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Dispersive estimate of the electromagnetic charge symmetry violation in the octet baryon masses
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We explore the electromagnetic contribution to the charge symmetry breaking in the octet baryon masses
using a subtracted dispersion relation based on the Cottingham formula. For the proton-neutron mass splitting
we report a minor revision of the recent analysis of Walker-Loud, Carlson, and Miller [Phys. Rev. Lett. 108,
232301 (2012)]. For the electromagnetic structure of the hyperons we constrain our analysis, where possible, by
a combination of lattice QCD and SU(3) symmetry-breaking estimates. The results for the baryon mass splittings
are found to be compatible with recent lattice QCD + QED determinations. The uncertainties in the dispersive
analysis are dominated by the lack of knowledge of the hyperon inelastic structure.
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I. INTRODUCTION

A vast array of nuclear and hadronic physics processes are
almost invariant under charge symmetry [1,2]. As a result, the
assumption of good charge symmetry has been widely applied
in nuclear and strong interaction studies. With the description
of strong interaction phenomena in terms of the fundamental
theory of quantum chromodynamics (QCD) progressing into
the precision era, it is now essential to further quantify the
degree to which charge symmetry is violated; see, for example,
the search for new physics in β decays [3]. Charge symmetry
violation (CSV) is driven by two sources, that arising from
the inequality of the light-quark masses (mu �= md ), which we
refer to as the strong component, and that arising from the
electromagnetic interaction.

The prime example of CSV is the observed ∼0.1% differ-
ence in the masses of the proton and neutron. Calculations
in lattice QCD have recently made significant advances in
the determination of the strong component of this mass
difference [4–9]. In parallel, the theoretical description of
the electromagnetic contribution has been improved by the
work of Walker-Loud, Carlson, and Miller (WCM) [10] using
a new formulation of the Cottingham formula [11]. Lattice
QCD + QED [5,9,12] is also making progress in the direct
calculation of the electromagnetic contribution.

The principal focus of the present work is the extension
of the WCM dispersive analysis to investigate the electro-
magnetic contribution to the mass splittings of the � and
� baryons. The theoretical inputs required for the disper-
sion integral are described in terms of the electromagnetic
structure, for which very little is known phenomenologically
for the hyperons. The results presented here utilize input
from lattice QCD, where available, with conservative esti-
mates of the magnitude of SU(3) breaking effects applied
elsewhere.

In his seminal work [11], Cottingham showed that the
electromagnetic self-energies of the nucleons can be computed
in terms of the imaginary part of the forward Compton
amplitude, which is measurable in inclusive electron-nucleon
scattering experiments. Using the Cottingham result, the long-
standing accepted value for the electromagnetic contribution

to the proton-neutron mass splitting was δM
γ
p-n = 0.76 ±

0.30 MeV [13,14]. The recent work of WCM has challenged
this result by demonstrating that the application of the Cotting-
ham formula with two different Lorentz decompositions of the
Compton scattering tensor leads to incompatible results [10].
By using a subtracted dispersive analysis, WCM demonstrated
that this ambiguity can be removed. The revised value of the
dispersive estimate of the electromagnetic mass splitting was
reported to be δM

γ
p-n = 1.30 ± 0.47 MeV [10]. An extension

of the WCM formalism [15] which incorporates quark-mass
dependence and finite-volume effects, combined with the
lattice simulation results of Ref. [5], provides an improved con-
straint on the dispersion integral δM

γ
p-n = 1.04 ± 0.11 MeV.

II. ELECTROMAGNETIC SELF-ENERGY

As described by WCM, the use of a subtracted dispersion
relation for the determination of the electromagnetic self-
energy of a baryon B leads to the natural separation of
contributions given by

δM
γ
B = δMel

B + δM inel
B + δMsub

B + δM̃ct
B . (1)

In the following sections, each of these contributions is
examined in the light of our current understanding of nucleon
and hyperon structure.

A. Elastic

The elastic contribution to the self-energy is given by

δMel
B = α

π

∫ 	0

0
dQ

[
3

2
G2

M

√
τel

τel + 1

+ (
G2

E − 2τelG
2
M

) (1 + τel)3/2 − τ
3/2
el − 3

2

√
τel

τel + 1

]
,

(2)

with τel = Q2/(4M2
B). GE and GM represent the electric and

magnetic Sachs form factors of the corresponding baryon.
For the proton and neutron, these are rather well known
empirically and we make use of the Kelly parametrization [16]
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TABLE I. Decomposition of the electromagnetic contributions to the octet baryon mass splittings as defined in Eq. (1).

Baryon δMel δM inel δM sub
el δM sub

inel δM̃ct δMγ

p-n 1.401(7) 0.089(42) −0.635(7) 0.18(35) 0.006 1.04(35)
�+ − �− 1.24(7) 0.02(21) −1.89(10) 0.8(12) 0.014(1) 0.2(12)
�0 − �− −0.636(30) 0.42(15) −0.80(4) 0.3(10) 0.008 −0.7(10)

of experimental results. The upper limit of integration, 	0,
denotes the scale at which perturbative evolution becomes
reliable. We follow WCM by reporting central estimates using
	2

0 = 2 GeV2 and uncertainties calculated by allowing for
variation over the range 1.5 < 	2

0 < 2.5 GeV2 [10].
For the hyperons, we use lattice-QCD-based results from

the CSSM/QCDSF/UKQCD Collaborations. The lattice study
of Refs. [17,18] presents results for the electromagnetic
form factors of all outer-ring octet baryons at a range of
discrete values of the momentum transfer, Q2. The analysis
includes finite-volume corrections and a chiral extrapolation
to the physical pseudoscalar masses. In addition, simple
parametrizations of the Q2 dependence of the form factors
are given at the physical point. These are the parametrizations
which we use here.

It was found in Ref. [18], for the electric form factors, that
standard dipole parametrizations of the Q2 dependence of GE

perform poorly. Here, for the charged baryons, we use the
more general fits presented in that work,

GB
E,fit(Q

2) = GB
E(Q2 = 0)

1 + c1Q2 + c2Q4 + c3Q6
. (3)

For the neutral cascade baryon form factor, where the charge
G�0

E (Q2 = 0) = 0, we use the same form, fit to the individual
quark-sector contributions to the form factor. The total form
factor is then deduced as

G�0/−
E = Qu/dG

�0,u
E,fit (Q

2) + 2QsG
�0,s
E,fit(Q

2), (4)

with Qu,d,s the charges of the respective quarks. For consis-
tency, this same process is followed for the �−.

Similarly, we take parametrizations of the hyperon mag-
netic form factors from Ref. [17]. The function that best
reproduced the lattice simulation results is

GB
M,fit(Q

2) = μB

1 + c1Q2 + c2Q4 + c3Q6
, (5)

where μB denotes the experimental value of the magnetic
moment of the baryon B [19]. Here, as in Ref. [17], GM

has been expressed in units of the nuclear magneton μN ≡
e�/(2Mp). Note that to use these expressions in Eq. (2)
one must multiply them by a factor MB/Mp. The elastic
contributions to the mass splittings are summarized in Table I.

B. Inelastic

The inelastic contribution to the electromagnetic self-
energy can be expressed in the form

δM inel
B =

∫ ∞

W 2
0

dW 2 �inel
B (W 2), (6)

where

�inel(W 2)

= α

π

∫ 	0

0
dQ

{
3F1(W 2,Q2)

4M2
B

2τ
3
2 − 2τ

√
1 + τ + √

τ

τ

+ F2(W 2,Q2)(
Q2 + W 2 − M2

B

) [
(1 + τ )

3
2 − τ

3
2 − 3

2

√
τ
]}

, (7)

with τ = (W 2 + Q2 − M2
B)2/(4M2

BQ2) and W0 = (MB +
mπ ). F1 and F2 denote the baryon inelastic structure functions.
We note that the standard derivation of the dispersion integral
yields an integral with respect to ν, the energy transferred to
the target. Here we have transformed the integration variable
ν → W 2, where W 2 is the invariant mass squared of the
hadronic intermediate state, to highlight the distinct resonance
structures.

The structure functions F1 and F2 have been measured
extensively for the proton and deuteron. For the low to
intermediate W region we make use of the parametrizations
of Christy and Bosted (CB) [20,21]. As nearly all data points
agree with the proton structure function parametrizations to
better than 5%, we take the conservative estimate of a uniform
5% uncertainty in F

p
1,2. The parametrization of the deuteron

scattering data is in similar agreement at the 3%–5% level [20],
with some data points out to ∼10% disagreement in limited
kinematic domains. Because the neutron structure functions
are estimated by subtracting out the knowledge of the proton,
we assign a conservative 10% uncertainty on the neutron
structure functions.

Figure 1 displays the integrand �inel
p-n(W 2) contributing to

the proton-neutron mass splitting calculated using the CB
parametrizations. Under exact charge symmetry, the cross
sections for γ ∗p → + and γ ∗n → 0 are identical. The
central values of the Bosted and Christy parametrization give
a violation of this symmetry by about 18% in the  production
rate. This significant CSV effect is what causes the large dip
structure seen in Fig. 1 in the  region. While we expect
some CSV in the  region the CB value seem excessively
large. Bearing in mind that such effects are inextricably linked
with the extraction of the photoneutron cross section for the
deuteron, in the present analysis we prefer to take a charge
symmetric  production rate as our central value. To achieve
this, we set the  parameters of the Bosted-Christy deuteron
fits to match those of the proton results. We attach a 100%
uncertainty to this artificial modification of the empirical fits.
This modification leads to an appreciable change in the cross
sections only in the difficult-to-constrain low-Q and low-W
region. As a consequence of restoring charge symmetry to
the  region, the central value of δM inel

p-n is increased by just
0.020 MeV.

065205-2



DISPERSIVE ESTIMATE OF THE ELECTROMAGNETIC . . . PHYSICAL REVIEW C 90, 065205 (2014)

1.5 2.0 2.5 3.0 3.5 4.0

0.10

0.05

0.00

0.05

W2 GeV2

p
n

in
el

W
2

T
eV

1

FIG. 1. (Color online) The integrand (with respect to W 2) of the
inelastic dispersion integral contributing to the p-n electromagnetic
self-energy (shown for μ2 = 2 GeV2). The dotted line shows the
result of the direct application of the Bosted-Christy structure
functions. The solid line shows the same quantity where the 

resonance contribution has been forced to be isospin symmetric. In
both cases the shaded regions reflect a characteristic uncertainty in
the parametrizations of the individual structure functions.

For the region W 2 > 9 GeV2 we use the Regge form for the
inelastic structure functions proposed by Capella et al. [22],
with the modifications summarized by Sibirtsev et al. [23].

In summary, we determine the inelastic contributions to the
dispersion integral for the nucleons to be

δM inel
p = 0.62 ± 0.03 ± 0.07, (8)

δM inel
n = 0.53 ± 0.05 ± 0.05, (9)

δM inel
p-n = 0.089 ± 0.038 ± 0.019, (10)

where the first error is that from the uncertainty associated
with the structure functions and the second is from the range
of 	2

0.
Very little is known experimentally about the hyperon

structure functions. There are some older studies based on
the MIT bag model [24], while recent lattice QCD studies
have provided insight into the partonic structure of the octet
baryons [25,26]. These simulations offer some guidance
as to the size of SU(3) breaking effects in the inelastic
structure functions. Based on the results of a recent chiral
extrapolation [27], we report estimates for the ratios of the
quark momentum fractions at the physical quark masses:

R�
u ≡ 〈x〉�u

〈x〉pu = 1.2(1), R�
d ≡ 〈x〉�s

〈x〉pd
= 1.5(1), (11)

R�
u ≡ 〈x〉�s

〈x〉pu = 1.19(4), R�
d ≡ 〈x〉�u

〈x〉pd
= 1.4(2). (12)

While the partonic interpretation is not generally applicable
at the low-Q2 values of relevance to the integral of Eq. (7),
we will adopt the flavor separation to enable us to use these
lattice estimates, Eqs. (11) and (12), to guide the significance
of the SU(3) breaking. We write the up or down contributions
to the nucleon structure functions in terms of the proton and
neutron structure functions as

FN,u = 9
15 (4Fp − Fn), FN,d = 9

15 (4Fn − Fp). (13)

Here we have assumed partonic charge symmetry, i.e.,
FN,u ≡ Fp,u = Fn,d and FN,d ≡ Fp,d = Fn,u. To estimate
the inelastic self-energies of Eq. (7) we use structure functions
that are scaled by the lattice estimates

F�,u � 〈x〉�u
〈x〉pu FN,u, F�,s � 〈x〉�s

〈x〉pd
FN,d, (14)

F�,s � 〈x〉�s
〈x〉pu FN,u, F�,u � 〈x〉�u

〈x〉pd
FN,d . (15)

We caution that the resonance structures in the hyperons are
markedly different from those in the nucleons. Nevertheless,
the success of duality in the case of the nucleon [28]
suggests that such W 2-integrated quantities may be reasonably
estimated by this simple SU(3) scaling. This assumption could
be improved upon with a more thorough analysis of the
flavor separation in the low-Q2 region, such as that explored
in Refs. [29–31]. Given the relatively small magnitude of
δM inel, such an improvement is not warranted in the present
calculation.

Under the assumptions stated previously, we can estimate
the hyperon inelastic integrals in terms of the corresponding
nucleon results. Explicitly,

δM inel
�+−�− = (Q2

u − Q2
d

)
9
15R�

u

(
4δM inel

p − δM inel
n

)
, (16)

δM inel
�0−�− = (Q2

u − Q2
d

)
4
15R�

d

(
4δM inel

n − δM inel
p

)
. (17)

For a conservative estimate of the uncertainties, we include
an uncertainty on the lattice momentum fraction ratios (RB

q )
that allows for a 100% variation of the amount of SU(3)
violation (i.e., RB

q − 1). The final results for the hyperon
inelastic integrals are summarized in Table I.

C. Subtraction

Using the subtracted dispersion formalism of WCM, one is
left with a dependence of the self-energy on the real part of
the forward Compton amplitude evaluated at ν = 0 [10],

δMsub
B = − 3α

16πMB

∫ 	2
0

0
dQ2 T B

1 (0,Q2), (18)

(see Ref. [10] for the Lorentz decomposition of the Compton
amplitude). The amplitude T1(0,Q2) has received considerable
attention recently [32–34] in relation to the proton radius
puzzle [35,36]. Knowledge of the momentum dependence of
T1 can be expressed as

T B
1 (0,Q2) = 2G2

M (Q2) − 2F 2
D(Q2) + Q2 2MB

α
βB

MFβ(Q2),

(19)

where FD denotes the elastic Dirac form factor. The first two
terms in this expression can naturally be described as the elastic
contribution. This contribution to the self-energy,

δMsub
el = − 3α

16πM

∫ 	2
0

0
dQ2[2G2

M (Q2) − 2F 2
D(Q2)

]
, (20)

is readily evaluated using the form factors described above.
The results are displayed in Table I.
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The final term in Eq. (19) describes an inelastic component,
which, as in the calculation of WCM, constitutes the dominant
uncertainty in the calculation. In a small-Q2 expansion of
this component the leading term is given by the magnetic
polarizability [37]. A recent phenomenological analysis of the
nucleon magnetic polarizabilities has reported [38]

β
p
M = (3.1 ± 0.8) × 10−4 fm3, (21)

βn
M = (4.1 ± 2.0) × 10−4 fm3, (22)

β
p-n
M = (−1.0 ± 2.0) × 10−4 fm3. (23)

Beyond leading order, the Q2 dependence of the inelastic
contribution is encoded in the form factor Fβ(Q2). Using chiral
perturbation theory, Birse and McGovern [34] have recently
estimated that the small-Q2 behavior of Fβ for the proton may
be described as

Fβ = 1 + Q2

M2
β

+ O(Q4), (24)

with a mass scale

Mβ = 460 ± 100 ± 40 MeV. (25)

At large Q2, T1 must fall like 1/Q2, as determined by the
operator product expansion [39]. Collins has determined the
coefficient of this dominant contribution at large Q2 [39],

T B
1 (0,Q2)

Q2→∞= 1

Q2

{
4κM2

B − 4
∑

q

(
κ + Q2

q

)
MBσB

q

+O
[

1

ln Q2

]}
, (26)

where to lowest order in the strong coupling κ = Nf /(33 −
2Nf ), the sum is over Nf active flavors of quark q and
σB

q denotes the σ term for quark flavor q in baryon B.
The flavor-dependent σ terms, including charge symmetry
violating effects, have been studied in recent lattice QCD
analyses [7,8]. The explicit flavor decomposition, based on
the work reported in Refs. [8,40,41], is displayed in Table II.

To leading order in the isospin splittings, and still to first
order in α [i.e., this term amounts to anO(α(md − mu)) effect],
only the isovector contribution is required and the large-Q2

scaling can be written as

T B
1 (0,Q2)

Q2→∞= 1

Q2

{
−4MB̄

(
Q2

u

mu

m̄
− Q2

d

md

m̄

)

× (
σ B̄

u − σ B̄
d

) + O
[

1

ln Q2

]}
, (27)

where we have introduced the isospin-averaged baryon masses
MB̄ for B̄ = {N,�,�} and the light-quark masses, mu, md , and
m̄ = (mu + md )/2. The isospin-averaged σ terms are given by

TABLE II. Flavor breakdown of light-quark σ terms (all in MeV).

Baryon p n �+ �− �0 �−

σB
u 18(2) 14(1) 13.3(9) 3.8(6) 7.1(4) 1.3(2)

σB
d 26(3) 32(3) 7(1) 23(2) 2.4(4) 12.7(8)

σN
u = (σp

u + σn
d )/2, σN

d = (σp
d + σn

u )/2, and similarly for the
hyperon cases. Numerically, T N

1 (0,Q2) for the nucleon is of
the order (−2 × 10−3 GeV2)/Q2.

Given that the elastic form factors of the nucleon drop off
at least as fast as 1/Q2, the elastic component in Eq. (19)
is irrelevant to the large-Q2 behavior of T1(0,Q2). Previous
authors have advocated approximating Fβ in the small [34] to
intermediate [10] Q2 region by a dipole form

Fβ(Q2) =
[

1

1 + Q2/
(
2M2

β

)]2

. (28)

While these authors have not suggested extending this form
to asymptotically large Q2, we note that this form does not
give a consistent description of the leading 1/Q2 behavior
described above. Taking the central value for the nucleon
isovector polarizability, β

p-n
M ∼ −1 × 10−4 fm3, in Eq. (19)

with this dipole form and hadronic mass scale leads to a scaling
behavior T N

1 (0,Q2) ∼ −0.8 GeV2/Q2. This is a factor of
∼400 larger than predicted by the operator product expansion.

To smoothly connect the small-Q2 and asymptotic domains,
we therefore suggest a model for the inelastic part of Eq. (19),

Q2 2MB̄

α
βB

M FB
β (Q2)

= Q22MB̄βB
M

/
α + Q4CB/

(
3M2

β

)3

[
1 + Q2/

(
3M2

β

)]3 , (29)

where CB is defined to describe exactly the dominant
contribution to the operator product expansion dependence
computed in Eq. (27). We note that because the coefficient CB

is so small compared to the hadronic scale, it has no influence
on the small-Q2 expansion characterized by the mass scale
Mβ in Eq. (24).

Evaluation of the inelastic part of the subtraction term for
the nucleon gives

δM
p-n,sub
inel = 0.18 ± 0.35 MeV, (30)

where the uncertainty reflects the limited knowledge of
β

p-n
M and mass scale Mβ . The quoted uncertainty range has

been estimated by assuming βM and ln Mβ to be normally
distributed.

Polarizabilities of the hyperons are even less well known
than those of the nucleon. A range of results have been
obtained using a variety of theoretical approaches including
chiral effective field theory [42], soliton models [43], 1/NC

expansions [44], a computational hadronic model [45], and
lattice QCD [46].

In the limit of exact SU(3) symmetry, there is an analog of
the Coleman-Glashow relation [47] which relates the isovector
polarizabilities:

β
p-n
M = β�+−�−

M − β�0−�−
M . (31)

Given that we cannot infer any further constraint, we take the
overall scale to be set by the nucleon term such that the average
of the hyperon terms equals that of the nucleon. Keeping the
same uniform uncertainty for the hyperon polarizabilities as
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the nucleon sector, we thus set

β�+−�−
M = (−1.5 ± 2.0) × 10−4 fm3, (32)

β�0−�−
M = (−0.5 ± 2.0) × 10−4 fm3. (33)

The mass scale Mβ associated with the hyperons has not
been investigated. Because the physics is governed more con-
siderably by the strange quarks, however, one may anticipate a
harder scale than that for the nucleon. For this reason we take
a more conservative range of mass scales for the hyperons,
M

�,�
β = 0.7 ± 0.3 GeV. The resulting contributions to the

sum rule are given by

δM
�+−�−,sub
inel = 0.8 ± 1.2 MeV, (34)

δM
�0−�−,sub
inel = 0.3 ± 1.0 MeV. (35)

As for the nucleon case, the uncertainties have been propagated
assuming βM and ln Mβ to be normally distributed.

D. Counterterms

The decomposition of the baryon mass splittings into
electromagnetic and strong components is itself scale de-
pendent. For sufficiently large 	0, where perturbative QCD
is applicable, this scale dependence is entirely encoded in
the operator product expansion analysis described above.
Although the leading contributions are formally second order
for the charge symmetry violating effects, we include them for
completeness. This leading counterterm evaluates to

δM̃ct
B = − 3α

16πMB̄

CB ln

(
	2

0

	2
1

)
, (36)

where, following WCM, we have taken 	0 = 2 GeV2 and
	2

1 = 100 GeV2 for our numerical values, which are summa-
rized in Table I.

III. TOTAL

In summary, our best estimates for the electromagnetic
contribution to the baryon isospin mass splittings are

δMγ
p-n = 1.04 ± 0.35 MeV, (37)

δM
γ

�+−�− = 0.2 ± 1.2 MeV, (38)

δM
γ

�0−�− = −0.7 ± 1.0 MeV. (39)

The value for the isospin breaking in the nucleon sector is
compatible with the analysis by Walker-Loud et al. [10]. It
is also in excellent agreement with the dispersion relation
constrained by lattice QCD simulations [15].

In the hyperon sector, our findings compare favorably with
lattice QCD + QED simulations from the BMW Collabora-
tion [9],

δMγ
p-n = 1.59 ± 0.46 MeV, (40)

δM
γ

�+−�− = 0.08 ± 0.36 MeV, (41)

δM
γ

�0−�− = −1.29 ± 0.17 MeV. (42)
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FIG. 2. (Color online) The contours depict constant electromag-
netic self-energy with respect to the dominant driving uncertainties,
the isovector magnetic polarizability β

p-n
M and the mass parameter Mβ

[see Eq. (29)] characterizing the mass scale by which the correspond-
ing integral is suppressed. The contours are labeled in units of MeV,
with the error bar on these lines implied at the level of ±0.04 MeV.
The blue ellipse denotes the best phenomenological estimates of these
parameters as reported in Refs. [38] and [34], respectively. The shaded
green band displays the lattice calculation of the electromagnetic
self-energy reported by the BMW Collaboration [9]. The red band
shows the lattice-constrained dispersive estimate of δMγ

p-n reported
in Ref. [15].

As in the work of WCM, the uncertainty of the dispersion
integral is dominated by the lack of knowledge of the inelastic
subtraction term. Here we summarize the intermediate stage of
the calculation, computing all contributions up to this isolated
term:

δMγ
p-n − δM

p-n,sub
inel = 0.86 ± 0.04 MeV, (43)

δM
γ

�+−�− − δM
�+−�−,sub
inel = −0.62 ± 0.24 MeV, (44)

δM
γ

�0−�− − δM
�0−�−,sub
inel = −1.00 ± 0.16 MeV. (45)

With these terms relatively well constrained, the lattice
calculation of the total electromagnetic contribution allows us
to explore the driving uncertainties in the inelastic subtraction
term. Figure 2 displays the dependence of the nucleon
electromagnetic mass splitting on the dominant uncertainties
of the inelastic subtraction term. Compatibility between the
dispersion calculation and lattice is observed. Unfortunately,
given the present central values, it is difficult to improve the
estimates for either βM or Mβ .

In Fig. 3 we show similar comparison of the disper-
sion calculation with the lattice QCD + QED values of
the electromagnetic mass differences. Even with the large
range of 	β considered, it is evident the lattice results can
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FIG. 3. (Color online) Graph is labeled the same as Fig. 2,
showing the sensitivity of the � (top panel) and � (lower panel)
baryon electromagnetic splittings to βB

M and Mβ . Uncertainties on
the black contours should be interpreted as ±0.24 MeV for � and
±0.16 MeV for �.

play some meaningful constraint on the hyperon isovector
polarizabilities. The figures suggest that β�+−�−

M lies in the

range (−3 → 0) × 10−4 fm3 and β�0−�−
M in the range (0 →

1.5) × 10−4 fm3. If Mβ turns out to be softer, as suggested
for the nucleon, then less restrictive bounds on the hyperon
polarizabilities would result.

IV. SUMMARY

We have reported a new analysis of the Cottingham sum
rule evaluation of the electromagnetic contribution to mass
differences in the octet baryon states. We have adapted the
recently formulated subtracted dispersion approach introduced
by Walker-Loud et al. to the hyperons, and implemented some
minor updates for the proton-neutron system. Comparing with
this earlier phenomenological work, the minor differences
in the nucleon analysis arise from two sources: (i) in this
work, the significant CSV effects in the  region realized by
the Bosted-Christy structure functions have been suppressed,
this generates a rather small increase in the self-energy; (ii)
the inelastic subtraction involving T

p-n
1 (0,Q2) is suppressed

more rapidly in this work to appropriately match the behavior
dictated by the operator product expansion. This acts to reduce
the size of this term and consequently lessen the sensitivity to
the poorly known isovector polarizability.

For the hyperons, the dispersive estimates have significantly
larger uncertainties than for the nucleon, which are dominated
by the lack of knowledge of the hyperon isovector polarizabili-
ties. Comparison with recent lattice QCD + QED simulations
suggests some modest bounds on the size of the isovector
magnetic polarizabilities. Certainly further theoretical (or
experimental) work on this aspect of hyperon structure would
be of interest.

During the completion of this work, a new lattice QCD +
QED study has been reported in Ref. [48]. While the results
are compatible with those presented here, it is not clear that
the choice of renormalization scheme in that work is consistent
with the Cottingham sum rule.

A recent preprint from the COMPTON@MAX-lab Col-
laboration has reported a new experimental determination of
the isoscalar nucleon polarizability [49]. As a consequence,
an improved estimate of the isovector polarizability can
be deduced, β

p-n
M = (−0.5 ± 1.6) × 10−4 fm3. Following the

analysis above, this number leads to a revised proton-neutron
electromagnetic splitting: δM

γ
p-n = 0.95 ± 0.26 MeV.
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