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Polarization observables in lepton-deuteron elastic scattering including the lepton mass
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Expressions for the unpolarized differential cross section and for various polarization observables in the
lepton-deuteron elastic scattering, � + D → � + D, � = e, μ, τ , have been obtained in the one-photon-exchange
approximation, taking into account the lepton mass. Polarization effects have been investigated for the case of
a polarized lepton beam and polarized deuteron target which can have vector or tensor polarization. Numerical
estimations of the lepton mass effects have been done for the unpolarized differential cross section and for some
polarization observables and applied to the case of low-energy muon deuteron elastic scattering.
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I. INTRODUCTION

The structure of hadrons and nuclei is traditionally studied
through elastic and inelastic electron-hadron (nuclei) scat-
tering as well as through elementary annihilation reactions,
assuming a one-photon-exchange mechanism (for a recent
review, see Ref. [1]). A review of the results obtained by the
measurements of the unpolarized cross section and polariza-
tion observables in the elastic electron-nucleon scattering can
be found in Ref. [2]. Nucleon form factors in the timelike
region are reviewed in Ref. [3]. A review of the deuteron
electromagnetic structure is given in Ref. [4].

Recently, results from the measurement of the proton charge
radius were obtained in an experiment performed at the Paul
Scherrer Institute (PSI, Switzerland) [5] from the Lamb shift in
muonic hydrogen (CREMA collaboration). The value obtained
is significantly different from earlier measurements based on
electronic hydrogen spectroscopy and elastic electron-proton
scattering and is smaller by 7σ than the 2010 CODATA
official value [6]. Various explanations of this difference were
proposed.

Some authors suggested the possible existence of new
particles that interact with muons and hadrons but not with
electrons. By adjusting the couplings of these particles one
can, in principle, obtain an additional energy shift in the
muonic hydrogen. This may lead to agreement between the
measurement of the proton charge radius in the muonic and
electronic experiments. Thus, for example, the existence of
new particles with scalar and pseudoscalar (or vector and
axial) couplings were proposed in Ref. [7]. The couplings
are constrained by the existing data on the Lamb shift, muon
magnetic moment, and kaon decay rate. New vector and scalar
particles at the 100 MeV scale were proposed in Ref. [8]. The
important consequence would be an enhancement by several
orders of magnitude of the parity-violating asymmetries in the
scattering of low-energy muons from nuclei.

On the other hand, the authors of the Ref. [9] have
analyzed the recent electron-proton scattering data obtained at
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Mainz [10] (the cross sections were measured with statistical
errors below 0.2%). By using a dispersive approach they
obtained a small value for the proton charge radius which
is consistent with the recent result obtained in the experiment
with muonic hydrogen. In Ref. [11] it was shown that previous
extractions of the proton charge radius from the electron-
proton scattering data may have underestimated the errors.

In electron-proton elastic scattering experiments, the radius
is related to the slope of the charge form factors as a function of
the transferred momentum squared, Q2, in the limit Q2 → 0:〈

r2
c

〉 = −6
dGE(Q2)

dQ2

∣∣∣∣
Q2=0

. (1)

In Ref. [12] it was suggested that the error related to the
extrapolation Q2 → 0 could be reduced by measuring this
process in inverse kinematics.

Note that, about 40 years ago, there were tests of the
muon-electron universality in the processes of the elastic and
deep inelastic electron (muon) scattering. Measurements of
the muon-proton elastic cross section in the range 0.15 �
Q2 � 0.85 GeV2 were compared with similar electron-proton
data [13]. An apparent disagreement was found between muon
and electron experiments which can possibly be accounted
for by a combination of systematic normalization errors [13].
The data were obtained at rather high values of Q2 in
order to extract the proton charge radius. In Ref. [14], the
muon-proton elastic scattering was measured in the range
0.6 � Q2 � 3.2 GeV2. A possible difference from muon-
electron universality was found, but the statistical accuracy of
this observation was not compelling. The muon-proton deep
inelastic scattering was measured in the range 0.4 � Q2 �
3.6 GeV2 [15]. The data were consistent with muon-electron
universality. Two-photon-exchange effects were investigated
in the muon-proton elastic scattering [16]. The validity of the
one-photon-exchange approximation was confirmed for Q2 up
to 0.85 GeV2 and incident muon energies up to 17 GeV.

The fact that the proton charge radius was not measured
in the process of the elastic muon-proton scattering led to the
proposal of the MUon proton Scattering Experiment (MUSE)
at the Paul Scherrer Institute (Zurich) [17]. This experiment
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plans a simultaneous measurement of the elastic μ−p and
e−p scattering as well as μ+p and e+p and will establish the
consistency or the difference of the muon-proton and electron-
proton interaction with good precision in the considered
kinematics. Three values of the muon beam momenta which
are comparable with the muon mass: 115, 153, and 210 MeV,
were chosen. However, in case of low energy and large
lepton mass, the terms proportional to the lepton mass become
important and the mass should be taken explicitly into account
in the calculation of the kinematical variables and of the
experimental observables. The expressions of the kinematical
relations and of the polarized and unpolarized observables are
different from those currently used. In Ref. [18] the effect
of the lepton mass was discussed for muon-proton elastic
scattering for the unpolarized cross section and the double
spin asymmetry, where the lepton beam and the target are
polarized.

The MUSE experiment at PSI will also determine the radii
of light nuclei through muon elastic scattering. Of particular
interest is a measurement on deuterium. The issue of taking
into account finite-lepton-mass effects is also relevant for the
case of the elastic muon-deuteron scattering.

In this paper we calculate the expressions for the unpo-
larized differential cross section and polarization observables,
taking into account the lepton mass, for elastic lepton-deuteron
scattering. We calculate the asymmetries due to the tensor
polarization of the deuteron target and the spin correlation
coefficients due to the lepton beam polarization and vector
polarization of the deuteron target. Explicit formulas are
given in two coordinate systems which are relevant for the
experiment: in the first one the z axis is directed along the
lepton beam momentum and in the second one the z axis is
directed along the virtual photon momentum (or along the
transferred momentum).

II. FORMALISM

Let us consider the reaction

�(k1) + D(p1) → �(k2) + D(p2), � = e,μ,τ, (2)

where the momenta of the particles are written in parentheses.
In the laboratory system, where we perform our analysis, the
deuteron (lepton) four-momenta in the initial and final states
are, respectively, p1 and p2 (k1 and k2) with components

p1 = (M,0), p2 = (E2, �p2),

k1 = (ε1,�k1), k2 = (ε2,�k2), (3)

where M is the deuteron mass.
The matrix element of the reaction (2) can be written as

follows in the one-photon-exchange approximation:

M = e2

Q2
jμJμ, jμ = ū(k2)γμu(k1). (4)

By using the requirements of the Lorentz invariance, current
conservation, parity and time-reversal invariance of the hadron
electromagnetic interaction, the general form of the elec-
tromagnetic current for the spin-one deuteron is completely
described by three form factors and can be written, following

Ref. [19], as

Jμ = (p1 + p2)μ

[
−G1(Q2)U1 · U ∗

2 + G3(Q2)

M2

×
(

U1 · qU ∗
2 · q − q2

2
U1 · U ∗

2

)]
+G2(Q2)(U1μU ∗

2 · q − U ∗
2μU1 · q), (5)

where q = k1 − k2 = p2 − p1, Q2= − q2 = −2M(M − Ed ),
Ed is the final deuteron energy, and U1μ and U2μ are the
polarization four-vectors for the initial and final deuteron
states. The functions Gi(Q2), i = 1,2,3, are the deuteron
electromagnetic form factors, which are real functions in the
region of the spacelike momentum transfer and depend only
on the virtual photon four-momentum squared. These form
factors are related to the standard deuteron form factors: GC

(the charge monopole), GM (the magnetic dipole), and GQ

(the charge quadrupole) by

GM = −G2, GQ = G1 + G2 + 2G3,

GC = 2
3τ (G2 − G3) + (

1 + 2
3τ

)
G1, (6)

with τ = Q2/(4M2). The standard form factors have the
following normalization:

GC(0) = 1, GM (0) = (M/mn)μd, GQ(0) = M2Qd ,

where mn is the nucleon mass, μd (Qd ) is deuteron magnetic
(quadrupole) moment and their values are μd = 0.857 [20],
Qd = 0.2859f m2 [21].

The differential cross section can be written in terms of the
matrix element modulus squared as

dσ = (2π )4

4I
|M|2 d�k2d �p2

(2π )64ε2E2
δ(4)(k1 + p1 − k2 − p2), (7)

where I 2 = (k1 · p1)2 − m2M2 and m is the lepton mass.
Writing the matrix element in the form M = (e2/Q2)M

one obtains the following expression for the differential cross
section of the reaction (2) in the laboratory system for the case
when the scattered lepton is detected in the final state

dσ

d	
= α2

4M

�k2
2

d|�k1|
|M|2
Q4

, (8)

where d = (M + ε1)|�k2| − ε2|�k1| cos θ , and θ is the lepton
scattering angle (angle between the initial and final lepton
momenta). The scattered lepton energy has the following form
in terms of the lepton scattering angle:

ε2 = (ε1 + M)(Mε1 + m2) + �k2
1 cos θ

√
M2 − m2 sin2 θ

(ε1 + M)2 − �k2
1 cos2 θ

.

(9)

In the limit of zero lepton mass this expression gives the well-
known relation between the energy and angle of the scattered
lepton:

ε2 = ε1

[
1 + 2(ε1/M) sin2 θ

2

]−1

.
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The differential cross section for the case when the recoil
deuteron is detected in the final state can be written as

dσ

d	D

= α2

4M

�p2
2

d̄|�k1|
|M|2
Q4

, (10)

where d̄ = (M + ε1)| �p2| − E2|�k1| cos θD , and θD is the angle
between the momenta of the lepton beam and recoil deuteron.
By using the relation

dQ2 = |�k1|| �p2| 1

π

E2 + M

ε1 + M
d	D, (11)

we obtain the following expression for the differential cross
section over the Q2 variable:

dσ

dQ2
= πα2

4M

| �p2|
d̄�k2

1

ε1 + M

E2 + M

|M|2
Q4

. (12)

The square of the reduced matrix element can be written as

|M|2 = LμνH
μν, (13)

where the leptonic Lμν and hadronic Hμν tensors are defined
as follows:

Lμν = jμj ∗
ν , Hμν = JμJ ν∗. (14)

If the initial and scattered leptons are unpolarized, then in this
case the leptonic tensor is

Lμν(0) = 2q2gμν + 4(k1μk2ν + k2μk1ν). (15)

In the case of polarized lepton beam the spin-dependent part
of the leptonic tensor can be written as

Lμν(s) = 2im〈μνqsl〉, (16)

where 〈μνab〉 = εμνρσ aρbσ and slμ is the lepton polarization
four-vector which satisfies the conditions s2

l = −1, k1 · sl = 0.
For an arbitrary polarization state of the initial and recoil

deuterons, we may write the electromagnetic current in the
following form:

Jμ = JμαβU1αU ∗
2β,

and the hadronic tensor Hμν becomes

Hμν = JμαβJ νσγ ∗ρi
ασ ρ

f
γβ, (17)

where ρi
ασ (ρf

γβ) is the spin-density matrix of the initial (final)
deuteron.

Because we consider the case of a polarized deuteron target
and unpolarized recoil deuteron, the hadronic tensor Hμν can
be expanded according to the polarization state of the initial
deuteron:

Hμν = Hμν(0) + Hμν(V ) + Hμν(T ), (18)

where the spin-independent tensor Hμν(0) corresponds to an
unpolarized initial deuteron and the spin-dependent tensor
Hμν(V ) [Hμν(T )] describes the case where the deuteron target
has a vector (tensor) polarization.

In the general case, the initial deuteron polarization state
is described by the spin-density matrix. The general expres-
sion for the deuteron spin-density matrix in the coordinate
representation is [22]

ρi
αβ = −1

3

(
gαβ − p1αp1β

M2

)
+ i

2M
〈αβsp1〉 + Qαβ, (19)

where sμ is the polarization four-vector describing the vector
polarization of the deuteron target (p1 · s = 0, s2 = −1) and
Qμν is the tensor which describes the quadrupole polarization
of the initial deuteron and which satisfies the following condi-
tions: Qμν = Qνμ, Qμμ = 0, p1μQμν = 0. In the laboratory
system (the initial deuteron rest frame) all time components
of the tensor Qμν are zero and the tensor polarization of
the deuteron target is described by five independent space
components:

Qij = Qji, Qii = 0, i,j = x,y,z.

If the polarization of the recoil deuteron is not measured, the
deuteron spin-density matrix can be written as

ρ
f
αβ = −

(
gαβ − p2αp2β

M2

)
. (20)

The relation between elements of the deuteron spin-density
matrix in the helicity and spherical tensor representations
as well as in the coordinate representation is given in the
Appendix. The relations between the polarization parameters
si and Qij and the population numbers n+, n−, and n0

describing the polarized deuteron target, which is often used
in spin experiments, are also given.

III. UNPOLARIZED DIFFERENTIAL CROSS SECTION

Let us consider the elastic scattering of unpolarized lepton
beam by unpolarized deuteron target. The hadronic tensor
Hμν(0) can be written as

Hμν(0) = H1(Q2)g̃μν + H2(Q2)p̃1μp̃1ν,

g̃μν = gμν − qμqν

q2
, (21)

p̃1μ = p1μ − p1 · q

q2
qμ.

The real structure functions H1,2(Q2) are expressed in terms
of the deuteron electromagnetic form factors as

H1(Q2) = 2
3Q2(1 + τ )G2

M,

H2(Q2) = 4M2(G2
C + 2

3τG2
M + 8

9τ 2G2
Q

)
. (22)

The contraction of the spin-independent leptonic Lμν(0) and
hadronic Hμν(0) tensors gives

S(0) = −4(q2 + 2m2)H1(Q2)

+ 2

[
(1 + τ )q2 + 4

M2
(k1 · p̃1)2

]
H2(Q2), (23)

where the averaging over the spin of the initial deuteron is
included in the structure functions H1,2(Q2).
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By substituting this expression into Eq. (8) and averaging
over the spin of the initial lepton, we obtain the expression for
the unpolarized differential cross section of the reaction (2) in
the laboratory system, taking into account the lepton mass, in
the form

dσun

d	
= σ0D, (24)

where σ0 is the cross section for the scattering of lepton on the
point spin-1 particle. It is a generalization of the Mott cross
section (with a recoil factor) to the case when the lepton mass
is not neglected:

σ0 = 4
α2

q4

M

d

�k2
2

|�k1|
[
ε2

1 − M(M + 2ε1)τ
]
. (25)

Note that, in the limit m = 0, this expression reduces to the
Mott cross section

σ0(m = 0) = σMott = α2 cos2 θ
2

4ε2
1 sin4 θ

2

(
1 + 2

ε1

M
sin2 θ

2

)−1

, (26)

where θ is the lepton scattering angle (between the momenta
of the initial and final leptons).

The quantity D, which contains the information about the
structure of the deuteron, has a form

D = A(Q2) + f (Q2,ε1,m)B(Q2), (27)

where the standard structure functions A(Q2) and B(Q2)
which describe unpolarized differential cross section of the
reaction (2) in the zero-lepton-mass approximation are explic-
itly singled out:

A(Q2) = G2
C(Q2) + 8

9τ 2G2
Q(Q2) + 2

3τG2
M (Q2),

B(Q2) = 4
3τ (1 + τ )G2

M (Q2). (28)

The function f (Q2,ε1,m) has the form

f (Q2,ε1,m) = (Q2 − 2m2)

[
4ε2

1 − Q2

(
1 + 2

ε1

M

)]−1

.

(29)
In the limit of zero lepton mass this function reduces to

f (Q2,ε1,m = 0) = tan2 θ

2
.

Thus, in this approximation, we obtain the standard expression
for the unpolarized differential cross section of the reaction (2):

dσun

d	
= σMott

{
A(Q2) + B(Q2) tan2

(
θ

2

)}
. (30)

In the standard approach (zero lepton mass) the measurement
of the unpolarized differential cross section at various values
of the lepton scattering angle and the same value of Q2 allows
us to determine the structure functions A(Q2) and B(Q2).
Therefore, it is possible to determine the magnetic form factor
GM (Q2) and the following combination of the form factors
G2

C(Q2) + 8τ 2G2
Q(Q2)/9.

The determination of this quantity in the nonzero-lepton-
mass approximation requires the measurement of the unpo-
larized differential cross section at different values of lepton
beam energy and at the same value of Q2. The separation

of the charge GC and quadrupole GQ form factors requires
polarization measurements.

IV. VECTOR POLARIZED DEUTERON TARGET

The calculation of polarization observables requires us
to choose a coordinate frame. Let us define the following
coordinate frame in the lab system: the z axis is directed along
the lepton beam momentum �k1, the y axis is directed along
the vector �k1 × �k2, and the x axis is chosen in order to form
a left-handed coordinate system. Therefore, the reaction plane
is the xz plane.

In this section we consider the T -even polarization ob-
servables, which depend on the spin correlation �s · �sl which
determines the scattering of the polarized lepton beam (of spin
sl) by a vector polarized deuteron target (of spin s).

In the case considered, the spin-dependent tensor Hμν(V ),
which describes the vector-polarized initial deuteron and
unpolarized final deuteron, can be written as

Hμν(V ) = i

M
S1(Q2)〈μνsq〉

+ i

M3
S2(Q2)[p̃1μ〈νsqp1〉 − p̃1ν〈μsqp1〉]

+ 1

M3
S3(Q2)[p̃1μ〈νsqp1〉 + p̃1ν〈μsqp1〉], (31)

where the three real structure functions Si(Q2), i = 1 − 3,
can be expressed in terms of the deuteron electromagnetic
form factors as

S1(Q2) = M2(1 + τ )G2
M,

S2(Q2) = M2

[
G2

M − 2

(
GC + τ

3
GQ

)
GM

]
, (32)

S3(Q2) = 0.

The third structure function S3(Q2) vanishes since the
deuteron form factors are real functions for elastic scattering
(in the spacelike region of momentum transfer). In the
timelike region (for annihilation processes, for example,
e− + e+ → D + D̄), where the form factors are complex
functions, the structure function S3(Q2) is not zero and it is
determined by the imaginary part of the form factors; namely,
S3(Q2) = 2M2Im[GC − τ/(3GQ)]G∗

M .
The differential cross section of reaction (2) describing the

scattering of polarized lepton beam on the vector-polarized
deuteron target can be written as (referring only to the spin-
dependent part of the cross section which is determined by the
spin correlation coefficients)

dσ (s,sl)

d	
= dσun

d	
(1 + Cxxξxξlx + Cyyξyξly + Czzξzξlz

+Cxzξxξlz + Czxξzξlx), (33)

where the vector �ξl (�ξ ) is the unit polarization vector in the
rest frame of the lepton beam (deuteron target). The spin
correlation coefficients Cij have the following form in terms
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of the deuteron electromagnetic form factors:

DCxx = m

M

GM

z

[
τ �k2

2 sin2 θGM − 2(|�k1| − |�k2| cos θ )2

(
GC + τ

3
GQ

)]
,

DCyy = 2
m

M

q2

z
(1 + τ )

(
GC + τ

3
GQ

)
GM,

DCzx = − m

M

|�k2|
z

sin θ (|�k1| − |�k2| cos θ )

(
τGM + 2GC + 2

3
τGQ

)
GM, (34)

DCxz = −|�k2|
zM

sin θGM

[
ε1(|�k1| − |�k2| cos θ )

(
τGM + 2GC + 2

3
τGQ

)
− 2M|�k1|τ (1 + τ )GM

]
,

DCzz = GM

zM

{
τGM (|�k1| − |�k2| cos θ )[ε1(|�k1| − |�k2| cos θ ) − 2M|�k1|(1 + τ )] − 2ε1�k2

2 sin2 θ

(
GC + τ

3
GQ

)}
,

where z = 4[ε2
1 − τ (M2 + 2Mε1)]. Note that the spin correlation coefficients Cxx, Cyy , and Czx correspond to the transverse

(relative to the lepton beam momentum) components of the spin vector �ξl and therefore they are proportional to the lepton mass.
The spin correlation coefficients Cxz and Czz describe the scattering of the longitudinally polarized lepton beam and they are not
suppressed by the factor m/M .

In the limit of zero lepton mass we have the following expressions for the spin correlation coefficients:

D̄C(0)
xz = 1

2

τ

ε1
tan

θ

2

[
(ε1 + ε2)GM − 4(M + ε1)

(
GC + τ

3
GQ

)]
GM,

D̄C(0)
zz = −2τGM

M

ε1

[
GC + τ

3
GQ + ε2

2M2
(M + ε1)

(
1 + ε1

M
sin2 θ

2

)
tan2 θ

2
GM

]
, (35)

C(0)
xx = C(0)

yy = C(0)
zx = 0, D̄ = A(Q2) + B(Q2) tan2 θ

2
.

The expressions of these coefficients coincide with the results obtained in Ref. [19].
Another coordinate system is also used in the description of the elastic lepton-deuteron scattering: the Z axis is directed along

the virtual photon momentum (transferred momentum) �q, the Y axis is directed along the vector �k1 × �k2 and coincides with the
y axis, and the X axis is chosen in order to form a left-handed coordinate system. These coordinate systems are connected by a
rotation in the reaction scattering plane, which it is determined by the angle ψ between the direction of the lepton beam and the
virtual photon momentum:

cos ψ = M + ε1

|�k1|

√
τ

1 + τ
, sin ψ = − 1

|�k1|
1√

1 + τ

√
ε1ε2 − τM2 − m2(1 + τ ). (36)

Thus, the spin correlation coefficients in the new coordinate system can be related to the ones in the previously considered
coordinate system by the following relations:

CZz = cos ψCzz + sin ψCxz, CXz = − sin ψCzz + cos ψCxz,

CZx = cos ψCzx + sin ψCxx, CXx = − sin ψCzx + cos ψCxx. (37)

The spin correlation coefficient Cyy is the same in both coordinate systems. We do not transform the spin components of the
lepton beam in order not to mix the transverse and longitudinal components (relative to the lepton beam momentum) since only
the last one leads to the spin correlation coefficients which are not proportional to the lepton mass. So, in this coordinate system
the z component of the spin of the lepton beam corresponds to the longitudinal polarization and the x component corresponds to
the transverse polarization which belongs to the reaction scattering plane.

After performing the rotation we obtain the following expressions for the spin correlation coefficients in the new coordinate
system:

DCZz = 1

Mz|�k1|
GM√

τ (1 + τ )

{
2M|�k1|τ (1 + τ )[τ (M + ε1)(|�k2| cos θ − |�k1|) − r|�k2| sin θ ]GM + ε1(|�k2| cos θ − |�k1|)

× [τ 2(M + ε1)(|�k2| cos θ − |�k1|) − r|�k2| sin θ ]GM − 2ε1|�k2| sin θ [τ (M + ε1)|�k2| sin θ + r(|�k2| cos θ − |�k1|)]

×
(

GC + τ

3
GQ

)}
,
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DCXz = 1

Mz|�k1|
GM√

τ (1 + τ )

{
2ε1|�k2| sin θ [τ (M + ε1)(|�k2| cos θ − |�k1|) − r|�k2| sin θ ]

(
GC + τ

3
GQ)

)
+ τ [τ (M + ε1)|�k2| sin θ + r(|�k2| cos θ − |�k1|)][ε1(|�k2| cos θ − |�k1|) + 2M|�k1|(1 + τ )]GM

}
,

DCZx = − m

M

1

z|�k1|
GM√

τ (1 + τ )

{
τ |�k2| sin θ [r|�k2| sin θ − τ (M + ε1)(|�k2| cos θ − |�k1|)]

×GM + 2(|�k1| − |�k2| cos θ )[τ (M + ε1)|�k2| sin θ − r(|�k1| − |�k2| cos θ )]

(
GC + τ

3
GQ

)}
,

DCXx = m

M

1

z|�k1|
GM√

τ (1 + τ )

{
τ |�k2| sin θ [τ |�k2|(M + ε1) sin θ + r(|�k2| cos θ − |�k1|)]GM − 2(|�k1| − |�k2| cos θ )

× [τ (M + ε1)(|�k1| − |�k2| cos θ ) + r|�k2| sin θ ]

(
GC + τ

3
GQ

)}
,

r =
√

τ [ε1ε2 − τM2 − m2(1 + τ )]. (38)

In the limit of zero lepton mass there are only two nonzero spin correlation coefficients corresponding to the longitudinal
polarization of the lepton beam, and they have following form:

D̄C
(0)
Zz = −τ

√
(1 + τ )

(
1 + τ sin2

θ

2

)
tan

θ

2
sec

θ

2
G2

M,

D̄C
(0)
Xz = −2

√
τ (1 + τ ) tan

θ

2
GM

(
GC + τ

3
GQ

)
. (39)

Along with the transformation of the spin correlation coefficients it is necessary to transform the vector which describes the
vector polarization of the deuteron target. The new components of this vector are related to sz and sx , Eq. (19), as follows:

sI = VIi(ψ)si, V (ψ) =
(

cos ψ sin ψ

− sin ψ cos ψ

)
, (40)

where I = Z,X and i = z,x.

V. TENSOR-POLARIZED DEUTERON TARGET

In the case of tensor-polarized deuteron target, the general structure of the spin-dependent tensor Hμν(T ) can be written in
terms of five structure functions as follows:

Hμν(T ) = V1(Q2)Q̄g̃μν + V2(Q2)
Q̄

M2
p̃1μp̃1ν + V3(Q2)(p̃1μQ̃ν + p̃1νQ̃μ)

+V4(Q2)Q̃μν + iV5(Q2)(p̃1μQ̃ν − p̃1νQ̃μ),

where we introduce the following notations:

Q̃μ = Qμνqν − qμ

q2
Q̄, Q̃μqμ = 0,

Q̃μν = Qμν + qμqν

q4
Q̄ − qνqα

q2
Qμα − qμqα

q2
Qνα, (41)

Q̃μνqν = 0, Q̄ = Qαβqαqβ.

The structure functions Vi(Q2) (i = 1 − 5), which describe the part of the hadronic tensor due to the tensor polarization of the
deuteron target, have the following form in terms of the deuteron form factors:

V1(Q2) = −G2
M, V5(Q2) = 0,

V2(Q2) = G2
M + 4

1 + τ

(
GC + τ

3
GQ + τGM

)
GQ, (42)

V3(Q2) = −2τ
[
G2

M + 2GQGM

]
, V4(Q2) = 4M2τ (1 + τ )G2

M.

064901-6



POLARIZATION OBSERVABLES IN LEPTON-DEUTERON . . . PHYSICAL REVIEW C 90, 064901 (2014)

The fifth structure function V5(Q2) is zero since deuteron form factors are real functions in the kinematical region considered. In
the timelike region of momentum transfers this structure function is not zero and is given by V5(Q2) = −4τImGQG∗

M .
The differential cross section of the reaction (2) describing the scattering of unpolarized lepton beam on the tensor-polarized

deuteron target can be written as

dσ (Q)

d	
= dσun

d	
[1 + Axx(Qxx − Qyy) + AxzQxz + AzzQzz], (43)

where Aij are the asymmetries caused by the tensor polarization of the deuteron target. Here we used the conditions that the tensor
Qij is symmetrical and traceless: Qxx + Qyy + Qzz = 0. The asymmetries have the following form in terms of the deuteron
electromagnetic form factors:

DAxx = 1

2

�k2
2

M2

sin2 θ

z

{(
ε2

1 + τM2 − m2)G2
M + 4(1 + τ )−1GQ

[
τ (M + ε1)(ε1 − τM)GM

+ (
ε2

1 − τM2 − 2τMε1
)(

GC + τ

3
GQ

)]}
,

DAxz = −2
ε1|�k2|
M2z

sin θ

([
ε1(|�k1| − |�k2| cos θ )

(
1 + τ

M2

ε2
1

− m2

ε2
1

)
− 2τM|�k1|

(
1 + M

ε1

)]
G2

M + 4
ε1GQ

1 + τ

{
(|�k1| − |�k2| cos θ )

×
(

1 − τ
M2

ε2
1

− 2τ
M

ε1

)(
GC + τ

3
GQ

)
+ τ

(
1 − τ

M

ε1

)
GM

[
|�k1|

(
1 − τ

M

ε1

)
− |�k2|

(
1 + M

ε1

)
cos θ

]})
, (44)

DAzz = 1

zM2

([
(|�k1| − |�k2| cos θ )2 − 1

2
�k2

2 sin2 θ

]{(
ε2

1 + τM2 − m2
)
G2

M + 4(1 + τ )−1GQ

[
τ (M + ε1)(ε1 − τM)GM

+ (
ε2

1 − τM2 − 2τMε1
)(

GC + τ

3
GQ

)]}
+ 4τM|�k1|GM{M|�k1|(1 + τ )GM − (|�k1| − |�k2| cos θ )[(M + ε1)GM + 2(ε1 − τM)GQ]}

)
.

In the limit of zero lepton mass we have the following expressions for the asymmetries due to the tensor polarization of the
deuteron target:

D̄A(0)
xx = τ

2

{(
1 + τ

M2

ε2
1

)
G2

M + 4(1 + τ )−1GQ

[
τ

(
1 + M

ε1

)(
1 − τ

M

ε1

)
GM +

(
1 − τ

M2

ε2
1

− 2τ
M

ε1

)(
GC + τ

3
GQ

)]}
,

D̄A(0)
xz = − ε2

M

τ

1 + τ
sin θ

{
4

(
1 + M

ε1

)
GQ

(
GC + τ

3
GQ

)
+ (1 + τ )

(
1 + M

ε1

)
tan2 θ

2
G2

M

+ 2

(
1 − τ

M

ε1

)[
− 1 − τ + 2 sin2 θ

2

(
1 + ε1

M
+ ε2

1

M2
− τ

ε1

M

)](
1 + tan2 θ

2

)
GMGQ

}
, (45)

D̄A(0)
zz = −τ

2

{[
6

τ

1 + τ

ε1 + ε2

ε1

(
1 + M

ε1

)
GQ − GM

]
GM + tan2 θ

2

[
1 − 2τ − 6τ

M

ε1

(
1 + M

2ε1

)]
×

[
G2

M + 4

1 + τ
cot2

θ

2
GQ

(
GC + τ

3
GQ

)]}
.

In the coordinate system where the Z axis is directed along the virtual photon momentum, the asymmetries due to the tensor
polarization of the deuteron target have the following form:

Aα = Tαβ(ψ)Aβ, (46)

where the indices of the rotation matrix have following meaning: α = ZZ, XX, XZ and β = zz, xx, xz. The rotation matrix
can be written as

T (ψ) =

⎛⎜⎝
1
4 (1 + 3 cos 2ψ) 3

4 (1 − cos 2ψ) 3
4 sin 2ψ

1
4 (1 − cos 2ψ) 1

4 (3 + cos 2ψ) −1
4 sin 2ψ

− sin 2ψ sin 2ψ cos 2ψ

⎞⎟⎠ . (47)

Along with the transformation of the asymmetries it is necessary to transform the tensor of the quadrupole polarization which
describes the tensor polarization of the deuteron target. The new tensor polarization parameters are related to Qzz, (Qxx − Qyy),
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and Qxz, Eq. (19), as follows:

QZZ = 1
4 (1 + 3 cos 2ψ)Qzz + 1

4 (1 − cos 2ψ)(Qxx − Qyy) + sin 2ψQxz,

QXX − QYY = 3
4 (1 − cos 2ψ)Qzz + 1

4 (3 + cos 2ψ)(Qxx − Qyy) + sin 2ψQxz, (48)

QXZ = − 3
4 sin 2ψQzz + 1

4 sin 2ψ(Qxx − Qyy) + cos 2ψQxz.

VI. NUMERICAL ESTIMATES

In this section we give numerical estimates of the effect
of the mass on the kinematical variables and on some of the
experimental observables. Because two variables completely
define the kinematics for a binary process, the results are
preferentially illustrated as bidimensional plots as function
of the muon beam energy and the muon scattering angle.

A. Kinematics

The effect of the lepton mass on the kinematical variables
is illustrated for the scattered lepton energy and for the
momentum transfer squared.

The relative difference between the scattered lepton energy
taking and not taking into account the lepton mass is shown
in Fig. 1(a) as a bi-dimensional plot as a function of the muon
incident energy and scattering angle.

The effect of the mass on the momentum transfer squared
is shown in Fig. 1(b).

From these figures it appears that the effect of the lepton
mass on the energy and angle of the scattered muon is sizable
in the considered kinematical range, in particular at low beam
energies. The scattered muon energy is largely modified at
small Q2 and large scattering angles and a huge (relative) effect
appears for the momentum transfer squared. These effects are
quantified in Table I.

B. Parametrization of deuteron form factors

For the calculation of unpolarized and polarized observ-
ables, knowledge of the deuteron form factors is needed. We
used the parametrization from Ref. [23] which is based on a

 [GeV]
1
ε

0.2
0.3

0.4
0.5  [deg]θ50

100

0

2

4

 (%)2ε)/0
2ε-2ε(

 [GeV]
1
ε

0.2
0.3

0.4
0.5  [deg]

θ50
100

20

40

60

80

 (%)2)/Q2(0)-Q2(Q

(a) (b)

FIG. 1. (Color online) Effect of the lepton mass on the kinematics
of the scattered lepton: (a) the relative difference in percent between
the scattered lepton energy and (b) the momentum transfer squared
taking and not taking into account, respectively, the lepton mass as a
function of the scattering muon angle and of the incident energy.

“two-component model” of the deuteron, inspired from vector
meson dominance [24] where the pn core is surrounded by
an (isoscalar) meson cloud. This parametrization has a simple
analytical form and reproduces best the existing experimental
data. We recall here the formulas and the parameter set that
we used.

The three deuteron form factors are parametrized as

Gi(Q
2) = Nigi(Q

2)Fi(Q
2), i = C,Q,M, (49)

where Ni is the normalization of the ith form factor at Q2 = 0:

NC = GC(0) = 1,

NQ = GQ(0) = M2Qd = 25.83,

NM = GM (0) = M

mp

μd = 1.714.

where mp is the proton mass.
The expression for the meson cloud is

Fi(Q
2) = 1 − αi − βi + αi

m2
ω

m2
ω + Q2

+ βi

m2
φ

m2
φ + Q2

,

where mω = 0.784 GeV (mφ = 1.019 GeV) is the mass of
the ω (φ) meson. These expressions are built in such a form
that Fi(0) = 1 for any values of the free parameters αi and βi ,
which are real numbers.

The intrinsic core is parametrized as

gi(Q
2) = 1/[1 + γiQ

2]δi . (50)

The terms gi(Q2) are functions of two parameters, also real.
We took common values for all form factors: γi = 12.1 and
δi = 1.05.

TABLE I. Effect of including the lepton mass on the relevant
kinematical quantities, Q2, ε2 and ratio of cross sections for three
values of the beam energy and two scattering angles. The index (0)

indicates the value when the lepton mass is set to zero.

ε1 θ Q2 Q2(0) ε2 ε0
2 σ/σ 0

[GeV] [deg] [GeV2] [GeV2] [GeV] [GeV]

0.1 20 0.00232 0.00120 0.10004 0.09968 0.23
0.1 80 0.00222 0.01582 0.10049 0.09578 45.41
0.15 20 0.00136 0.00270 0.14964 0.14928 3.96
0.15 80 0.01758 0.03488 0.14531 0.14070 3.94
0.2 20 0.00346 0.00479 0.19908 0.19872 1.95
0.2 80 0.04381 0.06075 0.18832 0.18380 1.22
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 [GeV]
1
ε
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θ
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4

(0)
unσ/unσ

FIG. 2. (Color online) Bidimensional plot of the ratio between
the cross section taking and not taking into account the lepton mass
as function of ε1 and θ .

The parameters αC and αM have been fixed by the value
of the experimental node which appears at Q2 = 1.9 GeV2

and �0.7 GeV2 for GM and GC , respectively. The other
parameters are βi(GC) = −5.11, αQ = 4.21, βQ = −3.41,
and βM = −2.86.

C. Experimental observables

Using Eqs. (23)–(29) with the parametrization of form
factors above described, the unpolarized cross section is
calculated in the relevant kinematical range. The correction to
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FIG. 3. (Color online) Correlation coefficients Cxx (top left), Cyy

(top right), Czx (bottom left), and Cxz (bottom right) as functions of
ε1 and θ .

the Born cross section due to the finite lepton mass is illustrated
in Fig. 2, where the ratio between the cross section taking
and not taking into account the lepton mass is shown as a
function of ε1 and θ . One can see that this ratio increases
essentially at small energies and large angles. Besides the
change in the kinematical variables, this is due to the presence
of �k1 in the denominator of Eq. (25) and to the additional
terms accompanying the structure functions [see Eqs. (27)
and (29)].

Including the lepton mass changes essentially the kinemat-
ics and the dynamics, particularly at low beam energy. For the
evaluation of the counting rates in preparing the experiments,
the complete formula of the cross section [Eqs. (24) and (25)]
has to be taken into account, because the effect of including the
lepton mass is proportionally the same, as illustrated for the
cross-section ratio in Fig. 2, at the corresponding kinematical
conditions.

The extraction of the magnetic form factor from the cross
section μd at backward angles, or the relevant combination of
GC and GQ at forward angles has also to take into account the
complete formula and the additional mass-dependent terms.

The extrapolation of form factors to Q2 → 0 is therefore
affected in both coordinates: the calculated Q2 and the
extracted form factors. The effect is much larger than the
percent precision of the expected data and should be taken
into account.

The polarization observables Cxx , Cyy , Czx , Cxz, induced
by a polarized lepton beam on a vector-polarized deuteron
target are illustrated in Fig. 3, in bidimensional plots and as
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FIG. 4. (Color online) Correlation coefficients Czz (top left) and
C(0)

zz (top right) as functions of ε1 and θ . The ratio of the observables
taking and not taking into account the lepton mass is shown for Czz

(bottom left) and for Cxz (bottom right), respectively.
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FIG. 5. (Color online) Tensor asymmetries from left to right Axx , Axz, Azz. From top to bottom, the first (second) row represents the
observables taking (not taking) into account the lepton mass, respectively. The third row shows their difference.

functions of ε1 and θ . The correlation coefficients vanish for
θ = 0 and at small energies. Cxx , Czx , and Cxz become sizable
and negative as the angle and energy increase, whereas Cyy

becomes positive.
In Fig. 4, the polarization coefficient Czz is shown (top

left). The same coefficient, setting the mass of the lepton to
zero, is shown (top right). The ratio of the observables taking
and not taking into account the lepton mass is shown for Czz

(bottom left) and for Cxz (bottom right), respectively. Again,
the relative effect of the mass is very large at low energies and
large angles.

The tensor asymmetries induced by a tensor-polarized
deuteron target and unpolarized lepton beam are illustrated in
Fig. 5. From left to right, Axx , Axz, and Azz are shown. From
top to bottom, the first (second) row represents the observables
taking (not taking) into account the lepton mass. The third row
shows their difference. We do not plot the ratio because it
diverges for the observable Azz, which changes of sign in the
considered range. The relative effect of the mass is of about
10% on Axx and Axz and can reach 50% on Azz.

VII. CONCLUSION

We calculated the polarized and unpolarized cross section
for lepton deuteron elastic scattering, taking into account the
lepton mass and showed an application to the case of muon
scattering.

Besides the unpolarized cross section, different observables
have been calculated, according to the possible polarizations of
the lepton beam and the deuteron target. The spin correlation
coefficients due to the lepton beam polarization and to the
vector polarization of the deuteron target, as well as the
asymmetries due to the tensor polarization of the deuteron
target have been explicitly derived. The calculations have been
done for two coordinate systems: in the first one the z axis is
directed along the lepton beam momentum and, in the second
one, along the virtual photon momentum.

The numerical application needs a parametrization of the
deuteron form factors. We chose the parametrization from
Ref. [23] which is based on a two component model of the
deuteron, where the pn core is surrounded by an (isoscalar)
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meson cloud. This model reproduces very well the existing
experimental data.

It is shown that the effect of the finite lepton mass is sizable
in particular at low incident energies and large scattering
angles.

These results are particularly important in relation to
planned measurements of low energy muon-deuteron scatter-
ing, which aim for a precise determination of the charge radius.
The determination of the radius requires experimentally the
extrapolation of the extracted form factor to Q2 = 0; Eq. (1).
Neglecting the muon mass brings an error in the determination
of Q2 which is reflected directly in the slope. Note that the
experimental systematic precision sought is 1%.

The issue addressed here has a wider interest. Since the
advent of high-energy accelerators, lepton-hadron scattering
concerns mostly high-energy electron scattering, and the
commonly used formulas neglect the electron mass, which
is acceptable. But the lepton mass cannot always be neglected:
besides the present case, where the energy is of the order of
the muon mass, the terms related to the lepton mass have a
large effect at high energies in case of inverse kinematics as
proton-electron scattering, which is object of Ref. [25], as
well as in the crossed channel, the antiproton annihilation into
a lepton pair [26]) of interest for the antiproton annihilation
experiment at the GSI Facility for Antiproton and Ion Research
(PANDA at FAIR). In this respect, the subject of the present
paper is relevant to other elementary processes. It is also
an issue not only for fixed-target experiments, but also for
electron-ion colliders (this case was discussed in Ref. [27]).

Finally we would like to stress that the formulas derived in
the paper are valid at any energy (outside the very low-energy
region where capture takes place instead of scattering). The
relations in terms of form factors are model independent: they
are fully relativistic expressions based on the most general
symmetry properties of electromagnetic interactions and on
the spin-1 nature of the exchanged photon.

The dynamics and the structure of the deuteron are fully
contained in form factors. We used the parametrization of
Ref. [23] which reproduces best the existing data: GC up
to Q2 = 2 GeV2, GM up to Q2 = 2.8 GeV2, and GQ up to
Q2 = 1.7 GeV2. Moreover, in the low-Q2 region of interest
here, form factors are constrained by the static values (electric
charge and magnetic and quadrupole moments) which are very
precisely known. Due to these reasons, we can consider the
present results to be “model independent.”
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APPENDIX

We give here the expressions which relate the description
of the polarization state of the deuteron target for different ap-
proaches. For the case of arbitrary polarization of the target, the

deuteron polarization is described by the spin-density matrix
which is defined, in the general case, by eight parameters.

1. Coordinate representation

The deuteron spin-density matrix in the coordinate repre-
sentation has the form

ρμν = −1

3

(
gμν − pμpν

M2

)
+ i

2M
εμνλρsλpρ + Qμν,

Qμν = Qνμ, Qμμ = 0, pμQμν = 0, (A1)

where pμ is the deuteron four-momentum, sμ and Qμν are, re-
spectively, the deuteron polarization four-vector describing the
vector polarization and the deuteron quadrupole-polarization
tensor describing the tensor polarization.

In the deuteron rest frame Eq. (A1) becomes

ρij = 1

3
δij − i

2
εijksk + Qij , ij = x,y,z. (A2)

2. Helicity representation

The spin-density matrix can be written in the helicity
representation by using the following relation:

ρλλ′ = ρij e
(λ)∗
i e

(λ′)
j ,

ρλλ′ = (ρλ′λ)∗, (A3)

λ,λ′ = +, − ,0,

where e
(λ)
i are the deuteron spin functions which have the

deuteron spin projection λ onto the quantization axis (z axis).
They are

e(±) = ∓ 1√
2

(1, ± i,0), e(0) = (0,0,1). (A4)

The elements of the spin-density matrix in the helicity repre-
sentation are related to those in the coordinate representation
as follows:

ρ++ = 1

3
+ 1

2
sz − 1

2
Qzz,

ρ−− = 1

3
− 1

2
sz − 1

2
Qzz,

ρ00 = 1

3
+ Qzz,

ρ+− = −1

2
(Qxx − Qyy) + iQxy,

ρ+0 = 1

2
√

2
(sx − isy) − 1√

2
(Qxz − iQyz),

ρ−0 = 1

2
√

2
(sx + isy) − 1√

2
(Qxz + iQyz). (A5)

To obtain these relations we used the condition Qxx + Qyy +
Qzz = 0.

3. Representation in terms of population numbers

The description of the polarized deuteron target in terms of
the population numbers n+, n−, and n0 is often used in the
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formulation of spin experiments (see, for example, Ref. [28]).
Here n+, n−, and n0 are the fractions of the atoms in the
polarized target with the nuclear-spin projection onto the
quantization axis m = +1, m = −1, and m = 0, respectively.
If the spin-density matrix is normalized to 1, i.e., Trρ = 1,
then we have n+ + n− + n0 = 1. Thus, the polarization state
of the deuteron target is defined in this case by two parameters:
the so-called V (vector) and T (tensor) polarizations:

V = n+ − n−, T = 1 − 3n0. (A6)

By using the definitions for the quantities n±,0:

n± = ρij e
(±)∗
i e

(±)
j , n0 = ρij e

(0)∗
i e

(0)
j , (A7)

we have the following relation between the V and T parameters
and parameters of the spin-density matrix in the coordinate
representation (in the case when the quantization axis is
directed along the z axis)

n0 = 1
3 + Qzz, n± = 1

3 ± 1
2 sz − 1

2Qzz, (A8)

or

T = −3Qzz, V = sz. (A9)

4. Representation of spherical tensors

Let us relate now the parameters of the spin-density matrix
in the coordinate representation to the parameters of the matrix
in the representation of the spherical tensors.

According to the Madison Convention [29], the spin-
density matrix of a spin-1 particle is given by the expression

ρ = 1

3

∑
kq

t∗kqτkq, (A10)

where tkq are the polarization parameters of the deuteron spin-
density matrix and τkq are the spherical tensors. The spherical

tensors are expressed as

τ00 = 1, τ10 =
√

3

2
Sz, τ1±1 = ∓

√
3

2
(Sx ± iSy),

τ20 = 3√
2

(
S2

z − 2

3

)
,

τ2±2 =
√

3

2
(Sx ± iSy)2,

τ2±1 = ∓
√

3

2
[(Sx ± iSy)Sz + Sz(Sx ± iSy)], (A11)

Sx = 1√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠,

Sy = 1√
2

⎛⎝0 −i 0
i 0 −i
0 i 0

⎞⎠, (A12)

Sz =
⎛⎝1 0 0

0 0 0
0 0 −1

⎞⎠.

From Eq. (A11) and the Hermiticity of the spin operator it
is straightforward to get

τ+
kq = (−1)qτk−q . (A13)

The Hermiticity condition for the density matrix yields for tkq

t∗kq = (−1)q tk−q . (A14)

From this equation one can see that

t∗10 = t10, t∗11 = −t1−1,

t∗20 = t20, t∗22 = t2−2, t∗21 = −t2−1, (A15)

i.e., the parameters t10 and t20 are real, and the parameters t11,
t21 and t22 are complex. So, in total there are eight independent
real parameters as required for spin-1 massive particles.

The explicit expression of the deuteron density matrix is

ρ = 1

3

⎛⎜⎜⎜⎜⎝
1 +

√
3
2 t10 + 1√

2
t20

√
3
2 (t1−1 + t2−1)

√
3t2−2

−
√

3
2 (t11 + t21) 1 − √

2t20

√
3
2 (t1−1 − t2−1)

√
3t22 −

√
3
2 (t11 − t21) 1 −

√
3
2 t10 + 1√

2
t20

⎞⎟⎟⎟⎟⎠ . (A16)

The density matrix is normalized to 1, i.e., Trρ = 1. By using the expression for the density matrix in the helicity representation,
Eq. (A5), we get the following relations between the parameters of the density matrix in the coordinate representation and in the
spherical tensor representation:

t10 =
√

3

2
sz, Ret11 = −Ret1−1 = −

√
3

2
sx,

Imt11 = Imt1−1 = −
√

3

2
sy, t20 = − 3√

2
Qzz,

Ret21 = −Ret2−1 =
√

3Qxz, Imt21 = Imt2−1 =
√

3Qyz,

Ret22 = Ret2−2 = −
√

3

2
(Qxx − Qyy), Imt22 = −Imt2−2 = −

√
3Qxy. (A17)
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