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In this paper we study low-lying states under random interactions in the framework of the fermion dynamical
symmetry model (FDSM), regardless of the ground state spin. Very strong correlations are found for R6 versus R4

(where RI ≡ EI+
1
/E2+

1
) for the entire ensemble. We present arguments on the origin of these regular patterns in

terms of the dynamical symmetries of the FDSM. The regular patterns of B(E2; 4+
1 −→ 2+

1 ) versus B(E2; 2+
1 −→

0+
1 ) are found.
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An even-even nucleus always has spin-zero ground state
(0 g.s.) without any exception. The origin of this phenomenon
has long been recognized to be a reflection of the strong pairing
interaction between like nucleons. Therefore the discovery of
Johnson, Bertsch, and Dean in 1997 for the 0 g.s. dominance
under two-body random ensemble (TBRE) [1] sparked off a
sudden focus on its microscopic origin in nuclear structure
theory [2–4].

In addition to studies of the 0 g.s. dominance, there have
been many investigations of collective motions in atomic
nuclei with random interactions, under the requirement of the
spin-zero ground states. Among these studies, here we mention
vibrational and rotational motions of sd bosons [5], collective
motions of nucleons under random interactions with mixture
of “reasonably” strong quadrupole-quadrupole interaction [6],
the vibrational and rotational motions of SP(6) or SO(8) sym-
metric SD pairs [7] in the fermion dynamical symmetry model
(FDSM) [8,9], an analysis of the Mallmann plot [10] [namely
a plot of (RI ,R4) [11], where RI ≡ EI+

1
/E2+

1
], similar discus-

sions (but goes one step further) for the sd bosons [12] and for
the FDSM [13]. This work goes one more step further along the
same line of Ref. [13] in the FDSM, but without the require-
ment of the spin-zero ground states under random interactions.

The FDSM [8,9] is an SD-pair truncated shell model,
in which the building blocks (SD pairs) are constructed in
the so-called k-i basis. The SD pairs and the Hamiltonian
generators obey the SO(8) or the SP(6) symmetry. The FDSM
Hamiltonian is as follows:

H = G0S
†S + G2D

† · D +
2 or 3∑
r=1

BrP
(r) · P (r), (1)

where S† and D† are creation operators of spin-0 and spin-2
pairs; P (r) is the multipole operator with r ranging 1–2 in the
case of the SP(6) symmetry and 1–3 in the case of the SO(8)
symmetry. G0, G2, and Br are taken to be random values
following the Gaussian distribution with average 0 and width 1.

In this paper we study random systems which follow the
SO(8) symmetry or the SP(6) symmetry of the FDSM, with
pair number N = 3–5. In each case we diagonalize 5000 sets
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of the random Hamiltonians and calculate their yrast state
energies for both the cases with spin-zero ground states and
those with spin-nonzero ground states. EI+

1
is defined to be

the energy of the I+
1 state (the subscript “1” of I means the

yrast state with spin I ) subtracted by that of the 0+
1 state,

therefore it is always positive because the ground state has
spin 0 in previous studies [5–13]. Here for cases with nonzero
g.s. spin, we take the same definition of EI+

1
although it might

be negative.
We present the Mallmann plot (R6 versus R4) for the

random ensemble with spin-zero ground states in Figs. 1(a)–
1(f) and that for the random ensemble with spin-nonzero
ground states in Figs. 1(a′)–1(f′), under the SO(8) symmetry or
the SP(6) symmetry, with pair number N = 3,4,5. The results
of panels (a)–(f) have already been obtained in Ref. [13] and
here we include them in order to explicitly compare with results
of the random ensemble with spin-nonzero ground states. Let
us first look at the linear correlations, denoted by α, β, γ , and
δ in Fig. 1 of Ref. [13], or Figs. 1(a)–1(f) here. Analytical
formulas of correlations α, β, γ , and δ are

α : R6 = 3R4 − 3, β : R6 = 21

10
R4,

γ : R6 = 9

5
R4 + 1, δ : R6 = 18

7
R4 − 11

7
,

respectively. We shall derive these relations from dynamical
symmetry limits of the FDSM later in this paper.

In Figs. 1(a′)–1(f′), one sees that random samples with
spin-nonzero ground states may give R4 < 0 and/or R6 < 0.
The statistical peaks are found at R6 ≈ 0. The correlations α, β,
γ , and δ for the cases with spin-zero ground states are the same
as those for the cases with spin-nonzero ground states, although
the statistics of the samplings following the correlations α
and γ is much lower. The correlation β in Fig. 1(c′) is more
pronounced than that in Fig. 1(c), and the correlation δ in
Figs. 1(b′), 1(c′), 1(e′), and 1(f′) is more pronounced than that
in Figs. 1(b), 1(c), 1(e), and 1(f). In Figs. 1(a′) and 1(c′) one sees
a new correlation (we denote it by ξ ), R6 = 7

5R4 + 1, which
was not found in the cases with spin-zero ground states [13].

The correlations α, β, γ , δ, and ξ can be obtained by
dynamical symmetry (vibrational and rotational) limits in the
FDSM. In order to study the connection between them, the

0556-2813/2014/90(6)/064320(7) 064320-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.90.064320


G. J. FU, Y. M. ZHAO, AND A. ARIMA PHYSICAL REVIEW C 90, 064320 (2014)

FIG. 1. (Color online) Distribution of (R6, R4) of the random Hamiltonian in the FDSM. Panels (a)–(f) are based on random samples with
spin-zero ground states, and (a′)–(f′) are based on those with spin-nonzero ground states. Correlations between R6 and R4 are labeled by using
α, β, γ , δ, and ξ , respectively. Refer to the text for the definitions of these correlations.

Hamiltonian in Eq. (1) for the SO(8) symmetry is rewritten
as [9]

HSO(8) = H0 + ν1�CSU(2)

+ g5CSO(5) + g6CSO(6) + gÎ 2,

ν1 = G0 − G2, g5 = B3 − B2,

g6 = B2 − G2, g = (B1 − B3)/5, (2)

or

HSO(8) = H ′
0 + ν ′

1�CSU(2) + g′
5CSO(5) + g′

7�CSO(7) + gÎ 2,

ν ′
1 = G0 − B2, g′

5 = B3 − G2, g′
7 = G2 − B2, (3)

where CG is the quadratic Casimir invariant of a group G,
and �CG is the operator whose eigenvalues are excitation
energies with respect to the vacuum. H0 (H ′

0) is the rest part
of the Hamiltonian, which is equal to a constant for all states
of a given system, and is irrelevant to excitation energies of
states. The Hamiltonian in Eq. (1) for the SP(6) symmetry is
rewritten as [9]

HSP(6) = H0 + ν1�CSU(2) + s3CSU(3) + sÎ 2,
(4)

s3 = B2 − G2, s = 3(B1 − B2)/8.

Let us begin with the vibrational limits. In the FDSM there
are totally three dynamical symmetry limits which correspond
to anharmonic spherical vibrators. For the SO(8) symmetry, the
Hamiltonian, HSO(8), has the SO(5)×SU(2) limit if g′

7 = 0 in
Eq. (3), and it has also the SO(7) limit if ν ′

1 = 0. For the SP(6)
symmetry, the Hamiltonian HSP(6) has the SU(2) limit if s3 = 0
in Eq. (4). The energy of I+ states in these three vibrational
limits can be written in a unified form as follows [8,9]:

Evib = εNd + aNd (Nd − 1)/2 + b(Nd − τ )(Nd + τ + 3)

+ c[I (I + 1) − 6Nd ]

= ε0Nd + aNd (Nd − 1)/2 + b(Nd − τ )(Nd + τ + 3)

+ cI (I + 1). (5)

The definitions of ε, ε0, a, b, c, Nd , and τ are presented in
Table I. The reduction rules for the SO(5)×SU(2) limit of the
SO(8) symmetry are written as follows:

κ = N,N − 1, . . . ,1 or 0,

τ = κ,κ − 2, . . . ,1 or 0,

n� = [τ/3],[τ/3] − 1,[τ/3] − 2, . . . ,0, (6)

λ = τ − 3n�,

I = λ,λ + 1, . . . ,2λ − 2,2λ,

where κ is half of the seniority number satisfying κ � 
/2;

 is the pair degeneracy which is equal to 10 for the SO(8)
symmetry and to 15 for the SP(6) symmetry; τ , n�, and λ
are additional quantum numbers. The reduction rules and
additional quantum numbers for the SU(2) limit of the SP(6)
symmetry and the SO(7) limit of the SO(8) symmetry are the
same as those for the SO(5)×SU(2) limit, except for κ � 
/3
for the former case, and in the latter case κ is replaced by κ̄ ,
where κ̄ = N − w/2, and w is the number of nucleons that
do not form D pairs.

The cases corresponding to the vibrational limits lead to
the linear correlations α, β, γ , δ, and ξ . We exemplify this
by using the case of ν1 < 0. In the SO(5)×SU(2), SO(7), and
SU(2) limits, according to Table I, 
 and 
′ are large and
positive, ε0 is positive, and |ε0| is much larger than |a| and |b|
in most of the cases statistically. Thus for a given I , the lowest
energy state has Nd = τ = I/2 in all three vibrational limits,
and Eq. (5) gives

Evib = ε0I/2 + aI (I − 2)/8 + cI (I + 1),

which leads to

RI = R4I (I − 2)/8 − I (I − 4)/4.

This gives the correlation α in Fig. 1 where R6 = 3R4 − 3.
By the same procedures, correlations β, γ , and δ can be

derived from the SO(5)×SU(2) and SO(7) limits with ν1 > 0:
For N = 3, one obtains the correlation β; for N = 4, one has
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TABLE I. Definitions of ε, ε0, a, b, c, Nd , and τ for vibrational limits in the FDSM [9]. The parameters ε, ε0, a,
b, and c are written in terms of Hamiltonian parameters in Eqs. (2)–(4). Nd and τ are quantum numbers in vibrational
limits, and the reduction rules are presented in Eq. (6).

Parameter SO(5)×SU(2) SO(7) SU(2)

ε −ν1
 + 6g + 4g5
a g′

7

′ + 6g + 4g′

5
b −ν1
 + 6s

ε0 −ν1
 + 4g5 g′
7


′ + 4g′
5 −ν1


a 2ν1 + 2g5 2g5 2ν1

b −g5 −g′
5 0

c g g s

Nd κ (κ � 
/2)c κ̄d κ (κ � 
/3)
τ κ,κ − 2, . . . ,1 or 0 κ̄,κ̄ − 2, . . . ,1 or 0 κ,κ − 2, . . . ,1 or 0

a
 is the pair degeneracy which is equal to 10 for the SO(8) symmetry and to 15 for the SP(6) symmetry.
b
′ = 
 − 2N + 6, where N is the pair number of many-body systems.
cκ is one-half of the seniority number.
dκ̄ = N − w/2 where w is the number of nucleons that do not form D pairs.

the correlation γ if b < 0, and δ if b > 0; for N = 5, one
obtains the correlation β if b < 0, and δ if b > 0.

In Figs. 1(a′) and 1(c′), one also obtains the correlation ξ ,
defined by R6 = 7

5R4 + 1. This correlation can be derived in
the SO(5)×SU(2) and the SO(7) limits. In Eq. (5) if we take
Nd = 2,3,2,3 and τ = 0,1,2,3 for I = 0,2,4,6, respectively,
as well as |c| � |b|, the excitation energies of the 2+, 4+, and
6+ states are written by

E2+ − E0+ = ε0 + 2a + 4b + 6c ≈ ε0 + 2a + 4b,

E4+ − E0+ = −10b + 20c ≈ −10b,

E6+ − E0+ = ε0 + 2a − 10b + 42c ≈ ε0 + 2a − 10b.

From the above formulas we arrive at the correlation R6 =
7
5R4 + 1. In Figs. 1(a′) and 1(c′) one sees that the results
relevant to this correlation do not follow the straight line
R6 = 7

5R4 + 1 very compactly.
In the SU(2) limit with ν1 > 0, all statistics in the Mallmann

plot converge at (R6,R4) = (7,10/3). However, because the
value of s3 in Eq. (4) is not precisely equal to 0 in
random Hamiltonians, the SU(2) limit is not precisely (but
approximately) satisfied, and

EI+ ≈ ε0Nd + aNd (Nd − 1)/2 + b(Nd − τ )(Nd + τ + 3)

+ cI (I + 1) + s3〈Nκτ,I |CSU(3)|Nκτ,I 〉, (7)

where |Nκτ,I 〉 is the eigenstate of the SU(2) limit. The last
term on the right-hand side of Eq. (7) leads to deviations from
(R6,R4) = (7,10/3).

We discuss the vibrational limits of the FDSM above, and
Table II is a summary of the correlation between R6 and R4 in
the vibrational limits. Below we discuss the rotational limits
of the FDSM.

There are two dynamical symmetry limits corresponding
to rotors: For the SO(8) symmetry, the Hamiltonian has the

SO(6) limit if ν1 = 0 in Eq. (2); for the SP(6) symmetry, the
Hamiltonian has the SU(3) limit if ν1 = 0 in Eq. (4). In the
SO(6) limit of the SO(8) symmetry, the eigenenergies are given
by [9]

ESO(6) = E0 + g5τ (τ + 3) + g6σ (σ + 4) + gI (I + 1), (8)

where E0 is a constant independent of I . For N � 
/2, the
reduction rules for the SO(6) limit are written as follows:

σ = N,N − 2,N − 4, . . . ,0 or 1,

τ = σ,σ − 1,σ − 2, . . . ,0,

n� = [τ/3],[τ/3] − 1,[τ/3] − 2, . . . ,0, (9)

λ = τ − 3n�,

I = λ,λ + 1, . . . ,2λ − 2,2λ,

where σ , τ , n�, and λ are quantum numbers.
When g5 > 0 and g6 < 0, the yrast states have σ = N

and τ = I/2, and Eq. (8) is reduced to ESO(6) = E0 +
g5I (I + 6)/4 + g6N (N + 4) + gI (I + 1), and one obtains
RI = R4I (I − 2)/8 − I (I − 4)/4 which is the correlation α;
when g5 > 0 and g6 > 0, the yrast states have τ = I/2,
σ = 2[(I + 2)/4] (σ = 2[I/4] + 1) for even (odd) number
of nucleon pairs, in this case R6 does not exhibit a linear
correlation versus R4; when g5 < 0 and g6 < 0, the correlation
β arises if N = 3k (where k is an integer), and δ arises if
N 	= 3k; and when g5 < 0 and g6 > 0, the correlation β arises
if N = 3 and 5, δ arises if N 	= 3k.

The eigenenergies of the SU(3) limit are given by [9]

ESU(3) = E0 + s3

2
(λ2 + μ2 + λμ + 3λ + 3μ)

+sI (I + 1), (10)

064320-3



G. J. FU, Y. M. ZHAO, AND A. ARIMA PHYSICAL REVIEW C 90, 064320 (2014)

TABLE II. Correlations between R6 and R4 in the vibrational limits of the FDSM [9]. ν1 and b are parameters
defined in Eqs. (2) and (5), respectively. N is the nucleon pair number of a system, and I is the spin of a state. Nd and
τ are quantum numbers in vibrational limits, with the reduction rule given in Eq. (6). “+” means to take a positive
value and “−” means a negative value.

SO(8)⊃ SO(5)×SU(2) or SO(8)⊃ SO(7)
ν1 b N Nd τ I R6–R4

− I/2 I/2 0,2,4,6, . . . RI = I (I−2)
8 R4 − I (I−4)

4 α

+ 3 N
3
1

0,4,6
2

R6 = 21
10 R4 β

+ − 4 N

4
2
0

6
2,4
0

R6 = 9
5 R4 + 1 γ

+ − 5 N
3
1

0,4,6
2

R6 = 21
10 R4 β

+ + 4 N
4
0

2,4,6
0

R6 = 18
7 R4 − 11

7 δ

+ + 5 N
5
3

2,4,6
0

R6 = 18
7 R4 − 11

7 δ

SP(6)⊃ SU(2)
ν1 Nd τ R6-R4

− I/2 I/2 RI = I (I−2)
8 R4 − I (I−4)

4 α

+ N N,N − 2, . . . ,1 or 0 (RI ,R4) = ( I (I+1)
6 , 10

3 )

where E0 is a constant independent of I . The reduction rules are as follows [9]:

(λ,μ) = (2N,0),(2N − 4,2), . . . ,(0,N ) or (2,N − 1),

(2N − 6,0),(2N − 10,2), . . . ,(0,N − 3) or (2,N − 4),

(2N − 12,0),(2N − 16,2), . . . ,(0,N − 6) or (2,N − 7), . . . ,

Km = max(λ,μ), K0 = min(λ,μ), K = K0,K0 − 2, . . . ,0 or 1,

I =
{

Km,Km − 2, . . . ,0 or 1, if K = 0,

K,K + 1, . . . ,K + Km, if K 	= 0.
(11)

For s3 < 0, the yrast states have (λ,μ) = (2N,0), and Eq. (10)
is reduced to

ESU(3) = E0 + s3N (2N + 3) + sI (I + 1).

We thus have RI = I (I + 1)/6, which leads to (R6,R4) =
(7,10/3). For s3 > 0, the yrast states have (λ,μ) =
(0,0),(2,2),(6,0), . . . if N = 3k, and (λ,μ) = (2,0),(0,4),
(4,2), . . . or (0,2),(4,0),(2,4), . . . if N 	= 3k. Thus one obtains
R6 = 57

28R4 + 3
14 if N = 3k, and R6 = 2R4 + 1

3 if N 	= 3k.
Table III is a summary of the correlation between R6 and R4

in the rotational limits.
In Fig. 2, one sees that the correlation R6 = 57

28R4 + 3
14 is

very close to the correlation β in the case of N = 3, and the
correlation R6 = 2R4 + 1

3 is very close to the correlations γ
and β in the cases of N = 4 and 5, respectively. Scrutinizing
the results of random ensembles in Fig. 2, one sees that the
correlation R6 = 57

28R4 + 3
14 is less favored than the correlation

β for R4 < −1 and N = 3, and the correlation R6 = 2R4 + 1
3

is more favored than the correlation γ for R4 > 4 and N = 4
(or than the correlation β with N = 5). For N = 3 with
R4 > −1, the distribution of the (R6, R4) results for our
random ensemble show no bias between correlation β and
R6 = 57

28R4 + 3
14 . Similarly, no noticeable bias is reflected

between R6 = 2R4 + 1
3 and γ (or β) for R4 < 4 in the case of

N = 4 (or 5), according to calculated results in Fig. 2.
As we relate R6-R4 correlation to dynamical symmetries

in the FDSM, random samplings which do not follow these
dynamical symmetries are of interest. This can be studied
by setting the magnitudes of g′

7, ν1, ν ′
1, and s3 comparably

large in Eqs. (2)–(4). For the SO(8) symmetry, we define
x1 and x2 as the smallest and the second smallest value
among |g′

7|, |ν1|, and |ν ′
1| in each random Hamiltonian,

respectively. For the SP(6) symmetry, we define x1 and x2

as the smaller and the larger value between |ν1| and |s3|,
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TABLE III. Same as Table II, except for the rotational limits of the FDSM [9]. g5, g6, and s3 are parameters defined
in Eqs. (2) and (4). σ and τ are quantum numbers of the SO(6) limit, with the reduction rule presented in Eq. (9). λ,
μ, and K are quantum numbers of the SU(3) limit, with the reduction rule given in Eq. (11). k is an integer.

SO(8)⊃ SO(6)
g5 g6 N σ τ I R6–R4

+ − N I/2 0,2,4,6, . . . RI = I (I−2)
8 R4 − I (I−4)

4 α

+ + 2k 2[ I+2
4 ] I/2 0,2,4,6, . . .

+ + 2k + 1 2[ I
4 ] + 1 I/2 0,2,4,6, . . .

− − 3k N
N

N − 1
0,4,6, . . .

2
RI = I (I+1)

20 R4 β

− − 	= 3k N
N

3[ N
3 ]

2,4,6, . . .

0
RI = (I−2)(I+3)

14 R4 − (I−4)(I+5)
14 δ

− + 3

2[ I
4 ] + 1

2[ I
4 ] + 1

3
3

σ

0
3
2

2,4,6
0

0,4,6
2

R6 = 21
10 R4 β

− + 4
2[ I+2

4 ]
4
4

2[ I+2
4 ]

4
3

2,4,6
0

R6 = 18
7 R4 − 11

7 δ

− + 5

2[ I
4 ] + 1

2[ I
4 ] + 1

5
3

σ

0
5
3

2,4,6
0

2,4,6
0

R6 = 21
10 R4

or
R6 = 18

7 R4 − 11
7

β

δ

SP(6)⊃ SU(3)
s3 N (λ,μ) K I R6-R4

− (2N,0) 0 0,2,4,6, . . . (RI ,R4) = ( I (I+1)
6 , 10

3 )

+ 3k

(0,0)
(2,2)
(2,2)
(6,0)

0
0,2
2
0

0
2
4
6

R6 = 57
28 R4 + 3

14

+ 3k + 1
(2,0)
(0,4)
(4,2)

0
0
2

0,2
4
6

R6 = 2R4 + 1
3

+ 3k + 2
(0,2)
(4,0)
(2,4)

0
0
2

0,2
4
6

R6 = 2R4 + 1
3

FIG. 2. (Color online) Distribution of (R6, R4) for the SP(6) symmetry, with the focus of R < 2 for N = 3 and of R > 2 for N = 4,5,
respectively. Calculated results of the entire random ensemble, regardless of their ground state spins, are included. One sees that two correlations
in each panel, i.e., R6 = 57

28 R4 + 3
14 and β correlation for N = 3, R6 = 2R4 + 1

3 and γ correlation for N = 4, R6 = 2R4 + 1
3 and β correlation

for N = 5, are very close to each other.
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FIG. 3. (Color online) Distribution of (R6, R4) for random samplings which do not well follow dynamical symmetry limits in the FDSM.
Calculated results of the random samplings, regardless of their ground state spins, are considered here. One sees that correlations α, β, γ , δ,
and ξ are as remarkable as in Fig. 1.

FIG. 4. (Color online) Distribution of [B(E2; 4+
1 −→ 2+

1 ), B(E2; 2+
1 −→ 0+

1 )] for the random ensemble of the FDSM. The solid trajectories
in black are given by the ensemble with the Hamiltonian of Eq. (1); squares in red correspond to random samplings with the SO(5)×SU(2) or
the SU(2) limit; triangles in green correspond to those with the SO(7) limit; and inverse triangles in blue correspond to those with the SO(6) or
the SU(3) limit.
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respectively. In order to skip typical vibrational and rotational
cases among the random ensemble, our random Hamiltonians
are restricted to cases of x1/x2 > 0.7. The Mallmann plot of
these restricted random ensemble, plotted in Fig. 3, remains
to exhibit the remarkable correlations α, β, γ , δ, as well as
ξ . Therefore these correlations are very robust with respect
to random interactions. We also note that in Figs. 3(a) and
3(c), the correlation α is relatively less pronounced, and many
more samples are found at (R6,R4) ≈ (2.5,2). The previous
statistical peak at (R6,R4) = (7,3.33) almost disappears in
Figs. 3(d) and 3(e).

We further consider electric quadrupole transition proba-
bility, B(E2), between yrast states under random interactions.
Here the quadrupole operator is taken to be P (2). The
correlation of B(E2; 4+

1 −→ 2+
1 ) versus B(E2; 2+

1 −→ 0+
1 ) is

shown in Fig. 4. Interestingly, these two B(E2) values follow
very compact trajectories with “exceptions.”

We diagonalize random Hamiltonians which are restricted
to the SO(5)×SU(2), SO(7), SU(2), SO(6), and SU(3) limits,
and calculate the B(E2) values. In Fig. 4, one sees that B(E2)
results take specific values in the plane of B(E2; 4+

1 −→ 2+
1 )

and B(E2; 2+
1 −→ 0+

1 ) for the SO(5)×SU(2), SO(7), SU(2),
SO(6), and SU(3) limits. This is understandable, as the
wave functions of yrast states are predetermined according
to the dynamical symmetry limits. The “exceptions” arise
in the case of N = 4 and 5 in the SU(2) limit of the SP(6)
symmetry [see Figs. 4(e) and 4(f)], in which the distribution of
B(E2; 4+

1 −→ 2+
1 ) versus B(E2; 2+

1 −→ 0+
1 ) is smeared and

does not follow the trajectories of the entire random ensemble.
These “exceptions” originate from level degeneracies of yrast
I =2 and 4 states. According to Table II, the lowest energy
state for given I has Nd = κ = N and τ = N,N − 2, . . . ,1
or 0, in the SU(2) limit with ν1 > 0. For N = 4, we have
Nd = 4 and τ = 4, 2, or 0; for N = 5, we have Nd = 5 and

τ = 5, 3, or 1. Because Nd represents the number of D pairs,
the number of states is two for both I =2 and 4, thus both
states are twofolded degenerate, and numerical calculations
present wave functions given by random combinations of
two configurations with different τ , yielding the smeared
distribution of B(E2; 4+

1 −→ 2+
1 ) versus B(E2; 2+

1 −→ 0+
1 )

in Figs. 4(e) and 4(f). These “exceptions” also occur for N = 3
in the SU(3) limit of the SP(6) symmetry [see Fig. 4(d)]. In
this case s3 > 0 in Eq. (4), and there are two degenerate spin-2
states which are lowest in energy, with (λ,μ) = (2,2) and
K = 0 or 2. Clearly, all B(E2) results follow the trajectories
given here once the above degeneracy is broken.

To summarize, in this paper we study the correlation of
yrast states in the FDSM, under random interactions. Here we
consider the entire random ensemble. We find that R6–R4

exhibit strong linear correlations, regardless of the ground
state spin. We have shown that these simple correlations can
be obtained in the vibrational [SO(5)×SU(2), SO(7), and
SU(2)] and the rotational [SO(6) and SU(3)] limits in the
FDSM. We have also shown that these correlations survive
for random samplings which do not obey these dynami-
cal symmetries. We discern the strong correlation between
B(E2; 4+

1 −→ 2+
1 ) and B(E2; 2+

1 −→ 0+
1 ) for the random

ensemble in the FDSM, and future consideration of its origin is
warranted.
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