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Polarization observables in lepton-deuteron elastic scattering including the lepton mass

G. I Gakh,"2 A. G. Gakh,? and E. Tomasi-Gustafsson>"

! National Science Centre, Kharkov Institute of Physics and Technology, 61108 Akademicheskaya 1, Kharkov, Ukraine
2V, N. Karazin Kharkov National University, Dept. of Physics and Technology, 31 Kurchatov, 61108, Kharkov, Ukraine
3DSM/IRFU/SPhN, CEA/Saclay, 91191 Gif-sur-Yvette, and Université Paris-Sud, CNRS/IN2P3,

Institut de Physique Nucléaire, UMR 8608, 91405 Orsay, France
(Received 9 March 2014; revised manuscript received 2 September 2014; published 2 December 2014)

Expressions for the unpolarized differential cross section and for various polarization observables in the
lepton-deuteron elastic scattering, £ + D — £ 4+ D, £ = e, i, T, have been obtained in the one-photon-exchange
approximation, taking into account the lepton mass. Polarization effects have been investigated for the case of
a polarized lepton beam and polarized deuteron target which can have vector or tensor polarization. Numerical
estimations of the lepton mass effects have been done for the unpolarized differential cross section and for some
polarization observables and applied to the case of low-energy muon deuteron elastic scattering.
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I. INTRODUCTION

The structure of hadrons and nuclei is traditionally studied
through elastic and inelastic electron-hadron (nuclei) scat-
tering as well as through elementary annihilation reactions,
assuming a one-photon-exchange mechanism (for a recent
review, see Ref. [1]). A review of the results obtained by the
measurements of the unpolarized cross section and polariza-
tion observables in the elastic electron-nucleon scattering can
be found in Ref. [2]. Nucleon form factors in the timelike
region are reviewed in Ref. [3]. A review of the deuteron
electromagnetic structure is given in Ref. [4].

Recently, results from the measurement of the proton charge
radius were obtained in an experiment performed at the Paul
Scherrer Institute (PSI, Switzerland) [5] from the Lamb shift in
muonic hydrogen (CREMA collaboration). The value obtained
is significantly different from earlier measurements based on
electronic hydrogen spectroscopy and elastic electron-proton
scattering and is smaller by 70 than the 2010 CODATA
official value [6]. Various explanations of this difference were
proposed.

Some authors suggested the possible existence of new
particles that interact with muons and hadrons but not with
electrons. By adjusting the couplings of these particles one
can, in principle, obtain an additional energy shift in the
muonic hydrogen. This may lead to agreement between the
measurement of the proton charge radius in the muonic and
electronic experiments. Thus, for example, the existence of
new particles with scalar and pseudoscalar (or vector and
axial) couplings were proposed in Ref. [7]. The couplings
are constrained by the existing data on the Lamb shift, muon
magnetic moment, and kaon decay rate. New vector and scalar
particles at the 100 MeV scale were proposed in Ref. [8]. The
important consequence would be an enhancement by several
orders of magnitude of the parity-violating asymmetries in the
scattering of low-energy muons from nuclei.

On the other hand, the authors of the Ref. [9] have
analyzed the recent electron-proton scattering data obtained at
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Mainz [10] (the cross sections were measured with statistical
errors below 0.2%). By using a dispersive approach they
obtained a small value for the proton charge radius which
is consistent with the recent result obtained in the experiment
with muonic hydrogen. In Ref. [11] it was shown that previous
extractions of the proton charge radius from the electron-
proton scattering data may have underestimated the errors.

In electron-proton elastic scattering experiments, the radius
is related to the slope of the charge form factors as a function of
the transferred momentum squared, 02, in the limit Q% — 0:

d Q2 Q2=0

In Ref. [12] it was suggested that the error related to the
extrapolation Q2 — 0 could be reduced by measuring this
process in inverse kinematics.

Note that, about 40 years ago, there were tests of the
muon-electron universality in the processes of the elastic and
deep inelastic electron (muon) scattering. Measurements of
the muon-proton elastic cross section in the range 0.15 <
0? < 0.85 GeV? were compared with similar electron-proton
data [13]. An apparent disagreement was found between muon
and electron experiments which can possibly be accounted
for by a combination of systematic normalization errors [13].
The data were obtained at rather high values of Q2 in
order to extract the proton charge radius. In Ref. [14], the
muon-proton elastic scattering was measured in the range
0.6 < 0*<32 GeV2 A possible difference from muon-
electron universality was found, but the statistical accuracy of
this observation was not compelling. The muon-proton deep
inelastic scattering was measured in the range 0.4 < 0? <
3.6 GeV? [15]. The data were consistent with muon-electron
universality. Two-photon-exchange effects were investigated
in the muon-proton elastic scattering [16]. The validity of the
one-photon-exchange approximation was confirmed for Q2 up
to 0.85 GeV? and incident muon energies up to 17 GeV.

The fact that the proton charge radius was not measured
in the process of the elastic muon-proton scattering led to the
proposal of the MUon proton Scattering Experiment (MUSE)
at the Paul Scherrer Institute (Zurich) [17]. This experiment
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plans a simultaneous measurement of the elastic = p and
e” p scattering as well as u* p and e p and will establish the
consistency or the difference of the muon-proton and electron-
proton interaction with good precision in the considered
kinematics. Three values of the muon beam momenta which
are comparable with the muon mass: 115, 153, and 210 MeV,
were chosen. However, in case of low energy and large
lepton mass, the terms proportional to the lepton mass become
important and the mass should be taken explicitly into account
in the calculation of the kinematical variables and of the
experimental observables. The expressions of the kinematical
relations and of the polarized and unpolarized observables are
different from those currently used. In Ref. [18] the effect
of the lepton mass was discussed for muon-proton elastic
scattering for the unpolarized cross section and the double
spin asymmetry, where the lepton beam and the target are
polarized.

The MUSE experiment at PSI will also determine the radii
of light nuclei through muon elastic scattering. Of particular
interest is a measurement on deuterium. The issue of taking
into account finite-lepton-mass effects is also relevant for the
case of the elastic muon-deuteron scattering.

In this paper we calculate the expressions for the unpo-
larized differential cross section and polarization observables,
taking into account the lepton mass, for elastic lepton-deuteron
scattering. We calculate the asymmetries due to the tensor
polarization of the deuteron target and the spin correlation
coefficients due to the lepton beam polarization and vector
polarization of the deuteron target. Explicit formulas are
given in two coordinate systems which are relevant for the
experiment: in the first one the z axis is directed along the
lepton beam momentum and in the second one the z axis is
directed along the virtual photon momentum (or along the
transferred momentum).

II. FORMALISM

Let us consider the reaction
L(ky) + D(p1) = L(ka) + D(p2),

where the momenta of the particles are written in parentheses.
In the laboratory system, where we perform our analysis, the
deuteron (lepton) four-momenta in the initial and final states
are, respectively, p; and p, (k; and k) with components

p1 = (M,0), p>=(Ep»),
ki = (e1.k1), ko = (£2.k2), 3)

L=e,p,t, (2

where M is the deuteron mass.
The matrix element of the reaction (2) can be written as
follows in the one-photon-exchange approximation:

2
M= &jm, Ju = ak2)yu(ky). @

By using the requirements of the Lorentz invariance, current
conservation, parity and time-reversal invariance of the hadron
electromagnetic interaction, the general form of the elec-
tromagnetic current for the spin-one deuteron is completely
described by three form factors and can be written, following
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Ref. [19], as
. Gi(0Y)
Ju=(pi +p2)u[—G1(Q2)U1 -Us + ’Mz
q2
X<U1 'qU; q — 7U1 . U;)il
+ GO U3 - q — Uz, Uy - q), (5)

whereq = ki —ky = py — p1, Q*= — q* = —2M(M — Ey),
E, is the final deuteron energy, and U;, and U,, are the
polarization four-vectors for the initial and final deuteron
states. The functions G,-(Qz), i =1,2,3, are the deuteron
electromagnetic form factors, which are real functions in the
region of the spacelike momentum transfer and depend only
on the virtual photon four-momentum squared. These form
factors are related to the standard deuteron form factors: G¢
(the charge monopole), G (the magnetic dipole), and G
(the charge quadrupole) by

Gy =-G2, Go=Gi+Gy+2Gs3,
Gc = 31(G, — G3) + (1 + 37)Gy, (6)

with T = Q?/(4M?). The standard form factors have the
following normalization:

Gu0) = M/my)pq,

where m,, is the nucleon mass, u,(Q,) is deuteron magnetic
(quadrupole) moment and their values are uy; = 0.857 [20],
Qu = 0.2859 fm? [21].

The differential cross section can be written in terms of the
matrix element modulus squared as

Gc(0) =1, Go(0) = M*Qy,

do

_ et dkedis

8P (k —k—py), (7
a7 3n Y45, (ki + p1 —ky = p2), (7)

where I? = (k; - p1)* — m*M? and m is the lepton mass.

Writing the matrix element in the form M = (e2/ Q%)M

one obtains the following expression for the differential cross

section of the reaction (2) in the laboratory system for the case

when the scattered lepton is detected in the final state
do o? l_cg |M)?

aQ 4M d)k,| 0

®)

where d = (M + 81)|l;2| — 82|E1|COSQ, and 6 is the lepton
scattering angle (angle between the initial and final lepton
momenta). The scattered lepton energy has the following form
in terms of the lepton scattering angle:

_ (a1 + M)(Me +m?) + l_c? cos O/ M? — m?sin? 6
B (e1 + M)? —Iz%cosze .

)

C))

In the limit of zero lepton mass this expression gives the well-
known relation between the energy and angle of the scattered
lepton:

0 —1
82=S]|:1+2(81/M)Sin2 §:| .
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The differential cross section for the case when the recoil
deuteron is detected in the final state can be written as
do o P3 |M]?
dQp  4M djk,| 0*

(10)

where d = (M + &1)|p2| — E2|l;1 | cos Op, and Op is the angle
between the momenta of the lepton beam and recoil deuteron.
By using the relation

E,+ M

- 1
dQ?* = |k || pa| — ———d2p, 11
0 = 1||P2|n81+M D (11)

we obtain the following expression for the differential cross

section over the Q2 variable:

do _ 7wa® |py| &1+ M |M]
dQ>  4M Ji2 Ex+M Q4

12)

The square of the reduced matrix element can be written as
IMP? = L H", (13)

where the leptonic L, and hadronic H*” tensors are defined
as follows:

L,y = jujy, HM =JHJ™. (14)
If the initial and scattered leptons are unpolarized, then in this
case the leptonic tensor is

L,v(0) = 2q% g, + d(kikay + kaykiy). (15)

In the case of polarized lepton beam the spin-dependent part
of the leptonic tensor can be written as

Lyn(s) = 2im(uvgs;), (16)

where (uvab) = ¢,,,,,a”b’ and sy, is the lepton polarization
four-vector which satisfies the conditions s? = —1, k; - 5; = 0.

For an arbitrary polarization state of the initial and recoil
deuterons, we may write the electromagnetic current in the

following form:
T = TP U Usy,
and the hadronic tensor H*" becomes

HW — J”“aﬂfwy*pé(,p;g, (17)

where ,oém (p){ ﬁ) is the spin-density matrix of the initial (final)
deuteron.

Because we consider the case of a polarized deuteron target
and unpolarized recoil deuteron, the hadronic tensor H,,, can
be expanded according to the polarization state of the initial
deuteron:

Hy, = H,,(0) + Hyo (V) + Hyo(T), (18)
where the spin-independent tensor H,,,(0) corresponds to an
unpolarized initial deuteron and the spin-dependent tensor
H,,(V)[H,,(T)] describes the case where the deuteron target
has a vector (tensor) polarization.
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In the general case, the initial deuteron polarization state
is described by the spin-density matrix. The general expres-
sion for the deuteron spin-density matrix in the coordinate
representation is [22]

4 1 i
Pls = —g(ga,s - %) + 537 @Bsp) + Qupe (19)
where s, is the polarization four-vector describing the vector
polarization of the deuteron target (p; - s = 0, s> = —1) and
Qv 1s the tensor which describes the quadrupole polarization
of the initial deuteron and which satisfies the following condi-
tions: O,y = Oy, Quu =0, p1, 0, = 0. In the laboratory
system (the initial deuteron rest frame) all time components
of the tensor Q,, are zero and the tensor polarization of
the deuteron target is described by five independent space
components:

0ij=0ji, Qi=0,

If the polarization of the recoil deuteron is not measured, the
deuteron spin-density matrix can be written as

ply = —(gaﬁ — =P ) (20)

i,j =x,y,2.

M?2

The relation between elements of the deuteron spin-density
matrix in the helicity and spherical tensor representations
as well as in the coordinate representation is given in the
Appendix. The relations between the polarization parameters
s; and Q;; and the population numbers n,, n_, and ng
describing the polarized deuteron target, which is often used
in spin experiments, are also given.

III. UNPOLARIZED DIFFERENTIAL CROSS SECTION

Let us consider the elastic scattering of unpolarized lepton
beam by unpolarized deuteron target. The hadronic tensor
H,,,(0) can be written as

Hy(0) = Hi(QH& 0 + Ha(QH Py Prvs

~ quqv
Zuv = &uv — —;2 : 1)

- P-4
Pip = Pip — Tqu-

The real structure functions Hj »(Q?) are expressed in terms
of the deuteron electromagnetic form factors as

H(Q%) = 30°(1+1)Gy.

Hy(Q%) = 4M*(G¢ + 531Gy, + 5T°GY). (22)

The contraction of the spin-independent leptonic L,,(0) and
hadronic H*"(0) tensors gives

S(0) = —4(¢> + 2m*) H,(Q?)
2 4 ~ \2 2
+z[(1+z)q +W(k1~p1)}Hz(Q ), (23)

where the averaging over the spin of the initial deuteron is
included in the structure functions H| 1,2(Q2).
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By substituting this expression into Eq. (8) and averaging
over the spin of the initial lepton, we obtain the expression for
the unpolarized differential cross section of the reaction (2) in
the laboratory system, taking into account the lepton mass, in
the form

doy,

a2
where oy is the cross section for the scattering of lepton on the
point spin-1 particle. It is a generalization of the Mott cross

section (with a recoil factor) to the case when the lepton mass
is not neglected:

=o0yD, 24

2 72
a M ky -,
o) =4———=—|e71 — M(M + 2¢y)T|. (25)
q4 d |k1|[ 1 ]
Note that, in the limit m = 0, this expression reduces to the
Mott cross section

2,20

a“ cos 0 -1
2(1+2%sm2§> . (26)

oo(m =0) = oMot = 757
4ef sin® 3

where 6 is the lepton scattering angle (between the momenta
of the initial and final leptons).

The quantity D, which contains the information about the
structure of the deuteron, has a form

D = A(Q*) + f(Q*e1,m)B(0), (27

where the standard structure functions A(Q?) and B(Q?)
which describe unpolarized differential cross section of the
reaction (2) in the zero-lepton-mass approximation are explic-
itly singled out:

A(Q%) = GE(0) + §12GL(0%) + 31G,(0Y),
B(0%) = %r(1+1)G},(0Y). (28)

The function f(Q2?,e1,m) has the form

-1
f(Q%e1.m) = (0% — 2m2)[48% - Q2(1 + 2%)} .
(29)
In the limit of zero lepton mass this function reduces to

F(Q% erm =0) = tan” 7
,e1,m = 0) = tan 7

Thus, in this approximation, we obtain the standard expression
for the unpolarized differential cross section of the reaction (2):

d Oun
d2

In the standard approach (zero lepton mass) the measurement
of the unpolarized differential cross section at various values
of the lepton scattering angle and the same value of Q2 allows
us to determine the structure functions A(Q?) and B(Q?).
Therefore, it is possible to determine the magnetic form factor
Gu(0?) and the following combination of the form factors
G2(0?) + 872G (0))9.

The determination of this quantity in the nonzero-lepton-
mass approximation requires the measurement of the unpo-
larized differential cross section at different values of lepton
beam energy and at the same value of Q2. The separation

= aMm{A(Q% + B(Q?)tan’ (g) } (30)
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of the charge G¢ and quadrupole G form factors requires
polarization measurements.

IV. VECTOR POLARIZED DEUTERON TARGET

The calculation of polarization observables requires us
to choose a coordinate frame. Let us define the following
coordinate frame in the lab system: the z axis is directed along
the lepton beam momentum 121, the y axis is directed along
the vector k| x 122, and the x axis is chosen in order to form
a left-handed coordinate system. Therefore, the reaction plane
is the xz plane.

In this section we consider the T-even polarization ob-
servables, which depend on the spin correlation § - 5; which
determines the scattering of the polarized lepton beam (of spin
s7) by a vector polarized deuteron target (of spin s).

In the case considered, the spin-dependent tensor H,,,(V),
which describes the vector-polarized initial deuteron and
unpolarized final deuteron, can be written as

H,\ (V) = ﬁsl(gzmvsm

n #Sz(Qz)[ﬁm(vsqpﬂ — prolpsgpi)]

1
+ WSa(QZ)[ﬁm(vsqpl) + Puvlnsgpr)l, (1)

where the three real structure functions S;(Q?%), i = 1 — 3,
can be expressed in terms of the deuteron electromagnetic
form factors as

51(0%) = M*(1 + 1)Gy,,
52(0%) = M* [Gﬁd - 2<Gc - %GQ)GM], 32)
53(Q%) = 0.

The third structure function S3(Q?) vanishes since the
deuteron form factors are real functions for elastic scattering
(in the spacelike region of momentum transfer). In the
timelike region (for annihilation processes, for example,
e~ +eT — D+ D), where the form factors are complex
functions, the structure function S3(Q?) is not zero and it is
determined by the imaginary part of the form factors; namely,
$3(0%) = 2M*Im[G¢ — /(3G 9)IG3,.

The differential cross section of reaction (2) describing the
scattering of polarized lepton beam on the vector-polarized
deuteron target can be written as (referring only to the spin-
dependent part of the cross section which is determined by the
spin correlation coefficients)

do(s,s;) doy,
dQ = dQ (1 + CxxSxélx + nyg_vgly + CZZSZSIZ

+ Cizdidiz + Coxepn), (33)

where the vector .;;1 (E) is the unit polarization vector in the
rest frame of the lepton beam (deuteron target). The spin
correlation coefficients C;; have the following form in terms
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of the deuteron electromagnetic form factors:

Gy
DCyy = %7[% Sin® 66 yy — 2(1K | — |k2|0059)2<Gc + 3GQ)]
m 612 T

DCy, = 2_—(1 +1)| Gec + gGQ Gu,

m |k 2
DC,, = _ﬁ_ s1n9(|k1| — |k2|cose) tGy +2Gc + §IGQ Gy, (34)

Z

2 -

DC,, = _|Z_1\2/I| smOGM[el(Uql — |k2| cos@)(rGM +2Gc + 31GQ) —2M|k |t (1 + r)GM],

G - - - - - -
DC., —A”;{rGqu — |ka| cos O)[e1 (k1| — k2| cos 8) — 2M |k, |(1 + T)] — 26,K2 sin20<Gc + %GQ> }
Z

where z = 4[8% — T(M? +2Mze¢,)]. Note that the spin correlation coefficients C,,, C,y, and C, correspond to the transverse
(relative to the lepton beam momentum) components of the spin vector é’, and therefore they are proportional to the lepton mass.
The spin correlation coefficients C,, and C,, describe the scattering of the longitudinally polarized lepton beam and they are not
suppressed by the factor m/M.

In the limit of zero lepton mass we have the following expressions for the spin correlation coefficients:

17
bcY = E—tan—[(gl +8)Gy — 4M + 81)<Gc + %GQ>:|GM’
&1

Go+

3 ZM2

50 _ M T
DC’Z 2'L'GM GC +
© €1 2

&1 ,29 29
— (M + )| 1 +Msm 5 tan” =Gy |, 35)

CW=cH=cP=0 D= AQ%+ B(Q"tan’ g
The expressions of these coefficients coincide with the results obtained in Ref. [19].

Another coordinate system is also used in the description of the elastic lepton-deuteron scattering: the Z axis is directed along
the virtual photon momentum (transferred momentum) g, the Y axis is directed along the vector I_c} X 1_52 and coincides with the
y axis, and the X axis is chosen in order to form a left-handed coordinate system. These coordinate systems are connected by a
rotation in the reaction scattering plane, which it is determined by the angle i between the direction of the lepton beam and the
virtual photon momentum:

M + g T . 1
cosyY = —s , sinyr = e — TM? — m2(1 + 7). (36)
k1| I+7 |k1|V1+T

Thus, the spin correlation coefficients in the new coordinate system can be related to the ones in the previously considered
coordinate system by the following relations:

Cz, =cosyC,, +sinyyCy,, Cyx, =—sinyC,, +cosyC,,,
Czy =cosYCp, +sinyCry, Cxy = —sinyyC, +cosyC,,. 37

The spin correlation coefficient C,, is the same in both coordinate systems. We do not transform the spin components of the
lepton beam in order not to mix the transverse and longitudinal components (relative to the lepton beam momentum) since only
the last one leads to the spin correlation coefficients which are not proportional to the lepton mass. So, in this coordinate system
the z component of the spin of the lepton beam corresponds to the longitudinal polarization and the x component corresponds to
the transverse polarization which belongs to the reaction scattering plane.

After performing the rotation we obtain the following expressions for the spin correlation coefficients in the new coordinate
system:

DC ] G
Zz = 4
Mzlk| VTl +71)
x [T2(M + &1)(Jk2] cos 8 — [k1]) — rlka| sin 601Gy — 2&11ka| sin [t (M + &1)|ka| sin 6 + r(|k2| cos @ — [k ])]

o)

{2M|l€1|r(1 + O[T(M + 1)([ka| cos 0 — |y ]) — rlka| sinO1G y + &1(kz| cos O — [Ky])
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o - > o T
2¢e1lky| sin @[t (M + &1)(|kz| cos 8 — |ky|) — rlka| sm@](GC + —GQ))

DCy. = — Cu {
T Mk VA + 0 3

+ T[t(M + 1)|ka| sin @ + r(|ka| cos 0 — [ki)[e1 (k2| cos O — [ ]) + 2M [k [(1 + r)]GM},

DCyz, = —%ﬁ%{ﬂlzﬂ sin@[r|ka| sin — T(M + &1)(|k2| cos 6 — k1 ])]
x Gy + 2|k | — kol cosO)[T(M + £1)lka| sin — r(ky| — |Ka| cos 6)] (Gc + gGQ) }
DCy, = ﬂ;i{ﬂlzﬂ sinO[z|ka|(M + 1) sin @ + r(|ka| cos @ — |k )1Gy — 2(1k1| — |ka| cos 8)
M z]ki| V(T +17)
X [T(M + &1)([k1| — k2] cos §) + r[ka] sine](cc + §GQ>},
r=vtleiey — tM? —m*(1+ 1)), (38)

In the limit of zero lepton mass there are only two nonzero spin correlation coefficients corresponding to the longitudinal
polarization of the lepton beam, and they have following form:

D 0 0 0

ch); = _T\/(l + T)(l + 7 sin? 5) tan 5 sec EG%W,

3 6

ch?z) = —2y1(l 4+ 7)tan EGM<GC + %GQ). (39)

Along with the transformation of the spin correlation coefficients it is necessary to transform the vector which describes the
vector polarization of the deuteron target. The new components of this vector are related to s, and sy, Eq. (19), as follows:

cosy  sin 1//>

—siny  cosyr (40)

st =Vu(¥)si, V@)= <

where [ = Z,X andi = z,x.

V. TENSOR-POLARIZED DEUTERON TARGET
In the case of tensor-polarized deuteron target, the general structure of the spin-dependent tensor H,,,(T’) can be written in
terms of five structure functions as follows:

Ho(T) = Vi(Q) 08w + vz<Q2>%ﬁl,tﬁlv + V30 (51,00 + p1v0y)

+ Va0 0w + i V5(0D(p1,0v — Prv0,0),

where we introduce the following notations:
~ q - ~
Qu = Q,quv - q_,;Qv Q,uq;t = 01

quqv

~ A qvqu
Q;w = qu + C]4 Q -

q2
Q;WQV = 07 Q = Qaﬂgctqﬁ'

The structure functions V;(Q?) (i = 1 — 5), which describe the part of the hadronic tensor due to the tensor polarization of the
deuteron target, have the following form in terms of the deuteron form factors:

Vi(Q%) = =Gy, Vs(QH) =0,

_ Y9uYa

Qu Qvas (41)

4 T
2N 2 T
Vz(Q)—GM+—1+T(Gc+3

V3(Q) = —21[G3, +2G oG], Va(Q?) = 4M*t(1 + 71)G3,.

Go+ th)GQ, @)
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The fifth structure function Vs(Q?) is zero since deuteron form factors are real functions in the kinematical region considered. In
the timelike region of momentum transfers this structure function is not zero and is given by Vs(0?) = —4tImG o G%,.

The differential cross section of the reaction (2) describing the scattering of unpolarized lepton beam on the tensor-polarized
deuteron target can be written as

do(Q) doy,
dQ — dQ

where A;; are the asymmetries caused by the tensor polarization of the deuteron target. Here we used the conditions that the tensor
Q;; is symmetrical and traceless: Q.. + O,y + Q.; = 0. The asymmetries have the following form in terms of the deuteron
electromagnetic form factors:

[1 + Axx(Qxx - ny) + sz sz + Azz sz]’ (43)

Y k2 sin26
xx—ZMz E

+ (ef —TM* — 2‘L’M8|)<GC + %GQ>1|},

{(8% + M —m?)Gy, + 41 + T)_IGQ|:T(M +en(er —tM)Gy

51|£2| . - - M?>  m? - M ) aGo |, » -
DA, = -2 e sm9(|:81(|k1| - |k2|0050)(1 + ‘E? - g —2tMk|[ 1+ E Gy +41+_1: (Jk1| — k2| cos 9)

M? M T M - M - M
X 1—1—2—21— Ge+zGo|+t|l—1— |Gu|lkil|{1—T7— ) —|kao|{ 1+ — | cosO , 44)
81 €1 3 &1 &1 &1

1 7 > 2y 1oy s 2 2o\ —1
DA,, = oF (lk1| — |ka| cos @)% — Ekz sin® @ [{ (7 + TM° —m*)Gy +4(1+ 1) 'Go| T(M + &1)(e1 —TM)Gy

+(ef —TM* — 2rM81)<Gc + %GQ)“

+4T MK |Gy (MK (1 + T)G oy — (k1| — k2| cos O)[(M + £1)G iy + 2(e1 — rM)GQn).

In the limit of zero lepton mass we have the following expressions for the asymmetries due to the tensor polarization of the
deuteron target:

o T M\ _, ) M M M? M T
DAV = 5{(1 +r—2)GM+4(l +1)” GQ|:1:(1 + —) <1 —t—)GM + (1 -t —2r—> <Gc+ —GQ)“,
& €1 €1 & &1 3

5A% = -2 " Guola(1+ M) 6o(Ge+ Z6o) v+ o1+ X )2 L2
xz Ml1++ €1 3 € 27"
M 0 2 6
+2<1—IZ)[—1—t+2sin2§(l+;l—]+%—I%)](l—i—tanzz)GMGQ}, (45)
_ +e M 0 M M
pA® = _Tlle— 2y L NG, — Gy |Gy +tan 2|1 =27 — 67— (1 4+ —
2L 1+7 & +81 0= Cum |Omrany T Jr281

w62+ 2 corley(ce+te
M e 2 e\ 3Te S
In the coordinate system where the Z axis is directed along the virtual photon momentum, the asymmetries due to the tensor
polarization of the deuteron target have the following form:

Arx = aﬂ(W)Aﬂv (46)

where the indices of the rotation matrix have following meaning: « = ZZ, XX, XZ and 8 = zz, xx, xz. The rotation matrix
can be written as

1 +3cos2¢)  3(1 —cos2y)  3sin2y
TW)=| 11 —cos2y) 1B +cos2y) Fsin2y |. (47)
— sin 2y sin 24 cos 2y

Along with the transformation of the asymmetries it is necessary to transform the tensor of the quadrupole polarization which
describes the tensor polarization of the deuteron target. The new tensor polarization parameters are related to O, (Q.x — Qyy),
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and Q,., Eq. (19), as follows:

PHYSICAL REVIEW C 90, 064901 (2014)

QZZ = };(1 + 3 cos Zl/f)sz + %(1 — COs ZW)(Qxx - ny) + Sinszxz»
Oxx — Qyy = 3(1 —cos2Y) Q.. + 33 +cos 2¢)(Qrx — Qyy) + 8in 2y O, (48)
Oxz = —3sin2y Q. + 1 sin20/(Qur — Qyy) + c0s 2Y Q..

VI. NUMERICAL ESTIMATES

In this section we give numerical estimates of the effect
of the mass on the kinematical variables and on some of the
experimental observables. Because two variables completely
define the kinematics for a binary process, the results are
preferentially illustrated as bidimensional plots as function
of the muon beam energy and the muon scattering angle.

A. Kinematics

The effect of the lepton mass on the kinematical variables
is illustrated for the scattered lepton energy and for the
momentum transfer squared.

The relative difference between the scattered lepton energy
taking and not taking into account the lepton mass is shown
in Fig. 1(a) as a bi-dimensional plot as a function of the muon
incident energy and scattering angle.

The effect of the mass on the momentum transfer squared
is shown in Fig. 1(b).

From these figures it appears that the effect of the lepton
mass on the energy and angle of the scattered muon is sizable
in the considered kinematical range, in particular at low beam
energies. The scattered muon energy is largely modified at
small Q? and large scattering angles and a huge (relative) effect
appears for the momentum transfer squared. These effects are
quantified in Table I.

B. Parametrization of deuteron form factors

For the calculation of unpolarized and polarized observ-
ables, knowledge of the deuteron form factors is needed. We
used the parametrization from Ref. [23] which is based on a

(82 '52)/82 (%) (QZ-QZ(O))/QZ (%)

0.3

_ 100
7y \

0.5
oL,
7 )

FIG. 1. (Color online) Effectof the lepton mass on the kinematics
of the scattered lepton: (a) the relative difference in percent between
the scattered lepton energy and (b) the momentum transfer squared
taking and not taking into account, respectively, the lepton mass as a
function of the scattering muon angle and of the incident energy.

(

“two-component model” of the deuteron, inspired from vector
meson dominance [24] where the pn core is surrounded by
an (isoscalar) meson cloud. This parametrization has a simple
analytical form and reproduces best the existing experimental
data. We recall here the formulas and the parameter set that
we used.

The three deuteron form factors are parametrized as

Gi(0») = Nigi(QHF:(Q%, i=C,Q.M, (49)

where N; is the normalization of the ith form factor at Q% = 0:
Nc =Gc(0) =1,
No = G(0) = M*Q, = 25.83,

M
NM = GM(O) = —MUqg = 1.714.
mp

where m, is the proton mass.
The expression for the meson cloud is

2 m, mé
F; =l-a—Bi+uw “— + B )
() p "+ 0 ﬂmé+Q2

where m,, = 0.784 GeV (my = 1.019 GeV) is the mass of
the w (¢) meson. These expressions are built in such a form
that F;(0) = 1 for any values of the free parameters «; and S;,
which are real numbers.

The intrinsic core is parametrized as

gi(0H = 1/[1+y, 04", (50)

The terms g;(Q?) are functions of two parameters, also real.
We took common values for all form factors: y; = 12.1 and
8; = 1.05.

TABLE 1. Effect of including the lepton mass on the relevant
kinematical quantities, 02, &, and ratio of cross sections for three
values of the beam energy and two scattering angles. The index @
indicates the value when the lepton mass is set to zero.

€ 0 0? Q> & &) o/c’
[GeV] [deg] [GeV?] [GeV?] [GeV] [GeV]

0.1 20 0.00232 0.00120 0.10004 0.09968 0.23

0.1 80 0.00222 0.01582 0.10049 0.09578 45.41
0.15 20 0.00136  0.00270 0.14964 0.14928 3.96
0.15 80 0.01758 0.03488 0.14531 0.14070 3.94
0.2 20 0.00346 0.00479 0.19908 0.19872 1.95
0.2 80 0.04381 0.06075 0.18832 0.18380 1.22
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0
Ou/ i

FIG. 2. (Color online) Bidimensional plot of the ratio between
the cross section taking and not taking into account the lepton mass
as function of ¢; and 6.

The parameters o¢ and oy, have been fixed by the value
of the experimental node which appears at Q> = 1.9 GeV?
and ~0.7 GeV? for G, and G, respectively. The other
parameters are B;(G¢c) = —5.11, ap =4.21, By = —3.41,
and By = —2.86.

C. Experimental observables

Using Egs. (23)—(29) with the parametrization of form
factors above described, the unpolarized cross section is
calculated in the relevant kinematical range. The correction to

©

%, 0.3
T 0.4

€4 eV

FIG. 3. (Color online) Correlation coefficients C., (top left), Cy,
(top right), C,, (bottom left), and C,, (bottom right) as functions of
g1 and 6.
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the Born cross section due to the finite lepton mass is illustrated
in Fig. 2, where the ratio between the cross section taking
and not taking into account the lepton mass is shown as a
function of &; and 6. One can see that this ratio increases
essentially at small energies and large angles. Besides the
change in the kinematical variables, this is due to the presence
of 121 in the denominator of Eq. (25) and to the additional
terms accompanying the structure functions [see Egs. (27)
and (29)].

Including the lepton mass changes essentially the kinemat-
ics and the dynamics, particularly at low beam energy. For the
evaluation of the counting rates in preparing the experiments,
the complete formula of the cross section [Egs. (24) and (25)]
has to be taken into account, because the effect of including the
lepton mass is proportionally the same, as illustrated for the
cross-section ratio in Fig. 2, at the corresponding kinematical
conditions.

The extraction of the magnetic form factor from the cross
section ud at backward angles, or the relevant combination of
G¢ and G at forward angles has also to take into account the
complete formula and the additional mass-dependent terms.

The extrapolation of form factors to Q> — 0 is therefore
affected in both coordinates: the calculated Q2 and the
extracted form factors. The effect is much larger than the
percent precision of the expected data and should be taken
into account.

The polarization observables Cyy, C,y, C.., Cx., induced
by a polarized lepton beam on a vector-polarized deuteron
target are illustrated in Fig. 3, in bidimensional plots and as

C. Cg

FIG. 4. (Color online) Correlation coefficients C,, (top left) and
C (top right) as functions of &; and 6. The ratio of the observables
taking and not taking into account the lepton mass is shown for C_,
(bottom left) and for C,, (bottom right), respectively.
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FIG. 5. (Color online) Tensor asymmetries from left to right A,,, A,;, A;;. From top to bottom, the first (second) row represents the
observables taking (not taking) into account the lepton mass, respectively. The third row shows their difference.

functions of &; and 0. The correlation coefficients vanish for
0 = 0 and at small energies. Cy,, C;,, and C,, become sizable
and negative as the angle and energy increase, whereas C,,
becomes positive.

In Fig. 4, the polarization coefficient C,, is shown (top
left). The same coefficient, setting the mass of the lepton to
zero, is shown (top right). The ratio of the observables taking
and not taking into account the lepton mass is shown for C,,
(bottom left) and for C,, (bottom right), respectively. Again,
the relative effect of the mass is very large at low energies and
large angles.

The tensor asymmetries induced by a tensor-polarized
deuteron target and unpolarized lepton beam are illustrated in
Fig. 5. From left to right, A,,, A,., and A_, are shown. From
top to bottom, the first (second) row represents the observables
taking (not taking) into account the lepton mass. The third row
shows their difference. We do not plot the ratio because it
diverges for the observable A_,, which changes of sign in the
considered range. The relative effect of the mass is of about
10% on A,, and A,; and can reach 50% on A,;.

VII. CONCLUSION

We calculated the polarized and unpolarized cross section
for lepton deuteron elastic scattering, taking into account the
lepton mass and showed an application to the case of muon
scattering.

Besides the unpolarized cross section, different observables
have been calculated, according to the possible polarizations of
the lepton beam and the deuteron target. The spin correlation
coefficients due to the lepton beam polarization and to the
vector polarization of the deuteron target, as well as the
asymmetries due to the tensor polarization of the deuteron
target have been explicitly derived. The calculations have been
done for two coordinate systems: in the first one the z axis is
directed along the lepton beam momentum and, in the second
one, along the virtual photon momentum.

The numerical application needs a parametrization of the
deuteron form factors. We chose the parametrization from
Ref. [23] which is based on a two component model of the
deuteron, where the pn core is surrounded by an (isoscalar)
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meson cloud. This model reproduces very well the existing
experimental data.

It is shown that the effect of the finite lepton mass is sizable
in particular at low incident energies and large scattering
angles.

These results are particularly important in relation to
planned measurements of low energy muon-deuteron scatter-
ing, which aim for a precise determination of the charge radius.
The determination of the radius requires experimentally the
extrapolation of the extracted form factor to Q% = 0; Eq. (1).
Neglecting the muon mass brings an error in the determination
of Q2 which is reflected directly in the slope. Note that the
experimental systematic precision sought is 1%.

The issue addressed here has a wider interest. Since the
advent of high-energy accelerators, lepton-hadron scattering
concerns mostly high-energy electron scattering, and the
commonly used formulas neglect the electron mass, which
is acceptable. But the lepton mass cannot always be neglected:
besides the present case, where the energy is of the order of
the muon mass, the terms related to the lepton mass have a
large effect at high energies in case of inverse kinematics as
proton-electron scattering, which is object of Ref. [25], as
well as in the crossed channel, the antiproton annihilation into
a lepton pair [26]) of interest for the antiproton annihilation
experiment at the GSI Facility for Antiproton and Ion Research
(PANDA at FAIR). In this respect, the subject of the present
paper is relevant to other elementary processes. It is also
an issue not only for fixed-target experiments, but also for
electron-ion colliders (this case was discussed in Ref. [27]).

Finally we would like to stress that the formulas derived in
the paper are valid at any energy (outside the very low-energy
region where capture takes place instead of scattering). The
relations in terms of form factors are model independent: they
are fully relativistic expressions based on the most general
symmetry properties of electromagnetic interactions and on
the spin-1 nature of the exchanged photon.

The dynamics and the structure of the deuteron are fully
contained in form factors. We used the parametrization of
Ref. [23] which reproduces best the existing data: G¢ up
to 0* =2 GeV?, Gy up to 0% =2.8 GeV?, and Gy up to
0% = 1.7 GeV?. Moreover, in the low-Q? region of interest
here, form factors are constrained by the static values (electric
charge and magnetic and quadrupole moments) which are very
precisely known. Due to these reasons, we can consider the
present results to be “model independent.”
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APPENDIX

We give here the expressions which relate the description
of the polarization state of the deuteron target for different ap-
proaches. For the case of arbitrary polarization of the target, the

PHYSICAL REVIEW C 90, 064901 (2014)

deuteron polarization is described by the spin-density matrix
which is defined, in the general case, by eight parameters.

1. Coordinate representation

The deuteron spin-density matrix in the coordinate repre-
sentation has the form

1 PuDv i
Puv = _§<gMV — ;(42 + A7 EnvroSaPp + QMV’

2M
Q;w = Qwu th =0, Pu qu =0, (Al)

where p,, is the deuteron four-momentum, s,, and Q,,, are, re-
spectively, the deuteron polarization four-vector describing the
vector polarization and the deuteron quadrupole-polarization
tensor describing the tensor polarization.
In the deuteron rest frame Eq. (A1) becomes
1

i .
Pij = §5i.i - Egijksk + Qij, ij=x,y,2.

(A2)

2. Helicity representation

The spin-density matrix can be written in the helicity
representation by using the following relation:

P = ,Oije,g}\)*ef,-”,
o = (Pa2)", (A3)
)\'9)\‘/ — +9 - 10»

where ef)‘) are the deuteron spin functions which have the

deuteron spin projection A onto the quantization axis (z axis).
They are
1
H i (O
e - :F_(lv il,o)v e - (05091)' (A4)
V2
The elements of the spin-density matrix in the helicity repre-

sentation are related to those in the coordinate representation
as follows:

1+1 lQ
= — -5, — = s
P++ 3 T % Tk
1 1 1
P—— = § - Esz - EQZZ’
1
pOO=§+Qz21
1 .
P— = _E(Qxx - ny) +1Qxyv
! ( iSy) l(Q 1 Qy2)
= ——(5¢ —isy) — —=(0x; —10,,),
P+0 2\/5 y ﬁ yz
1 1
—= (5 +isy) — — (AS5)

P-0 = 2\/5 \/Q(QXZ +lez)-

To obtain these relations we used the condition Q,, + Q,, +
Q.. =0.

3. Representation in terms of population numbers

The description of the polarized deuteron target in terms of
the population numbers n,, n_, and ng is often used in the
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formulation of spin experiments (see, for example, Ref. [28]).
Here ny, n_, and ng are the fractions of the atoms in the
polarized target with the nuclear-spin projection onto the
quantization axism = +1, m = —1, and m = 0, respectively.
If the spin-density matrix is normalized to 1, i.e., Trp =1,
then we have ny + n_ + ng = 1. Thus, the polarization state
of the deuteron target is defined in this case by two parameters:
the so-called V (vector) and T (tensor) polarizations:

V=ny—n_, T=1-73n (A6)
By using the definitions for the quantities n4 o:
) (£ 0 (0
ne = pye e, ng = pel”e, (A7)

we have the following relation between the V and T parameters
and parameters of the spin-density matrix in the coordinate
representation (in the case when the quantization axis is
directed along the z axis)

no=1+40., ni=1+1is.-10., (A8)

or

T=-30,, V=3, (A9)

4. Representation of spherical tensors

Let us relate now the parameters of the spin-density matrix
in the coordinate representation to the parameters of the matrix
in the representation of the spherical tensors.

According to the Madison Convention [29], the spin-
density matrix of a spin-1 particle is given by the expression

1 *
p=3 qu:qurkq, (A10)

where 1y, are the polarization parameters of the deuteron spin-
density matrix and Ty, are the spherical tensors. The spherical

|
14 \/gtlo + J5t0 \/g(’l—l + 1)
1
1 — /21y

_\@(Ill —ty) 1-— \/gflo + ﬁl‘zo

P=3 —\/g(tn + ta1)
\/§t22
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tensors are expressed as

3 V3 .
T0=1, 710= \/;Sz, Ty = :FT(Sx +iSy),

3 , 2
Tzozﬁ Sz_§ )

V3 .
nﬁ=34&imﬁ

V3 . .
Tt = ¢7[(Sx +iS))S; + S.(S; £iS))], (Al1)
L {0 1 0
ss=— 1|1 o 1],
vV2\o 1 o
1 0 —i 0
Ss=—1|i o —il, (A12)
V2o i o
1 0 0
s.=[o o o
0 0 —1

From Eq. (A11) and the Hermiticity of the spin operator it

is straightforward to get
rk‘; = (=1)I75y. (A13)

The Hermiticity condition for the density matrix yields for #,

t,j‘q = (=Dtr_q. (A14)
From this equation one can see that
o =to, ;= —t-1,
ty=1to, by=t, b =—h_, (A15)

i.e., the parameters 1o and 5o are real, and the parameters ¢,
11 and #yp are complex. So, in total there are eight independent
real parameters as required for spin-1 massive particles.

The explicit expression of the deuteron density matrix is

\/512—2

\/g(fl—l —t_1)

(A16)

The density matrix is normalized to 1, i.e., Trp = 1. By using the expression for the density matrix in the helicity representation,
Eq. (AS), we get the following relations between the parameters of the density matrix in the coordinate representation and in the

spherical tensor representation:

3 3
tip = \/;st Ref;p = —Ret; 1 = —ism

V3
Im#y; = Imti_ = — )

Sy, I =

2

3,
ﬁ yoa)

Ret21 = —Ret2_1 = \/ngz, Imt2] = Imt2_1 = \/ngzv

NE]
Rety; = Rerr » = _T(Qxx = Qyy), Immp =—-Imph , = _\/ngy-

(A17)
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