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Emergent dynamical symmetry at the triple point of nuclear deformations
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Based on the boson realization of the Euclidean algebras, it is shown that the five-dimensional Euclidean
dynamical symmetry may emerge at the triple point of the shape phase diagram of the interacting boson model,
which thus offers a symmetry-based understanding of this isolated point. It is further shown that the low-lying
dynamics in 108Pd, 134Ba, 64Zn, and 114Cd may be dominated by the Euclidean dynamical symmetry.
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I. INTRODUCTION

Dynamical symmetries (DSs) provide considerable insight
into the nature of quantum many-body dynamical structures.
Generally, DS occurs when the Hamiltonian of a system can
be written in terms of Casimir operators of a chain of Lie
algebras G ⊃ G′ ⊃ G′′ · · · . Typical examples of DS are those
associated with the interacting boson model (IBM) [1] for
nuclear structure and the vibron model (VM) [2] for molecules
and atomic clusters [3].

The IBM possesses an overall U(6) symmetry with three
DSs corresponding to three typical collective structures or
quadrupole deformations [2]; namely, a spherical vibrator
[U(5)], an axially symmetric prolate rotor [SU(3)], and a γ -soft
rotor [O(6)]. In addition, an axially symmetric oblate rotor
[SU(3)] can be involved in the IBM dynamics if adopting
an alternative SU(3) quandrupole operator, in contrast to
that often used for the prolate rotor [4]. Besides these exact
DSs, the partial dynamical symmetries (PDSs) [5–7] and
quasidynamical symmetries (QDSs) [8–10] have also been
found to occur in the IBM. Indeed, it was found that the
SU(3) QDS [11,12] may emerge along the trajectory in the
IBM parameter space close to the Alhassid-Whelan arc of
regularity [13], which has been empirically confirmed [14].
A link between PDS and QDS has also been established
recently via the method of quantum number fluctuation [15].
As there is a link between each DS in the IBM and the quantum
(shape) phase or quadrupole deformation [1], the (shape) phase
transitions in nuclei may be characterized as the quantum
phase transitions (QPTs) in between the different DSs in the
IBM [16–18]. Particularly, the QPT from SU(3) to SU(3) may
exactly occur at the point of O(6) DS [4]. In addition, an isolate
triple point, at which three kinds of quadrupole deformations
including the spherical, prolate, and oblate shapes may coexist
at the same time [19,20], also emerges in the critical region
of the IBM. On the other hand, an algebraic model of the
Euclidean dynamical symmetry in five dimensions [Eu(5)
DS] [21] has recently been suggested to describe the nuclei
in the critical region. Especially, it was shown [21] that the
results obtained from the simplest version of the Eu(5) DS
(unprojected) in the large-N limit are the same as those from

the E(5) critical point symmetry [E(5) CPS] built from the Bohr
Hamiltonian with an infinite well potential [22]. However, the
relation between the IBM and the Eu(5) DS still remains to be
revealed. In this work, we will present an extensive analysis
of the Eu(5) DS and clarify the relation between the Eu(5) DS
and the IBM.

II. THE BOSON REALIZATION OF THE
EUCLIDEAN ALGEBRA

A Hamiltonian in the IBM framework is constructed from
two kinds of boson operators; namely, an s boson with Jπ =
0+ and a d boson with Jπ = 2+ [1]. The three DSs in the IBM
are characterized by three different chains of the U(6) group
[1]:

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3),

U(6) ⊃ O(6) ⊃ SO(5) ⊃ SO(3), (1)

U(6) ⊃ SU(3) ⊃ SO(3).

Then, the Hamiltonian with an explicit DS in the IBM can be
written in terms of the Casimir operators of the corresponding
group chain. On the other hand, it was shown [21] that one can
use the d-boson operator to construct the Casimir operator of
the Eu(5) group as

Ĉ2[Eu(5)] = n̂d + 5
2 − 1

2 (P̂ †
d + P̂d ), (2)

where n̂d = ∑
u d

†
udu, and P̂d = ∑

u(−)udud−u. Accordingly,
the d-boson operator can be also used to construct the fifteen
generators of the Eu(5) Lie algebra as

Q̂(2)
u = 1√

2
[d̃u − d†

u],

T̂ (λ)
u =

√
2(d†d̃)(λ)

u , λ = 1,3,

(3)

where d̃u = (−1)udu. It is evident that the Eu(5) algebra is
noncompact as seen from (3). It should be mentioned that
a geometric realization of the Eu(5) algebra in the collective
model may be constructed by using the quadrupole coordinates
qu and the conjugate momenta p̃u [23]. The boson algebraic
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and the collective geometric realizations may be linked by
implementing the d-boson operator with d̃u = 1√

2
[qu + ip̃u]

and d
†
u = 1√

2
[qu − ip̃u] [21].

It can be proven that the above Eu(5) generators satisfy the
commutation relations[

Q̂(2)
u ,Q̂(2)

v

] = 0,

[
T̂ (λ)

u ,Q̂(2)
v

] = −
√

4λ + 2

5
〈λu2v|2u + v〉Q̂(2)

u+v,

[
T̂ (λ)

u ,T̂
(λ′)
u′

] = −
√

8(2λ + 1)(2λ′ + 1)
∑

k=odd

{
λ,λ′,k

2,2,2

}

× 〈λuλ′u′|ku + u′〉T̂ (k)
u+u′, (4)

and
[
Q̂(2)

u ,Ĉ2[Eu(5)]
] = [

T̂ (λ)
u ,Ĉ2[Eu(5)]

] = 0. (5)

One can further prove that the operators {T̂ (λ)
u } with λ = 1,3

generate the SO(5) algebra, in which the angular momentum
operators defined by {L̂u = √

5T̂ (1)
u } generate the SO(3)

algebra. The Eu(5) algebra may be characterized by the
algebraic chain [23]

Eu(5) ⊃ SO(5) ⊃ SO(3). (6)

In addition, {Q̂(2)
u } generate the Abelian group T5 of transla-

tions in the five-dimensional space. It is thus realized that the
Eu(5) algebra is equivalent to the semidirect sum of T5 and
SO(5), namely, Eu(5) = T5 ⊕s SO(5) [24–26]. Accordingly,
there is another dynamical symmetry related with the algebraic
chain

Eu(5) ⊃ T5 ⊕s SO(3) ⊃ SO(3), (7)

in which the semidirect sum T5 ⊕s SO(3) is often used to
denote the dynamical symmetry of a quadrupole-deformed
rigid body [27]. In the following, only the dynamical situation
characterized by the algebraic chain (6) will be studied.

III. THE SU(1,1) EXPRESSION OF THE EU(5) DS AND ITS
LINK WITH THE E(5) CPS

As analyzed in [21], the spectral structure of (2) in the large-
N limit coincides with that generated from the E(5) CPS [22].
Actually, the form of the Eu(5) Casimir operator shown in (2)
can be directly translated from the Hamiltonian of the E(5) CPS
via the SU(1,1) reformulation. Specifically, the SU(1,1) Lie
algebra generated by Ŝν , ν = 0,±, satisfies the commutation
relations [28–31]

[Ŝ−,Ŝ+] = 2Ŝ0, [Ŝ0,Ŝ±] = ±Ŝ±. (8)

The Casimir operator of SU(1,1) can be written as

Ĉ2[SU(1,1)] = Ŝ0(Ŝ0 − 1) − Ŝ+Ŝ−. (9)

Let |λ,k〉, k = 0,1,2, . . . be the basis vectors of the irreducible
representation λ of SU(1,1), of which the matrix representation

is determined by [28–31]

Ŝ0|λ,k〉 = 1

2
(λ + 2k)|λ,k〉, (10)

Ŝ+|λ,k〉 =
√

(λ + k)(k + 1)|λ,k + 1〉, (11)

Ŝ−|λ,k〉 =
√

(λ + k − 1)k|λ,k − 1〉, (12)

Ĉ2[SU(1,1)]|λ,k〉 = λ

2

(
λ

2
− 1

)
|λ,k〉. (13)

For the d-boson realization of the SU(1,1) [32],

Ŝd
+ = 1

2 P̂ +
d , Ŝd

− = 1
2 P̂d , Ŝd

0 = 1
2

(
n̂d + 5

2

)
, (14)

from which the quantum numbers λ and k can be expressed by
the seniority quantum number τ of the SO(5) and the number
of the d bosons nd as λ = τ + 5

2 and k = 1
2 (nd − τ ). Then, the

Casimir operator of Eu(5) defined in (2) can be expressed as

Ĉ2[Eu(5)] = 2Ŝd
0 − (Ŝd

+ + Ŝd
−). (15)

Thus, one may choose to solve the eigenvalue problem of
Ĉ2[Eu(5)] within the subspace spanned by the SU(1,1) basis
vectors {|λ,k〉}. In addition, the Eu(5) with the Casimir
operator given in (15) can easily be extended to the n-
dimensional case. Specifically, the Casimir operator of the
n-dimensional Euclidean group [Eu(n)] with n = 2l + 1 may
be written as

Ĉ2[Eu(n)] = 2Ŝl
0 − (Ŝl

+ + Ŝl
−), (16)

of which the SU(1,1) algebra is generated by [33]

Ŝl
+ = 1

2
P̂

†
l , Ŝ− = 1

2
P̂l

(17)

Ŝl
0 = 1

2

(
n̂l + 2l + 1

2

)
,

where n̂l = ∑
m l

†
mlm, and P̂l = ∑

m(−1)mlml−m, in which l
†
m

(lm) are the creation (annihilation) operators of the l bosons.
It is obvious that the SU(1,1) algebra given in (14) is only
a special case of (17) with l = 2. Accordingly, one can also
construct the Eu(n) algebra with the l-boson operators as

Q̂(l)
u = 1√

2
[l̃u − l†u],

T̂ (λ)
u =

√
2(l† l̃)(λ)

u , λ = 1,3, . . . ,2l − 1, (18)

of which the l = 2 case just corresponds to the Eu(5) algebra
given in (3).

On the other hand, the collective Bohr Hamiltonian of the
E(5) CPS [22] is written as

HE(5) = − �
2

2B

{
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2

(
1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4

∑
k

L′2
k[

sin
(
γ − 2

3nπ
)]2

)}
+ V (β) (19)

with

V (β) =
{

0, β � βW ,

∞, β > βW .
(20)
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By writing the eigenfuctions

	(β,γ,θ ) = f (β)�(γ,θ ), (21)

one can get the angular equation[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 1

4

∑
k

L′2
k[

sin
(
γ − 2kπ

3

)]2

]
�(γ,θ )

= ��(γ,θ ), (22)

with � = τ (τ + 3) and the radial equation[
− �

2

2B

(
1

β4

∂

∂β
β4 ∂

∂β
− �

β2

)
+ V (β)

]
f (β) = Ef (β).

(23)

According to the analysis shown in [28–31], the SU(1,1)
algebra can be alternatively defined in terms of the differential
operators as

Ŝ
β
± = 1

4

[	2

a2
− �

(aβ)2
+ (aβ)2 ∓

(
2β

∂

∂β
+ 5

)]
, (24)

Ŝ
β
0 = 1

4

[
−	2

a2
+ �

(aβ)2
+ (aβ)2

]
, (25)

with 	2 = 1
β4

∂
∂β

β4 ∂
∂β

and 1
a2 = �

2

2B
. Then, the Hamiltonian

associated with (23) in the infinite well can be written as

H = 2Ŝ
β
0 − (Ŝβ

+ + Ŝ
β
−), (26)

which is the same form as that shown in (15). This indicates
that the Eu(5) DS can be directly translated from the E(5)
CPS at the Hamiltonian level. Thus, solving the differential
equation (23) is approximately equivalent to diagonalizing the
Hamiltonian (26) within the subspace spanned by the basis
vectors of SU(1,1) [28–31]. Though it is not easy to translate
the boundary conditions of the infinite well into those in the
algebraic description, it can approximately be realized in the
diagonalization of (15) with a cutoff in the Hilbert space [21].

IV. THE APPROXIMATE EU(5) DS AT THE
TRIPLE POINT IN THE IBM

Because the main composition of the system is the same as
that of the IBM with d bosons at the second quantization level,
to investigate the relation between the IBM and the Eu(5) DS
at the Hamiltonian level, we consider the IBM consistent-Q
Hamiltonian [34]

Ĥ (η,χ ) = ε
[
(1 − η)n̂d − η

4N
Q̂χ · Q̂χ

]
, (27)

where Q̂χ = (d†s + s†d̃)(2) + χ (d†d̃)(2) is the quadrupole
operator, η and χ are the control parameters with η ∈ [0,1]
and χ ∈ [−√

7/2,
√

7/2], and ε is a scale factor. It can be
proven that the Hamiltonian is in the U(5) DS when η = 0; it
is in the O(6) DS when η = 1 and χ = 0; it is in the SU(3)
DS when η = 1 and χ = −

√
7

2 ; and it is in the SU(3) DS when

η = 1 and χ =
√

7
2 . The two-dimensional parameter space of

(27) can be mapped onto a symmetric triangle (see Fig. 1),
called the extended Casten triangle [4]. To identify the QPTs

FIG. 1. Shape phase diagram in the IBM parameter space, where
S represents the region with βe = 0 corresponding to the spherical,
P represents the region with βe > 0 corresponding to the prolate,
and O represents the region with βe < 0 corresponding to the oblate.
In addition, the dashed lines correspond to the critical points of the
first-order QPTs, the two thin regions involving the dashed lines
represent the two-phase coexisting regions [36], and the solid dot in
the center represents the triple point.

in the IBM, one may use the coherent state defined as [1]

|β,γ,N〉 = 1√
N !(1 + β2)N

[
s† + β cos γ d

†
0

+ 1√
2
β sin γ (d†

2 + d
†
−2)

]N

|0〉 (28)

to obtain the scaled potential surface corresponding to the
Hamiltonian (27) in the large-N limit, which is given as

Vs(β,γ ) = 1

εN
〈β,γ,N |H |β,γ,N〉|N→∞

= (1 − η)
β2

1 + β2
− η

4(1 + β2)2

×
[

4β2 − 4

√
2

7
χβ3 cos 3γ + 2

7
χ2β4

]
. (29)

To illustrate the type and the order of the QPTs, one
should minimize the potential function (29) by varying β
and γ for η and χ . The optimal values are denoted as βe

and γe, from which one can get the ground state energy per
boson defined as Eg = Vs(η,χ,βe,γe). It can be found that the
γ dependence in (29) yields either γe = 0◦ or γe = 60◦, of
which the case with γe = 60◦ can be equivalently described
by substituting γe = 0◦ and β = −βe. Therefore, βe may serve
as the order parameter [35] to identify the order and the type of
the QPTs. For the second-order QPT, the order parameter βe

changes continuously, but with a discontinuous in the second
derivative of (29). In contrast, the first-order QPT may involve
a discontinuous jump in the order parameter βe itself [35]. In
addition, βe = 0, βe > 0, and βe < 0 represent the spherical,
prolate, and oblate deformations, respectively. Based on the
criteria mentioned above, one can prove that the system
may experience the first-order QPTs in two directions with
changing of the control parameters η and χ [19]. Specifically,
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the critical points of the first-order QPTs occurring in the η
direction are given as ηc = 14

28+χ2 and χ ∈ [−√
7/2,

√
7/2],

and in the χ direction are characterized by χc = 0 with η ∈
(0.5,1]. Particularly, the crossing point of the first-order QPTs
occurring in the two directions, namely (η = 0.5,χ = 0), may
be recognized as the single triple point as it is the junction
point of the spherical, prolate, and oblate deformations [19].
Meanwhile, this point is also proven to be the critical point of
the second-order phase transition in the η direction. The whole
shape phase diagram corresponding to (29) is clearly shown
in Fig. 1.

As is known, if a system has an underlying symmetry of
the group G, the corresponding Hamiltonian should commutes
with the generators of the group G. Along this line, it
has been proven [12] that there exists a parametrization
trajectory preserving the approximate SU(3) symmetry [SU(3)
QDS] inside the symmetry triangle of the IBM in the the
large-N limit. To identify the underlying Eu(5) DS in the
IBM parameter space, we examine the commutation relations
between the generators of the Eu(5) defined in (3) and the IBM
Hamiltonian Ĥ (η,χ ) given in (27). Firstly, it is easy to know
that the IBM Hamiltonian does commute with the angular
momentum operators L̂u = √

5T̂ (1)
u since the Hamiltonian is a

scalar. As a result, one only needs to examine the conditions
under which the Hamiltonian may commute (approximately)
with the other generators of the Eu(5). Specifically, one
can prove the following commutation relations by using the
standard angular momentum coupling techniques [12,37]:[

T̂ (3)
u ,n̂d

] = 0, (30)

[
T̂ (3)

u ,(d†s + s†d̃)(2)
v

] = −
√

14

5
〈3u2v|2u + v〉

× (d†s + s†d̃)(2)
u+v, (31)[

T̂ (3)
u ,(d†d̃)(2)

v

] = 2
√

70
∑
k=2,4

〈3u2v|ku + v〉

×
{

23k

222

}
(d†d̃)(k)

u+v, (32)

[
Q̂(2)

u ,n̂d

] =
√

2

2
(d̃ + d†)(2)

u , (33)[
Q̂(2)

u ,(d†s + s†d̃)(2)
v

] = (−)uδu,−v(s + s†), (34)

[
Q̂(2)

u ,(d†d̃)(2)
v

] =
√

2

2
〈2u2v|2u + v〉(d̃ + d†)(2)

u+v. (35)

By using the above relations, one can derive[
T̂ (3)

q ,Ĥ (η,χ )
]

= 3
√

5εηχ

28N

{√
10

[
(B̂(2)Â(2))(3)

q − (Â(2)B̂(2))(3)
q

]
−2

[
(B̂(4)Â(2))(3)

q − (Â(2)B̂(4))(3)
q

] − 2χ
[
(B̂(4)B̂(2))(3)

q

−(B̂(2)B̂(4))(3)
q

]}
, (36)

where Â(2)
q = (s†d̃ + d†s)(2)

q and B̂(k)
q = (d†d̃)(k)

q with k = 2,4.
Furthermore, by implementing the matrix elements related
to the s-boson operators under the U(6) ⊃ U(5) ⊃ SO(5) ⊃

SO(3) basis vectors {|Nndτ�L〉}, where N , nd , τ , and L
are the quantum numbers of U(6), U(5), SO(5), and SO(3),
respectively, and � is the additional quantum number to char-
acterize the multiplicity of L in τ , one gets the replacements
s† → √

n̂s + 1 and s → √
n̂s with n̂s = N − n̂d . Then, in the

nd/N � 1 limit, one can derive that

[
Q̂(2)

q ,Ĥ (η,χ )
] =

√
2ε

2
(1 − 2η)Ĉ(2)

q

−
√

2εηχ

8N

[
(Â(2)Ĉ(2))(2)

q + (Ĉ(2)Â(2))(2)
q

+2B̂(2)
q + χ (Ĉ(2)B̂(2))(2)

q + χ (B̂(2)Ĉ(2))(2)
q

]
,

(37)

where Ĉ(2)
q = (d̃ + d†)(2)

q . In order to make the commutators
given in (36) and (37) vanish at the same time, it is uniquely
required that (η = 0.5,χ = 0), under which the IBM Hamil-
tonian just locates at the single triple point mentioned above.
The result clearly shows that the Hamiltonian at the triple point
is approximately invariant under the Eu(5) transformations in
the nd/N � 1 limit. It should be noted that the approximation
condition nd/N � 1 is well satisfied for low-lying states
generated from the IBM Hamiltonian (27) with η ∈ [0,0.5] and
χ = 0 in large-N cases [35,38,39]. In fact, if implementing the
matrix elements related to s-boson operators under the basis
vectors {|Nndτ�L〉}, one can write the Hamiltonian (27) at
the triple point (η = 0.5,χ = 0) as

Ĥtri = ε

8

{
4n̂d − 1

N
[n̂d (N − n̂d + 1)

+ (N − n̂d )(n̂d + 5) + d† · d†√(N − n̂d )(N − n̂d − 1)

+
√

(N − n̂d + 1)(N − n̂d + 2)d̃ · d̃]

}
. (38)

In the nd/N � 1 limit, Eq. (38) can be further approximated
as [8]

Ĥtri � ε

4

[
n̂d − 5

2
− 1

2
(P †

d + Pd )

]

= ε

4
[Ĉ2[Eu(5)] − 5], (39)

which is explicitly given as the Casimir operator of the Eu(5)
up to a constant and a scale factor. It is thus confirmed that the
Eu(5) DS indeed occurs in the nd/N � 1 limit at the triple
point. Rigorously speaking, the Eu(5) DS occurring at the triple
point is only almost exact for the ground state in the large-N
limit, but is approximate for the excited states because the
condition nd/N � 1 for the excited states at the triple point
becomes weaker with the increasing of the excitation energies.
In addition, it should be emphasized that the Eu(5) DS is the
(approximate) DS associated with a β-soft potential since the
scale potential surface deduced from (29) at the triple point is
soft in β, in contrast to other DSs in the IBM, of which the
potential surfaces are all relatively rigid in β.
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V. POSSIBLE EU(5) CANDIDATES

Based on the concept of dynamical symmetry, the Hamil-
tonian with the Eu(5) DS can generally be written as

ĤEu(5) = aĈ2[Eu(5)] + bĈ2[SO(5)] + cĈ2[SO(3)], (40)

where a, b, and c are adjustable parameters, and Ĉ2[SO(5)]
and Ĉ2[SO(3)] are the Casimir operators of SO(5) and SO(3)
defined as

Ĉ2[SO(5)] = T̂ 3 · T̂ 3 + T̂ 1 · T̂ 1, (41)

Ĉ2[SO(3)] = 5T̂ 1 · T̂ 1, (42)

with T̂ 1 and T̂ 3 being those given in (3). One can construct
eigenstates of (40) from the SO(5) basis vectors {|τ �L〉 ≡
|nd = τ,τ �L〉}, which is well defined in the IBM, since SO(5)
is the subalgebra of the Eu(5) as shown in (6). Specifically, the
eigenstates of the Hamiltonian in the d-boson system with the
seniority τ and angular momentum L being good quantum
numbers can be expressed as

|ξ τ �L〉 =
m∑

k=0

C
ξ
k (P̂ †

d )k|τ �L〉, (43)

where m + 1 represents the dimension of the Hilbert subspace,
and C

ξ
k is the expansion coefficient with ξ being the additional

quantum number to distinguish the states with the same τ , �,
and L. The expansion coefficients {Cξ

k } are determined by the
eigenequation

ĤEu(5)|ξ τ �L〉 = E
ξ
τL|ξ τ �L〉. (44)

Concretely, one can diagonalize the Hamiltonian (40) in the
m + 1 dimensional Hilbert subspace to get the eigenvalues E

ξ
τL

and the corresponding expansion coefficients {Cξ
k }. Generally,

for the IBM Hamiltonian such as that of the O(6) DS, m =
[N−τ

2 ] is required, where [x] is the integer part of x [1], and the
s-boson part |ns〉 should also be involved in (43) for the IBM
with ns = N − 2k − τ . In the present case, the s-boson part
is irrelevant, while m should, in principle, be taken as infinite

since the dimension of the Hilbert subspace is infinite due to
the noncompactness of the Eu(5) algebra [24]. However, the
analysis [21] shows that the dynamical structure of the Eu(5)
DS may be well kept in the finite-m cases, which indicates
that one can diagonalize the Eu(5) Hamiltonian within a finite
subspace with sufficient large-m truncation. In our calculation,
the parameter a in (40) is reset as a = αm for convenience
since the energy levels generated by Ĉ2[Eu(5)] may scale with
m−1 as shown in [21]. In contrast, the energy levels generated
by Htri shown in (38) may scale with m−1/3 [40]. Besides
the diagonalization scheme, it should be mentioned that the
eigenstates corresponding to a DS in the IBM may be built
through the so called spectrum algebra method. For example,
the eigenstates in the O(6) DS can be analytically constructed
by acting the generalized boson pairing operators on the O(6)
basis vector [1]. Similarly, as shown in (43), eigenstates of
the Eu(5) DS are constructed by acting the generalized boson
pairing operator

∑m
k=0 C

ξ
k (P̂ †

d )k on the SO(5) basis vectors with
m being infinite. But the coefficients C

ξ
k can be only calculated

in a numerical way at present.
In the previous work [21], it was shown that the simplest

version of Eu(5) DS involving only the first term in (40)
provides an algebraic description of the E(5) CPS [22], in
which the E(5) CPS has been widely confirmed [41–48]. It
is thus suggested that the E(5) nuclei may be the candidate
of the Eu(5) DS in experiments. Here, we choose 108Pd [49],
134Ba [50], 64Zn [51], and 114Cd [52], which were previously
identified as the candidates of the E(5) CPS [41,42,46,47], as
examples to show the possible Eu(5) patterns in experiments.
In our calculation, the E2 transition operator is taken as

T̂u = e(d† + d̃)(2)
u (45)

with the effective boson charge e determined by the corre-
sponding experiment value of B(E2; 21 → 01) (in W.u.). The
low-lying patterns of these E(5) nuclei and the corresponding
results obtained from the Eu(5) DS are shown in Figs. 2–5.
It can be clearly observed from Fig. 2 that the low-lying

FIG. 2. The low-lying structure of 108Pd [49] and the results calculated for the Eu(5) Hamiltonian (40) with the m = 100 truncation, where
0+

τ and 0+
ξ represent the excited 0+ state with τ = 3 in the ξ = 1 family and that with τ = 0 in the ξ = 2 family, respectively, as those in the

E(5) CPS [22]. The parameters involved in the Eu(5) Hamiltonian are set as α = 49.4 keV, b = 14.8 keV, and c = 9.9 keV.
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FIG. 3. The same as in Fig. 2 but for 134Ba [50] and the corresponding Eu(5) pattern, for which the parameters are set as α = 74.9 keV,
b = 11.2 keV and c = 13.5 keV.

FIG. 4. The same as in Fig. 2 but for 64Zn [51] and the corresponding Eu(5) pattern, for which the parameters are set as α = 126 keV,
b = 12.6 keV and c = 22.7 keV.

FIG. 5. The same as in Fig. 2 but for 114Cd [52] and the corresponding Eu(5) pattern, for which the parameters are set as α = 79.9 keV,
b = 4.8 keV and c = 4.8 keV.
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TABLE I. Typical energy and B(E2) ratios of 108Pd [49], 134Ba
[50], 64Zn [51], and 114Cd [52] calculated from the Eu(5) DS extracted
from Figs. 2–5, the IBM at the triple point with the boson number
N taken as the number of valence nucleon (or hole) pairs for each
nucleus, and the E(5) CPS [22] in comparison with the corresponding
experimental data.

E(4+
1 )

E(2+
1 )

E(2+
2 )

E(4+
1 )

E(0+
ξ )

E(2+
1 )

B(E2;4+
1 →2+

1 )

B(E2;2+
1 →0+

1 )

B(E2;0+
2 →2+

1 )

B(E2;2+
1 →0+

1 )

108Pd 2.42 0.89 2.43 1.48 1.05
Eu(5) 2.36 0.86 2.15 1.67 0.85
Tri(N = 8) 2.14 1.00 3.00 1.55 0.81
E(5) 2.20 1.00 3.03 1.68 0.86
134Ba 2.32 0.83 3.57 1.55 0.42
Eu(5) 2.33 0.87 2.34 1.67 0.85
Tri(N = 5) 2.15 1.00 3.18 1.41 0.66
E(5) 2.20 1.00 3.03 1.68 0.86
64Zn 2.33 0.78 2.63 1.34 0.79
Eu(5) 2.33 0.86 2.40 1.67 0.85
Tri(N = 4) 2.16 1.00 3.29 1.32 0.58
E(5) 2.20 1.00 3.03 1.68 0.86
114Cd 2.30 0.94 2.03 1.99 0.87
Eu(5) 2.22 0.95 2.70 1.67 0.85
Tri(N = 9) 2.14 1.00 2.96 1.57 0.84
E(5) 2.20 1.00 3.03 1.68 0.86

spectrum of 108Pd can be well described by the Eu(5) pattern
determined by (40). Particularly, the relative B(E2) strengths
in the Eu(5) DS are independent of the parameters, while the
data of 108Pd seem to be well reproduced by those of the
Eu(5) DS. In addition, B(E2; 0+

3,2 → 2+
2 ) evidently deviates

from B(E2; 0+
τ → 2+

2 ) in the Eu(5) DS, which indicates that
the 0+

ξ and 0+
τ components may be mixing in the excited 0+

states of 108Pd. As shown in Figs. 3–5, the low-lying pattern
of 134Ba, 64Zn, and 114Cd can also be globally reproduced
well in the Eu(5) DS, which further confirms that the Eu(5)
DS emerges in these nuclei. Meanwhile, deviations from the
experimental results still exist. For example, B(E2; 3+

1 → 2+
2 )

calculated from the Eu(5) DS description seems too large, and
the ordering of the first two excited 0+ levels in 134Ba and
64Zn is altered in the Eu(5) DS as show in Figs. 3 and 4, which
show that the Eu(5) DS is still an approximate symmetry. As
analyzed in [53], the order of the first two excited 0+ states can
be altered by using a γ -independent displaced infinite well β
potential in the Bohr Hamiltonian, in contrast to the one used
in the E(5) CPS. It would be very interesting to investigate
whether such an improvement in the E(5) CPS will be achieved
in the Eu(5) DS, which may be discussed elsewhere.

For comparison of the Eu(5) DS results with those of
the E(5) and the IBM consistent-Q Hamiltonian at the triple

point, some typical level energies and B(E2) ratios calculated
from these models in comparison with the corresponding
experimental data are shown in Table I. As clearly shown in
Table I, the results of these models are similar and are in accord
with the experimental data with quantitative differences. In
addition, one may notice from Table I that the B(E2) ratios
obtained from the E(5) CPS are almost the same as those
calculated from the Eu(5) DS with m = 100 up to the second
decimal place. Actually, the minor differences at the second
decimal place in the B(E2) ratios shown in Table I can also
be removed if these quantities are calculated with larger m
truncation, which indicates that the Eu(5) Hamiltonian (40) is
just an algebraic equivalent description of the E(5) CPS with
SO(5) and SO(3) invariants being involved, with which an
intimate relation between the E(5) CPS and the IBM beyond
the mean-field approximation [54–56] is thus revealed. It
should be mentioned that one can also eliminate the differences
of the energy ratios in the Eu(5) DS from the E(5) description
shown in Table I by adding a linear combination of the SO(5)
and SO(3) Casimir operators in the E(5) CPS Hamiltonian
[22,23].

VI. SUMMARY

In summary, the boson realization of the Eu(5) algebras has
been presented, based on which the relation between the Eu(5)
dynamical symmetry description and the IBM is discussed.
Specifically, it is shown that the Eu(5) dynamical symmetry
may emerge at the triple point of the IBM phase diagram in
the nd/N � 1 limit, which thus provides an alternative insight
into the dynamical structure at or around this isolated point
and the experimental data associated with it. On the other
hand, this work also shows that the results of the E(5) CPS
can be realized in a fully DS way within the algebraic frame,
which thus reveals a more intimate relationship between the
E(5) CPS and the IBM beyond the mean-field approximation.
Finally, a preliminary examination of the Eu(5) DS in 108Pd,
134Ba, 64Zn, and 114Cd is made. The results indicate that the
low-lying dynamics of these nuclei are indeed dominated by
the Eu(5) DS.
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