλj ]. (10)

The first coefficient can be simply expressed in terms of the
eigenvalues of the Hamiltonian, which we denote as γσ with
σ = 1, . . . ,3. Then the eigenvalues of U are simply e−iγσ L,
and its trace is just the sum of these,

u0 = 1

3

3∑
σ=1

e−iγσ L. (11)

To determine the other coefficients, we note ∂
∂cj

U = −iLUλj

so that

uj = 1

2L

∂

∂cj

tr[U] = − i

2

3∑
σ=1

e−iγσ L ∂γσ

∂cj

. (12)

To express the derivatives of the eigenvalues in terms of
invariants of the Hamiltonian, we turn to its characteristic
equation

γ 3
σ + 1

2 (tr[H ]2 − tr[H 2])γσ − det[H ] = 0 (13)

where we may write 1
2 (tr[H ]2 − tr[H 2]) = −cj cj =: −|c|2

and det[H ] = 2
3djk�cj ckc�, summation implied [30]. Differ-

entiating the characteristic equation with respect to cj and
solving for ∂γσ /∂cj yields

∂γσ

∂cj

= 2(γσ cj + [c ∗ c]j )

3γ 2
σ − |c|2 , (14)

where we define the (eight-component) vector [c ∗ c]j :=
djk�ckc�. Inserting this into Eq. (12), we finally arrive at

uj = −i

3∑
σ=1

e−iγσ L

3γ 2
σ − |c|2 (γσ cj + [c ∗ c]j ). (15)

Hence we arrive at an expression where the time evolution
operator in matter of constant density can be expressed as a
linear combination of the identity and Gell-Mann matrices,
Eq. (9). This representation will be useful when considering
neutrino baselines with a piecewise-constant density profile.

III. PARAMETRIC RESONANCE

We return to the more general situation in which neutrinos
travel through matter with a varying density, but restrict our
study to situations in which this density varies periodically. If
the periodic density profile satisfies certain conditions, then the
flavor oscillation probability can be parametrically enhanced.
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We will examine the possibility of full parametric resonance
in a general three-neutrino framework.

We return to Eq. (7) to describe evolution through matter
with a varying density profile with periodicity L, i.e., V(x +
L) = V(x). The Hamiltonian then is periodic and can be made
locally traceless throughout the neutrino’s trajectory. With a
Hamiltonian specified, we can solve Eq. (7) and determine the
time evolution operator through one period which we denote as
UL := U(L). Since the Hamiltonian is locally traceless, then
UL is unitary with unit determinant; as such, there exists a
matrix C = cjλj , with real cj , such that UL = exp[−iCL].
As above, we can decompose the time evolution operator as
in Eq. (9) with the coefficients u0 and uj , Eqs. (11) and (15),
written in terms of the eigenvalues, γσ , of C. Evolution through
n periods is simply the product of these evolution operators
U(nL) = [UL]n = exp[−inCL] which can be expressed as

U(nL)= 1

3

∑
σ

e−inγσ L1+
3∑

σ=1

e−inγσ L

3γ 2
σ − |c|2 (γσ cj +[c ∗ c]j )λj .

(16)

Our interest is in the conditions on the density profile
that will result in the oscillation probability Peμ → 1 after
n periods for a general set of mixing angles and mass-squared
differences. Beginning with an electron neutrino ν(0) = νe,
the oscillation probability to a muon neutrino is merely
Peμ(nL) = |[U(nL)]21|2. Exploiting the unitarity of the time
evolution operator, we find that parametric resonance is
achieved whenever [U(nL)]11 = 0 and [U(nL)]31 = 0. In what
follows, we will seek conditions on the baseline that can effect
these conditions.

A. Case (i): θ12 = θ , θ13 = 0, θ23 = 0

For simplicity, let us first consider two-neutrino mixing
within a three-neutrino framework. This limited case will
reproduce the results of Refs. [8,14,16]. To effect a two-
neutrino scenario, we suppose that there is only one nonzero
mixing angle: θ12 = θ with θ13 = θ23 = 0. In this case, the
Hamiltonian in matter (before zeroing the trace) takes a block
diagonal form

H = 1

2E

⎛
⎜⎝

c2
θm

2
1 + s2

θ m
2
2 + 2EV cθsθ

(
m2

2 − m2
1

)
0

cθ sθ

(
m2

2 − m2
1

)
c2
θm

2
2 + s2

θ m
2
1 0

0 0 m2
3

⎞
⎟⎠,

(17)

where cθ = cos θ and sθ = sin θ . The Hamiltonian is spatially
dependent by virtue of the spatial dependence of the potential
V (x). Upon exponentiating this Hamiltonian locally, the block
structure is maintained since the matrices {1,λ1,λ2,λ3,λ8}
form a subalgebra under matrix multiplication. The time
evolution through n periods can thus be decomposed as
U(nL) = u01 + iujλj with uj = 0 for j = 4, . . . ,7. We can
thus conclude that, in writing UL = exp[−iCL], many of the
coefficients vanish when decomposing C; namely, cj = 0 for
j = 4, . . . ,7.

Given this, the eigenvalues of C are easy to compute:

γ1,2 = 1√
3
c8 ±

√
c2

1 + c2
2 + c2

3 and γ3 = − 2√
3
c8. To determine

the time evolution operator through one period,UL, we express
the matrix invariant |c|2 in terms of the eigenvalues of C

|c|2 = − 1
2 (tr[C]2 − tr[C2]) = −(γ1γ2 + γ1γ3 + γ2γ3). (18)

This simplifies the terms in the denominator of Eq. (15), since
we can express such terms as the product of the difference of
C’s eigenvalues; e.g.,

3γ 2
1 − |c|2 = (γ1 − γ2)(γ1 − γ3). (19)

In the two-neutrino case, with cj = 0 for j = 4, . . . ,7, we find
[c ∗ c]j = 2√

3
c8cj = −γ3cj , for j = 1,2,3. This simplifies the

expression for uj considerably:

uj = cj e
i

γ3
2 nL√

c2
1 + c2

2 + c2
3

sin
(
nL

√
c2

1 + c2
2 + c2

3

)
(20)

for j = 1,2,3.
In this two-neutrino case, the parametric resonance con-

dition requires [U(nL)]11 = [U(nL)]22 = 0. The difference
of these components forces u3 = 0. From Eq. (20), we see,
as a consequence, that c3 must vanish. Implementing this
condition, the νe → νμ amplitude is

[U(nL)]21 = iei
γ3
2 nL c1 + ic2√

c2
1 + c2

2

sin
(
nL

√
c2

1 + c2
2

)
(21)

so that Peμ(nL) = sin2(nL

√
c2

1 + c2
2) which can rise to unity.

We note that setting c3 = 0 is simply the two-neutrino
parametric resonance condition previously determined in
Refs. [8,14,16].

The generic two-neutrino parametric resonance condition
of Refs. [8,14,16] can be implemented by the proper choice
of baselines and densities for a castle-wall density profile in
which

V (x) =
{
Va, 0 � x � La,

Vb, La < x � La + Lb,
(22)

with V (x) = V (x + L) where the period is L = La + Lb. We
shall replicate these results in the three-neutrino framework.

To begin, we need to compute u8,

u8 = −i

3∑
σ=1

e−iγσ nL

3γ 2
σ − |c|2 (γσ c8 + [c ∗ c]8). (23)

Recalling that in the two-neutrino case cj = 0 for j = 4, . . . ,7,
we find the component [c ∗ c]8 = 1√

3
(c2

1 + c2
2 + c2

3 − c2
8) =

1√
3
(|c|2 − 3

2γ 2
3 ). Focusing upon the σ = 3 term in the sum,

Eq. (23), inserting the previous expression yields (γ3c8 +
[c ∗ c]8) = − 1√

3
(3γ 2

3 − |c|2). For the σ = 1,2 factors, they

simplify to (γσ c8 + [c ∗ c]8) = 1
2
√

3
(3γ 2

σ − |c|2). Putting this
together, we arrive an expression for u8 in terms of the
eigenvalues of C:

u8 = − i

2
√

3
[e−iγ1nL + e−iγ2nL − 2e−iγ3nL]. (24)
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This is the value of u8 after propagation through n periods of
the castle-wall potential; however, similar expressions hold,
mutatis mutandis, when considering propagation through one
density layer.

The time-evolution operator through one period is given by
UL = exp[−iHbLb] exp[−iHaLa] where Ha,b = H0 + Va,b.
We make the usual decomposition for the time evolution
operators through one of the density regions exp[−iHbLb] =
w01 + iwjλj and exp[−iHaLa] = v01 + ivjλj . Parametric
resonance can be achieved if the following element vanishes:

u3 = v3

(
w0 + i

1√
3
w8

)
+ w3

(
v0 + i

1√
3
v8

)
. (25)

The terms in parentheses can be simplified by making use of
Eq. (24); e.g., v0 + i 1√

3
v8 = exp[i α3

2 La] cos[ α1−α2
2 La] where

ασ represent the eigenvalues of Ha . The difference in the two
eigenvalues α1,2 is proportional to the effective mass-squared
difference �̃a in matter of density Va . Recalling the expression

for v3 from Eq. (20), we identify a3/

√
a2

1 + a2
2 + a2

3 with

cos 2θ̃a , where θ̃a is the effective matter mixing angle in
the region with potential Va . Setting u3 = 0 to implement
the parametric resonance results in the following condition for
the castle-wall potential:

cos 2θ̃b cos ϕ̃a sin ϕ̃b + cos 2θ̃a cos ϕ̃b sin ϕ̃a = 0 (26)

with ϕ̃a,b = �̃a,bLa,b/(4E). This is the condition found in
Refs. [8,14,16]. Simple expressions exist for the effective
matter mixing angle and mass-squared differences

sin 2θ̃ = sin 2θ√
c2

2θ (1 − E/ER)2 + s2
2θ

, (27)

�̃ = �

√
c2

2θ (1 − E/ER)2 + s2
2θ , (28)

where we define the MSW resonance energy to be ER =
�21c2θ /(2V ).

For a given vacuum mixing angle and mass-squared
difference, the parametric resonance condition in Eq. (26) can
be satisfied if the baselines La and Lb are an odd-integer
multiple of one-half the oscillation wavelengths in matter.
This half-wavelength condition forces each individual term in
Eq. (26) to vanish since cos ϕ̃a,b = 0. For given matter densities
which produce potentials Va,b, this results in baselines La,b =
(2n + 1)2πE/�̃a,b. The parametric condition can be satisfied
by a host of other combinations of matter densities and
baselines as well. We will explore some of these alternatives
numerically.

To be concrete, we choose realistic values for the neutrino
oscillation parameters: θ = 0.59, �21 = 7.54×10−5 eV2, and
�31 = 2.47×10−3 eV2 [1]. In order for our results to have
some relevance to neutrinos which transit the Earth’s interior,
we set the matter density of the first region to ρa = 4.5 g/cm3

and the second to ρb = 11.5 g/cm3, values which are compa-
rable to the densities of the Earth’s mantle and core [25]. With
these values, the MSW resonant energies are ERa

= 85 MeV
and ERb

= 33 MeV.
Before considering the general situation, we first examine

two extreme limits analytically. In the low energy limit, the

L
b
 (km)

L a (
km

)

200 400 600 800
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0

0.2

0.4

0.6

0.8

1

FIG. 1. The modulus of u3 for E = 10 MeV and various baselines
La,b with densities ρa = 4.5 g/cm3 and ρb = 11.5 g/cm3 in the
two-neutrino limit θ = 0.59, �21 = 7.54×10−5 eV2, and �31 =
2.47×10−3 eV2. We mark the half-wavelength solutions with ×.

neutrino energy is much less that the MSW resonant energy
in both regions, E � ERa,b

. In this case, to zeroth order, the
mixing angle and mass-squared difference are unchanged, so
that Eq. (26) becomes tan ϕ̃a ≈ − tan ϕ̃b which yields a linear
relationship between the acceptable baselines,

La ≈ −Lb + nλ0, (29)

where n is an integer and λ0 = 4πE/�21, the vacuum
oscillation wavelength. To confirm this approximation, we
consider neutrinos with energy E = 10 MeV traveling through
the castle-wall profile. At this energy, the vacuum oscillation
wavelength is 328 km, and the oscillation wavelengths in
constant-density matter are λa = 333 km and λb = 341 km.
In Fig. 1, we plot the modulus |u3| through one period. The
white region indicates the baselines for which |u3| � 0.1, and
we mark the half-wavelength solutions with an ×. We see that
the family of acceptable baselines which result in parametric
resonance agree with the approximation in Eq. (29).

In the high-energy limit, the matter potential dominates
the kinetic term in the Hamiltonian so that the effective
mass-squared difference scales linearly with energy �̃ ≈
c2θ�E/ER and the effective mixing angle tends to π/2. In this
limit, the baselines which result in parametric resonance satisfy

La ≈ −Vb

Va

Lb + nλa, (30)

where λa ≈ 2π/Va is the oscillation wavelength in the first
region. For the high-energy case, we consider the energy
E = 500 MeV, well beyond the MSW resonant energy for
either density. The oscillation wavelengths in matter are λa =
7814 km and λb = 2956 km. In Fig. 2, we plot the modulus
|u3| for various baselines La,b at this energy. We see that the
acceptable baselines conform to the approximation in Eq. (30).

Between the two extremes, the relationship between the
allowed baselines which result in parametric resonance is
much richer. We present two examples in Figs. 3 and 4
for neutrino energies of 100 and 200 MeV, respectively.
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FIG. 2. The modulus of u3 for E = 500 MeV and various
baselines La,b using the same data as Fig. 1. We mark the half-
wavelength solutions with ×.
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FIG. 3. The modulus of u3 for E = 100 MeV and various
baselines La,b using the same data as Fig. 1. We mark the half-
wavelength solutions with ×.
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FIG. 4. The modulus of u3 for E = 200 MeV and various
baselines La,b using the same data as Fig. 1. We mark the half-
wavelength solutions with ×.
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FIG. 5. The oscillation probability Peμ for 200 MeV neutrinos
through a castle-wall profile with (a) La = 3100 km and Lb =
1548 km and (b) La = 1550 km and Lb = 2477 km. The shaded
regions in the plots indicate the region of density ρb = 11.5 g/cm3.

Focusing upon the 200 MeV case, we consider two specific
castle-wall profiles which implement parametric resonance.
For this energy, the effective oscillation wavelengths in matter
are λa = 6200 km and λb = 3096 km. In Fig. 5(a), we depict
the oscillation probability Peμ for a neutrino traveling through
a castle-wall density profile satisfying the half-wavelength
condition. The maximum oscillation probability in matter with
a constant density ρa is 0.76 and ρb is 0.19, yet through
parametric resonance the oscillation probability goes to unity
after two periods. In Fig. 5(b), we set the length of the
first region to be one-quarter oscillation wavelength La =
1550 km. From Fig. 4, we determine that if Lb = 2477 km then
parametric resonance can be achieved. Again, after several
periods, the oscillation probability rises to unity.

B. Case (ii): θ12 = θ , θ13 = φ, θ23 = 0

We now allow for two mixing angles to be nonzero: θ12 =
θ , θ13 = φ, and θ23 = 0. Unlike the two-neutrino case, the
Hamiltonian is no longer block diagonal, and as a result, all el-
ements [U]ρσ will generally be nonzero, permitting oscillation
amongst all flavors. This complicates the analytical treatment
of parametric resonance significantly, yet the fundamental
requirement is still the same. If the oscillation probability
Peμ is to tend to unity for neutrinos traveling through a
periodic matter density profile, then [UL]11 = [UL]31 = 0. If
this condition holds, then unitarity also implies [UL]22 =
[UL]23 = 0.

As with the two-neutrino case, the difference of the two
diagonal elements [UL]11 and [UL]22 requires u3 = 0. There
are now two paths by which one can pursue parametric
resonance; we will only consider one which entails the
additional requirement of [UL]32 = 0. This implies uj = 0
for j = 4,5,6,7. Implementing these conditions for a general
periodic matter profile is intractable, so we will consider
the same castle-wall profile as in the previous section with
densities ρa = 4.5 g/cm3 and ρb = 11.5 g/cm3. We use the
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same neutrino oscillation parameters as above along with
φ = 0.15 [1].

Before considering numerical results, we aim to gain a
qualitative understanding of parametric resonance in this case
by treating φ as a perturbative parameter. The Hamiltonian, in
constant density matter, governs the behavior of the system,
so we first examine how it changes to first order in φ. To be
concrete, we consider the region of density ρa and recall our
decomposition in terms of the Gell-Mann matrices Ha = ajλj .
The two-neutrino portion, a1, a2, a3, and a8, of the Hamiltonian
is unchanged up to O(φ2), but there are two additional off-
diagonal contributions to the Hamiltonian,

a4 ≈ 1

2E

(
c2
θ�31 + s2

θ �32
)
φ, a6 ≈ − 1

2E
cθsθ�21φ. (31)

As a result, the eigenvalues of H do not change to first order
in φ, but since θ13 is nonzero, there are two independent oscil-
lation scales given by the effective mass-squared differences
in matter

�̃a
21 := 2E(α2 − α1) ≈ �21

√
c2

2θ

(
1 − E

ERa

)2

+ s2
2θ , (32)

�̃a
32 := 2E(α3 − α2) ≈ 1

2
(�31 + �32) − EV − 1

2 �̃a
21,

(33)

with �̃a
31 = �̃a

32 + �̃a
21. Since we are neglecting terms that are

O(φ2), we should note the vast difference between oscillation
scales �21/�32 ∼ 0.03. Since this is much smaller than φ,
we will also neglect terms that are O(φ �21

�32
). Given this

approximation, we take a6 ≈ 0 so that the only leading order
deviation from the two-neutrino Hamiltonian is due to a4

which can be further approximated as a4 ≈ 1
2E

�32φ, again
neglecting a term that is O(φ �21

�32
).

The time evolution operator through one period is UL =
exp[−iHbLb] exp[−iHaLa], and we make the usual decom-
position exp[−iHbLb] = w01 + iwjλj and exp[−iHaLa] =
v01 + ivjλj . To implement parametric resonance through this
castle-wall profile, we require uj = 0 for j = 3, . . . ,7. Given
the above approximations, only u3 and u4 are appreciable
to leading order. Requiring u3 = 0 results in the old two-
neutrino condition for parametric resonance, Eq. (26). The
new requirement u4 = 0 demands

w4

[
v0− i

2
√

3
v8+ i

2
v3

]
+ v4

[
w0 − i

2
√

3
w8 + i

2
w3

]
≈ 0,

(34)

consistently applying the approximation v6 ≈ w6 ≈ 0. We
examine each factor in this equation for energies greater than
the resonance energy E 
 ERa,b

.
We begin with the factor in square brackets in Eq. (34).

Each term in this factor is known from the previous work with
the two-neutrino case, which is valid to O(φ). Repurposing
that work, we find

v0 − i

2
√

3
v8 + i

2
v3 ≈ 1

4
[e−iα1La + e−iα2La + 2e−iα3La ]

+ a3

2(α1 − α2)
[e−iα1La − e−iα2La ].

(35)

For neutrinos with an energy on the order of hundreds of MeV,
we make a further approximation, E 
 ERa,b

. In this limit, we
find

a3 ≈ 1
2Va, (36)

�̃a
21 ≈ 2EVa, (37)

�̃a
32 ≈ 1

2 (�31 + �32) − 2EVa. (38)

Making the appropriate substitutions, we arrive at the
expression

v0 − i

2
√

3
v8 + i

2
v3 ≈ e−i

(α3+α2)
2 La cos

(
�̃a

32La

4E

)
. (39)

The other factor in Eq. (34) is specific to the three-neutrino
case. Noting that, in this case, [a ∗ a]4 = a4(a3 − 1√

3
a8), we

find in a region of constant density

v4 = −ia4

∑ e−iασ

3α2
σ − |a|2

(
ασ + a3 − 1√

3
a8

)
. (40)

In the high energy limit, E 
 ERa
, this becomes

v4 ≈ −4Ea4

�̃a
32

e−i
(α3+α2)

2 La sin

(
�̃a

32La

4E

)
, (41)

where a4 is given in Eq. (31).
With these two factors determined in matter of constant

density, the new additional requirement for parametric reso-
nance, Eq. (34), in the limit E 
 ERa,b

is approximately

1

�̃b
32

sin ϑ̃b cos ϑ̃a + 1

�̃a
32

sin ϑ̃a cos ϑ̃b ≈ 0, (42)

where ϑ̃a,b := �̃
a,b
32 La,b/4E. This equation has a structure

similar to the two-neutrino parametric resonance condition,
Eq. (26).

In what follows, let us further restrict the neutrino energies
under consideration by providing an upper bound 2E(Vb −
Va) < �32. Given the densities under consideration, the upper
bound on energies is around 4.5 GeV. If the energy is
significantly less than this upper bound, then the ratio of
effective mass-squared differences �̃a

32/�̃
b
32 is unity with

corrections O(E(Vb−Va )
�32

). In this limit, the additional condition
for parametric resonance can be simply expressed in terms of
the baselines

La ≈ −�̃b
32

�̃a
32

Lb + n
4πE

�̃a
32

. (43)

In summary, parametric resonance can be achieved in
this three-neutrino scenario of “small” φ if the two-neutrino
parametric resonance condition, Eq. (26), is satisfied along
with the new constraint, Eq. (43). This latter equation is valid
for neutrino energies between a few hundred MeV and a few
GeV. The new constraint yields another linear relationship
between La and Lb with an absolute slope near unity. For
energies around a few hundred MeV, the family of curves
generated by Eq. (43) will be relatively dense since sin ϑ̃
oscillates rapidly at these low energies. For energies above
500 MeV, the additional constraint on parametric resonance
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FIG. 6. A plot of u for E = 200 MeV and various baselines La,b

with densities ρa = 4.5 g/cm3 and ρb = 11.5 g/cm3 with θ = 0.59,
φ = 0.15, �21 = 7.54×10−5 eV2, and �31 = 2.47×10−3 eV2.

will become appreciable. In considering the acceptable base-
lines, what were once continuous regions of solutions in La-Lb

parameter space now become a series of isolated solutions.
We will examine these results numerically. Since paramet-

ric resonance requires uj = 0 for j = 3, . . . ,7, we will aim
to determine the acceptable baselines which minimize the
parameter

u :=
√

|u3|2 + |u4|2 + |u5|2 + |u6|2 + |u7|2. (44)

In Fig. 6, we find the baselines which minimize u, resulting in
parametric resonance, in the castle-wall profile for neutrinos
with an energy of 200 MeV. The white regions in the
plot indicate where u � 0.1. Comparing this plot with its
two-neutrino analog in Fig. 4, we see that the contours are
predominantly determined by u3, but there are interfering
higher frequency contributions attributable to oscillations
dependent upon the �32 mass-squared difference. As deduced
above, the dominant interference term is u4. Numerically,
we determine the effective mass-squared differences �̃a

32 =
2.36×10−3 eV2 and �̃b

32 = 2.27×10−3 eV2. For this energy,
we determine that the constraint derived from u4 = 0, Eq. (43),
becomes La = −0.96 Lb + (210 km) n. Close inspection of
the plot of |u4| for various baselines (not shown) is consistent
with this family of lines. At this energy, the impact of the
u4 in determining the acceptable baselines is minimal, and
the two-neutrino parametric resonance condition, Eq. (26),
represents a good approximation.

In Fig. 7, we plot u for neutrinos with energies of 500 MeV.
In comparing the allowed baselines which result in parametric
resonance with those in the two-neutrino case, Fig. 2, the
impact of interference between the two oscillation scales is
significant. In the two-neutrino case, setting u3 = 0 results in
the (approximate) family of allowed baselines

La ≈ −2.56 Lb + (8094 km) n1, (45)

where we have used the numerically determined value for
the wavelength relevant for oscillations due to �̃a

21. But, in
the three-neutrino case, the continuous region of allowed
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FIG. 7. A plot of u for E = 500 MeV and various baselines La,b

using the same data as Fig. 6. We mark the approximate minima of
u, solutions to the equations Eqs. (45) and (46), with the symbol ×.

baselines becomes a series of isolated points in La-Lb

parameter space. With the effective mass-squared differences
�̃a

32 = 2.28×10−3 eV2 and �̃b
32 = 2.04×10−3 eV2, the new

additional constraint, Eq. (43), becomes

La ≈ −0.89 Lb + (543 km) n2. (46)

The intersection of these two curves, denoted by × in Fig. 7,
approximates the acceptable baselines indicated by the local
minima of u. The position of the approximate minima is not
exact due to higher order terms not considered in the analytic
work, but it does provide a reasonable estimate.

We consider one more example for neutrinos with an energy
of 1 GeV, Fig. 8. For such a high energy, the condition
u3 = 0 should yield a robust linear relationship between La

and Lb, Eq. (47), while setting u4 = 0 yields an approximate
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FIG. 8. A plot of u for E = 1 GeV and various baselines La,b

using the same data as Fig. 6. We mark the approximate minima of
u, solutions to the equations Eqs. (47) and (48), with the symbol ×.
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FIG. 9. The oscillation probability Peμ for 1 GeV neutrinos
through a castle-wall profile with La = 3220 km and Lb = 1819 km.
The shaded areas indicate regions of density ρb = 11.5 g/cm3.

relationship between baselines, Eq. (48),

La ≈ −2.56 Lb + (8030 km) n1, (47)

La ≈ −0.77 Lb + (1165 km) n2, (48)

where the effective mass-squared differences are �̃a
32 =

2.12×10−3 eV2 and �̃b
32 = 1.64×10−3 eV2. Again, the inter-

section of these two lines indicates the approximate position
in the La-Lb parameter space at which parametric resonance
can be achieved; we indicate the points with the symbol × in
Fig. 8.

For the 1 GeV case, the absolute minimum for the parameter
u in the range of baselines shown in Fig. 8 is 0.06, occurring
at La = 3210 km and Lb = 1830 km. We plot the oscillation
probability in Fig. 9 for this castle-wall profile. Indeed, the
oscillation probability does exhibit parametric enhancement;
however, since the minimum of u does not vanish, the
probability cannot go to unity but rather attains a maximum
of 0.96. Still, this is a dramatic increase over the maximum
constant-density oscillation probability. The neutrino energy
of 1 GeV is well beyond the resonant energies of 85 MeV
and 33 MeV, dramatically suppressing Peμ to a maximum
value of 0.05 for travel through constant density ρa and 0.007
for travel through ρb. Since these constant density oscillation
probabilities are so small, it takes roughly 10 periods to achieve
the maximal parametric enhancement.

We remark that there are many baselines through which one
can achieve parametric resonance. Ultimately, what is required
for parametric resonance is that select elements of the time
evolution operator must vanish, uj = 0 for j = 3, . . . ,7. We
have implemented these conditions for a simple castle-wall
profile with solutions given by u = 0. The minima of u in
Figs. 6 through 8 show the proper baselines La and Lb that
result in parametric resonance; however, other points in the
La-Lb parameter space with u significantly greater than zero
are not necessarily excluded from parametric resonance. As
a case in point, consider the profile with baselines given by
La = 2400 km and Lb = 2150 km in Fig. 8. Here, we find

u = 0.44, yet, this choice of parameters does permit significant
parametric enhancement of the oscillation probability. The
reason for this is that u is large after one period L, but it
does attain a much smaller value (u = 0.06) after two periods
2L, satisfying the condition for parametric resonance over a
different period. Our parametric resonance conditions can only
highlight the appropriate baselines that will show resonance;
they do not necessarily exclude other baselines.

C. Case (iii): θ12 = θ , θ13 = φ, θ23 = ψ

We now allow θ23 = ψ to be nonzero. Recalling the
parametrization for the mixing matrix U (θ,φ,ψ), Eq. (6), we
see that we can peel off the θ23 rotation, U1(ψ), and since it
commutes with the matter potential V(x), we can write the
neutrino evolution equation, Eq. (7), in terms of the state
ν̂ = U1(ψ)†ν

i∂t ν̂ =
[

1

2E
U (θ,φ,0)MU (θ,φ,0)† + V(x)

]
ν̂. (49)

The evolution of the state ν̂ through a periodic matter profile
was addressed in the previous two subsections.

Specializing first to the case in which φ = 0, we find
that the mixing angle ψ places an upper bound on the
maximum oscillation probability Peμ that can be achieved
through parametric resonance. With φ = 0, the evolution of
the state ν̂ involves mixing amongst only two flavors as in
Case (i). Regardless of the values of the vacuum mixing
angle θ or mass-squared differences, there exists a periodic
matter profile that allows the oscillation probability, P̂eμ,
for the state ν̂ to reach unity; that is, for some number of
periods, |Û21(nL)| → 1. For the true neutrino state ν, we
can rotate bases to relate this element of the time evolution
operator to the two-neutrino one U21 = cos ψ Û21. Given
this, the maximum oscillation probability achievable through
parametric resonance (with φ = 0) is Peμ → cos2 ψ ; i.e.,
full parametric enhancement (to unity) is not possible. As
an example, we consider 1 GeV neutrinos with ψ = 0.72
[1] and the usual mixing angle θ = 0.59. The condition for
(partial) parametric resonance is set by the two-neutrino case.
We choose one such solution with baselines La = 1800 km
and Lb = 2296 km which yields û3 = 0. In Fig. 10, we plot
the oscillation probability through the castle-wall profile which
is clearly bounded by cos2 ψ = 0.57.

More generally, with non-zero φ, we can adapt the results
from Case (ii) to determine a parametric resonance condition
for ν̂. For the given choice of parameters, the parametric
resonance condition does not change significantly. The points
at which u attains a minimum in La-Lb parameter still
correspond to solutions of Eqs. (26) and (43), but the region
in which u � 0.1 shrinks considerably. We plot u for 1 GeV
neutrinos for the castle-wall profile with θ = 0.59, φ = 0.15,
and ψ = 0.72, Fig. 11. With all three mixing angles non-zero,
genuine three-neutrino oscillations is present in all channels.
In particular, for νe → νμ oscillations two oscillation scales
are now present. With nonzero φ, this oscillation probability
can approach unity. As an example, we choose the baselines
La = 1625 km and Lb = 2410 km which correspond to a local
minimum of u in Fig. 11. We plot in Fig. 12 the oscillation
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FIG. 10. The oscillation probability Peμ for 1 GeV neutrinos
through a castle-wall profile with La = 1800 km and Lb = 2296 km.
The shaded areas indicate regions of density ρb = 11.5 g/cm3. We
set θ = 0.59, φ = 0, and ψ = 0.72.

probability Peμ for this castle-wall profile. The oscillation
probability attains a maximum value of 0.98. With the extra
oscillation channel, we are able to evade the limit set by cos2 ψ .

IV. CORE-CROSSING TRAJECTORIES

In the previous sections, the neutrino oscillation probabil-
ity could increase dramatically (relative to constant-density
trajectories) after propagating through several periods of a
castle-wall potential. For neutrinos with energies on the order
of a few hundred MeV, the number of periods needed to
attain a maximum value of Peμ is small since the effective
matter mixing angle θ̃12 is relatively large. For a neutrino
energy around 1 GeV, the effective mixing angle decreases
dramatically, and the number of periods needed to achieve the
maximum oscillation probability increases in turn. The reality
is that the baselines for one period are on the order of the
Earth’s diameter, rendering multiple baselines impossible in a
laboratory setting. At best, the Earth’s density profile can be
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FIG. 11. A plot of u for E = 1 GeV and various baselines La,b

with θ = 0.59, φ = 0.15, and ψ = 0.72 in the castle-wall profile.
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FIG. 12. The oscillation probability Peμ for 1 GeV neutrinos
through a castle-wall profile with La = 1625 km and Lb = 2410 km.
We set θ = 0.59, φ = 0.15, and ψ = 0.72. We omit the shaded
regions which typically indicate the higher density region.

used as a laboratory. We can approximate the Earth’s interior as
a high density core (ρb ∼ 11.5 g/cm3) of radius Rc = 3485 km
surrounded by a mantle of density ρa = 4.5 g/cm3 [25]. For a
detector located near the surface of the Earth, an atmospheric
neutrino passing through the Earth to the detector will travel
along a chord which can be parametrized by the zenith angle
�. Upgoing neutrinos, which travel the Earth’s diameter, have
� = π and thus cos � = −1. For this trajectory, the initial
baseline through the mantle is La = Re − Rc = 2886 km
where the radius of the Earth is Re = 6371 km, and then the
path through the core is given by its diameter Lb = 2Rc =
6970 km. As the zenith angle decreases, the distance traveled
through the mantle increases, while the distance through the
core decreases; generally, we have

La = −Re cos � −
√

R2
c − (Re sin �)2, (50)

Lb = 2
√

R2
c − (Re sin �)2. (51)

For zenith angles less than 147◦ (or cos � > −0.84), the
neutrino does not travel through the core.

For core-crossing trajectories, we compute u as a function
of the zenith angle � for energies between 600 MeV and
1 GeV, Fig. 13(a). This parameter, u, does attain local
minima for these energies along chords with a zenith angle
that satisfies −0.95 � cos � � −0.9. The absolute minima
do not vanish, yet they are sufficiently small to result in
some parametric enhancement. This enhancement is apparent
when considering the oscillation probability Peμ at the
terminus of the trajectory, Fig. 13(b). Here, we consider
the value of the oscillation probability averaged over a flat
energy spectrum with width 200 MeV centered on the same
energies considered in Fig. 13(a). The overall scale of the
oscillation probability is significantly suppressed since the
energies under consideration are well beyond the MSW
resonance where the mixing angle decreases inversely with the
energy, θ̃12 ∼ θ12�21/(2EV ). Regardless, parametric effects
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FIG. 13. (Color online) (a) We plot u for core-crossing trajecto-
ries. The dotted (black) curve is for neutrino energy 600 MeV; the
dashed (red) curve is for neutrino energy 800 MeV; the solid (blue)
curve is for neutrino energy 1 GeV. (b) The oscillation probability
Peμ at a detector after traveling a distance of 2La + Lb along a
core-crossing trajectory. The curves are averaged over a flat energy
spectrum with a width of 200 MeV. The dotted (black) curve’s
spectrum is centered on 600 MeV; the dashed (red) curve’s spectrum
is centered on 800 MeV; the solid (blue) curve’s spectrum is centered
on 1 GeV.

significantly enhance the probability relative to neutrinos
traveling through a constant density mantle along the same
baselines. For neutrino beams centered around 600 MeV,
800 Mev, or 1 GeV the average oscillation probability Peμ

through a constant density mantle would yield maximal
values of 0.05, 0.03, and 0.02 (respectively). Through the
core-crossing trajectory, in the region of parametric resonance,
the oscillation probability is enhanced by a factor of 2 to 3.

While the absolute value is small, in a high precision
experiment involving upgoing atmospheric neutrinos the effect
can be relevant.

V. CONCLUSION

We have examined parametric resonance in a full three-
neutrino framework. To do so, we found it necessary
to simplify the expression for the time-evolution operator
in constant density matter for the three-neutrino state. With
this simpler expression, we considered the castle-wall matter
profile and determined, for given values of the oscillation
parameters and profile densities, what appropriate baselines
would lead to parametric resonance. We focused on neutrino
energies in an intermediate range from a few hundred MeV to
a few GeV; i.e., the term 2EV is large relative to �21 but small
relative to �31. Since θ13 is small, we are able to consider its
effects perturbatively. We found that the parametric resonance
condition was a confluence of two conditions related to the
two different oscillation scales. The two-neutrino condition
essentially carries over to the three-neutrino framework;
however, when θ13 is nonzero, the other oscillation scale must
be considered. If the new parametric resonance condition is
identically satisfied, the oscillation probability Peμ tends to
unity after the neutrinos travel through a number of periods
of the matter profile. If the condition is just approximately
satisfied, full parametric resonance is not achieved; however,
the oscillation probability is still enhanced in the periodic
matter profile, relative to a trajectory through constant density
matter. This is the situation for sub-GeV atmospheric neutrinos
which travel through the Earth’s core. For such core-crossing
trajectories, the parameter u attains a minimum value on the
order of 0.2. Despite this, the oscillation probability for these
trajectories is significantly enhanced.
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