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Short-range correlations in nuclear and neutron matter are examined through the properties of the correlated
wave function obtained by solving the Bethe–Goldstone equation. Tensor correlations are explored through the
dominant tensor-driven transition and central correlations through the singlet and triplet S waves. Predictions from
a popular meson-theoretic nucleon-nucleon potential employed in the Dirac–Brueckner–Hartree–Fock approach
are compared with those from two- and three-body high-quality chiral interactions in Brueckner G-matrix
calculations. Short-range correlations in symmetric matter are remarkably stronger than in neutron matter. It is
found that short-range correlations are very model dependent and have a large impact on the symmetry energy
above normal density.
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I. INTRODUCTION

Correlations in nuclear matter and nuclei carry important
information about the underlying nuclear forces and their
behavior in the medium. Since the early Brueckner nuclear-
matter calculations [1], it has been customary to associate
the correlated two-body wave functions to the strength of
the nucleon-nucleon (NN) potential. When this is done in a
particular channel, one can extract information about specific
components of the force. For instance, the 3S1-3D1 channel will
reveal tensor correlations, which have traditionally attracted
particular attention, since the model dependence among
predictions from different NN potentials resides mostly in
the strength of their respective tensor force and its off-shell
behavior.

Today, nuclear interactions have reached a much higher
level of sophistication. Furthermore, the impact of three-body
forces, which generate additional tensor force, is a central
question in contemporary nuclear physics and should be
addressed in any approach that wishes to be fundamental.

On the experimental side, measurements at high momen-
tum transfer have detected remarkable differences between
correlations in pn pairs, on the one hand, and pp and nn
pairs, on the other [2–5]. Protons struck from the nucleus
with initial momentum between the nucleus Fermi momentum
and approximately 600 MeV/c, were found to emerge from
a short-range correlated pn pair 92% of the time, whereas
pp and nn correlations were highly suppressed, contributing
only 4% of the high-momentum part of the distribution.
Recalling that the tensor interaction impacts mostly the np
channel, and that the momentum region under consideration is
tensor dominated, it is natural to conclude that one is looking
at the effects of tensor correlations.

Moreover, the tensor force plays a chief role in building
up the symmetry energy (see Ref. [6] and references therein),
which is the main mechanism in the formation of neutron
skins as well as other systems and phenomena, including radii
of compact stars.

In summary, investigations of short-range correlations (of
tensor nature, in particular) are of contemporary interest.
Such investigations should be conducted from a microscopic

standpoint; that is, in parameter-free calculations, meaning that
the parameters of the theory are fixed through the properties of
the two- and few-nucleon systems and never readjusted in the
many-body system. It is the purpose of this paper to present
such an investigation.

Other recent studies of tensor correlations can be found in
Refs. [7,8], where the self-consistent Green’s function method
is used to obtain single-particle properties. In Ref. [9] both
single-nucleon and nucleon-pair momentum distributions in
A � 12 nuclei are addressed.

I also wish to stress that, while discussing new aspects and
phenomena related to the tensor force, one should not ignore
what has been known for a long time about this important force
component. First and foremost, its role in the description of
NN data and the NN bound state must be taken into account
realistically. Without such a constraint, any discussion on off-
shell effects and/or short-range correlations is, to a large extent,
arbitrary. For instance, excessive spreading among predictions
of the symmetry energy from phenomenological models, such
as the numerous versions of the Skyrme model, originates from
lack of free-space constraints and may create an artificially
amplified theoretical uncertainty.

This paper is organized as follows: First I review some
basic concepts leading to the definition of the defect function
and the wound integral, both closely related to the correlated
wave function. This is done in Sec. II. In Sec. III, I proceed
with calculations of short-range correlations in nuclear matter
within the scheme described in Ref. [10], which consists
of a quantitative meson-theoretic potential and the Dirac–
Brueckner–Hartree–Fock (DBHF) approach to nuclear matter.
I pay particular attention to tensor and central correlations as
seen through the 3S1-3D1 channel and the 1S0 state, respectively,
and explore their density and isospin-asymmetry dependence.

While appreciating the convenience of the DBHF method,
I am open to alternative approaches. The very popular chiral
perturbation theory [11,12] is based on a different philosophy
than meson theory and has a firm link to QCD. Together with
power counting, it allows for a systematic, order-by-order,
development of nuclear forces. Two- and many-body forces
emerge naturally, and on an equal footing, at each order of the
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perturbation. Conceptually, this is a very attractive scenario.
I will use a state-of-the-art chiral NN potential along with
consistent three-body forces and explore the effects of three-
body forces on the correlation function. This is accomplished
in Sec. IV, where I also include a discussion on the model
dependence of the symmetry energy, extended to a broader
range of interactions. A brief summary and conclusions are
contained in Sec. V.

II. SHORT-RANGE CORRELATIONS:
SOME GENERAL ASPECTS

In terms of relative and center-of-mass momenta, the
Bethe–Goldstone equation can be written as

G(k0,k,Pc.m.,E0) = V (k0,k) +
∫

d3k′V (k0,k′)

×Q(kF ,k′,Pc.m.)

E − E0
G(k′,k,Pc.m.,E0), (1)

where V is the NN potential, Q is the Pauli operator, E =
E(k′,Pc.m.), and E0 = E(k0,Pc.m.), with the function E being
the total energy of the two-nucleon pair.

The second term of Eq. (1) represents the infinite ladder sum
which builds short-range correlations (SRCs) into the wave
function. In the next two equations, I switch, for simplicity,
to operator notation. The correlated ψ and the uncorrelated φ
wave functions are related through

Gφ = V ψ, (2)

which implies

ψ = φ + V
Q

E − E0
Gφ. (3)

The difference between the correlated and the uncorrelated
wave functions, f = ψ − φ, is referred to as the defect
function and is clearly a measure of SRCs. It is convenient
to consider its momentum-dependent Bessel transform, which
gives, for each angular momentum state [and average center-
of-mass momentum P c.m.

avg (k0,kF )],

f JST
LL′ (k,k0,kF ) = kQ̄

(
kF ,k,P c.m.

avg

)
GJST

LL′
(
P c.m.

avg ,k,k0
)

E0 − E
, (4)

where the angle-averaged Pauli operator has been employed.
This is related to the probability of exciting two nucleons
with relative momentum k0 and relative orbital angular
momentum L to a state with relative momentum k and relative
orbital angular momentum L′. The integral of the probability
amplitude squared is known as the wound integral and is
defined, for each partial wave at some density ρ, as

κJST
LL′ (k0,kF ) = ρ

∫ ∞

0

∣∣f JST
LL′ (k,k0,kF )

∣∣2
dk. (5)

Thus, f and κ provide a clear measure of correlations present
in the wave function and the G matrix.

In the present calculations, I take the initial momentum
equal to 0.55kF . I have chosen it because it is the rms
value of the relative momentum of two nucleons having an

average center-of-mass momentum P c.m.
avg , such that their initial

momenta in the nuclear-matter rest frame, k1 and k2, are below
the Fermi sea. With these constraints, one can write [1]

〈
k2

0

〉 =
∫ kF

0
k2

0w(k0,kF )k2
0dk0, (6)

where w(k,kF ) is a weight function whose definition originates
from the average center-of-mass momentum taken to be [1]

(
P c.m.

avg

)2 = 3

5
k2
F

(
1 − k0

kF

)(
1 + k2

0/k2
F

3(2 + k0/kF )

)
. (7)

In isospin-asymmetric matter, it is convenient to work with
the total density ρ = ρn + ρp and the asymmetry (or neutron
excess) parameter α = ρn−ρp

ρ
, where α = 0 corresponds to

symmetric matter and α = 1 corresponds to neutron matter.
In terms of α and the average Fermi momentum kF related to
the total density in the usual way, namely,

ρ = 2k3
F

3π2
, (8)

the neutron and proton Fermi momenta can be expressed as

kn
F = kF (1 + α)1/3 and k

p
F = kF (1 − α)1/3, (9)

respectively.
The G matrices in this work are isospin sensitive in the sense

the Gnn, Gpp, and Gnp are different even in the same isospin
state, due to the different Fermi momenta of neutrons and
protons. In the end, the self-consistent procedure [10] provides
the single-neutron and single-proton potentials together with
the G matrices Gij , ij = nn, pp, or np.

In short, the defect function Eq. (4) can be calculated for
a particular pair of nucleons (np, pp, or nn) by using the
appropriate G matrix and Pauli operator. The latter depends
only on the neutron (proton) Fermi momentum, kn

F (kp
F ), in

the case of nn (pp) scattering; or, it is the asymmetric Pauli
operator for two particles with different Fermi momenta in the
np case, Q̄(kn

F ,k
p
F ).

III. DIRAC–BRUECKNER–HARTREE–FOCK APPROACH

A. Brief review

A popular approach to nuclear matter is constructed
from nonrelativistic NN potentials complemented by three-
body forces. An example of this method can be found in
Ref. [13]. Local potentials together with phenomenological
three-body forces [14] have also been widely used. I will
come back to those later in the paper (Sec. IV C). As an
alternative, relativistic approaches to nuclear matter have been
pursued through the Dirac–Brueckner–Hartree–Fock (DBHF)
scheme [10]. The main strength of this framework is in its
inherent ability to account for an important class of three-body
forces (3BFs) which turns out to be crucial for nuclear-matter
saturation; namely, 3BF arising from the virtual excitation of
nucleon-antinucleon intermediate pairs. My standard choice
for the NN interaction is the Bonn B potential [15], a relativistic
potential which uses pseudovector coupling for the coupling
of pseudoscalar mesons with nucleons. Details of the DBHF
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FIG. 1. (Color online) Magnitude squared of the defect function Eq. (4) for the 3S1-3D1 transition (left) and the 3S1 state (right) in symmetric
nuclear matter. The Fermi momentum is equal to 1.4 fm−1.

approach as I apply it to asymmetric matter can be found in
Ref. [10].

B. Predictions with Dirac–Brueckner–Hartree–Fock

I begin by showing on the left-hand side of Fig. 1 the
magnitude squared of the defect function, Eq. (4), for the
3S1-3D1 transition as a function of the final relative momentum
k in symmetric matter. The total density corresponds to a
Fermi momentum of 1.4 fm−1. Notice that these distributions
are excitation probabilities rather than standard momentum
distributions (which are usually larger at low momenta). In
other words, these curves do not include the distribution of
momenta for occupied states below the Fermi surface.

Clearly there is a high probability that the np pair is excited
to a state with relative momentum of about 2 fm−1 via a
tensor transition. For comparison, I show on the right-hand
side of Fig. 1 the same quantity for the 3S1 state. Note that the
latter carries information on short-range central correlations;
namely, the repulsive core of the central force, although it is
also impacted by the tensor force because of its coupling to
the D state. It peaks around a momentum of about 3 fm−1

and has a distinct node between 1.5 and 2 fm−1. Also, the 3S1

probability amplitude tends to be broader; that is, it “survives”
higher momenta, or shorter ranges. Notice that the amplitude
of the tensor transition has a much larger absolute value.

In Fig. 2, I focus on correlations in the 1S0 partial wave,
which is accessible to pn as well as to nn and pp pairs.
Obviously, in this state SRCs originate from the repulsive
core of the central force. The dotted (blue), dashed (green),
and dash-dotted (purple) curves are the magnitude squared
of Eq. (4) obtained with the pp, nn, and np G matrices,
respectively, as outlined in Sec. II. This is asymmetric matter,
with a neutron excess parameter equal to 0.4, and the Fermi
momentum (corresponding to the total nucleon density) equal
to 1.4 fm−1. The neutron and proton Fermi momenta are then
given by Eq. (9).

The smaller size of the np probability amplitude as
compared to the one in the nn or pp cases is not in contradiction
with the considerations made in the introduction, nor should
it be surprising. While a statistical factor of 2T + 1 is present
in the isospin-saturated system, the three cases in Fig. 2 have
definite isospin coefficients. Specifically, the appropriate factor
by which the G matrix must be multiplied for the coupling of

the two nucleon isospins in a state of T = 1 and Tz = ±1 is
equal to 1, whereas for two nucleons coupling to a state of
T = 1 and Tz = 0 it is equal to ( 1√

2
)2. Therefore, the np curve

in Fig. 2, being proportional to the G matrix squared, should
be at least a factor of four smaller than the other two. The
much larger degree of correlation seen in experiments among
np pairs is due to interactions in 3S1-3D1 (see Fig. 1), not 1S0.

Before moving to the next figure, one should take note of the
enhancement of the pp defect function at the lower momenta,
due to the proton lower Fermi momentum in neutron-rich
matter [see Eqs. (9)], and thus weaker Pauli blocking.

In Fig. 3 I consider three different densities of symmetric
nuclear matter. The defect function for the tensor transition
maintains a similar shape with changing density, with the peak
shifting towards lower (higher) momenta at the lower (higher)
density, due to the changing impact of Pauli blocking in each
case. For both 3S1 and 1S0, the peak at the lower momenta
grows large at the lower density.

The individual contributions to the wound integral, Eq. (5),
from the states considered in the figures are shown in Table I
for three densities of symmetric matter. The contribution of the
central force (as seen through 1S0) relative to the tensor force
increases with increasing density, due to the enhanced impact
of the repulsive core when higher momenta are probed (as is
the case in a system with increasing Fermi momentum).

0

0.001

0.002

0.003

|D
ef

ec
t 

F
u

n
ct

io
n
|2  

(f
m

4 )

0 1 2 3 4 5 6
k (fm-1)

1S0-1S0

FIG. 2. (Color online) Magnitude squared of the defect function
Eq. (4) for the 1S0 state in asymmetric matter with α = 0.4. The
Fermi momentum corresponding to the total nucleonic density is
equal to 1.4 fm−1. The dotted (blue), dashed (green), and dash-dotted
(purple) curves are calculated by using the pp, nn, and pn G

matrices, respectively, with the appropriate Pauli operators and
isospin coefficients. See text for more details.
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FIG. 3. (Color online) The magnitude squared of Eq. (4) for three different values of the Fermi momentum in symmetric matter:
kF = 1.1 fm−1 (solid red); kF = 1.4 fm−1 (dashed green); kF = 1.7 fm−1 (dotted blue).

IV. CHIRAL INTERACTIONS

A. Some general aspects

Ideally, one wishes to base a derivation of the nuclear force
on QCD. However, the well-known problem with QCD is that
it is nonperturbative in the low-energy regime characteristic
of nuclear physics. For many years this fact was perceived
as a great obstacle for a derivation of nuclear forces from
QCD, impossible to overcome except with lattice QCD. The
effective field theory concept has proposed a way out of this
dilemma. One has to realize that the scenario of low-energy
QCD is characterized by pions and nucleons interacting via a
force governed by spontaneously broken approximate chiral
symmetry [11,12]. For a recent review, the reader is referred
to Ref. [16].

Before proceeding, it is appropriate to point out some of the
extensive literature concerned with chiral dynamics in isospin
symmetric and asymmetric nuclear matter. The work by the
Munich group (see, for instance, Refs. [17,18]) was recently
reviewed in Ref. [19]. Other authors have adopted chiral low-
momentum interactions to soften the short-range components
of the original potentials. A survey of renormalization-group
methods and their connection to chiral effective theory, as well
as applications to nuclear matter, can be found in Refs. [20,21].
In Ref. [22], the authors report symmetric nuclear-matter
predictions obtained with chiral interactions within the self-
consistent Green’s function approach. Three-body forces are
included through effective one-body and two-body interactions
computed from averaging over the third nucleon.

Here, I use a high-precision NN potential at next-to-next-
to-next-to-leading order (N3LO) [23]. For chiral interactions
the characteristic momentum scale is below the scale set by the
cutoff in the regulator function. For the interaction employed
here, the latter has the form

f (p′,p) = exp[−(p′/�)2n − (p/�)2n]. (10)

TABLE I. Contributions to the wound integral, Eq. (5), from
J = 0 and J = 1 states at different densities.

kF (fm−1) 3S1-3D1
3S1-3S1

1S0

1.1 0.079 0.025 0.017
1.4 0.060 0.022 0.019
1.7 0.037 0.031 0.035

The low-energy constants c1, c3, and c4 associated with the
ππNN contact couplings of the L(2)

πN chiral Lagrangian can
be fit to πN or NN scattering data. Their values are given in
Table II.

The three-nucleon forces which make their appearance at
the third order in the chiral power counting (i.e., next-to-next-to
leading order, or N2LO), are the long-range two-pion exchange
graph; the medium-range one-pion exchange diagram; and the
short-range contact. The corresponding diagrams are shown
in Figs. 4(a), 4(b), and 4(c), respectively. A total of six
one-loop diagrams contribute at this order. Three are generated
by the two-pion exchange graph of the chiral three-nucleon
interaction and depend on the low-energy constants c1, c3, and
c4, which are fixed in the NN system [23] as explained above.
Two are generated by the one-pion exchange diagram and
depend on the low-energy constant cD . Finally, the short-range
component depends on the constant cE . In pure neutron matter,
the contributions proportional to the low-energy constants
c4, cD , and cE vanish [24].

Although order consistency would require both two-body
forces (2BFs) and 3BFs at N3LO, such a calculation for nuclear
matter is not feasible at this time. Thus the combination of
2BFs at N3LO and 3BFs at N2LO is presently state of the art.
It should be noted that four-body forces also appear at this
order [25] but are left out because they are expected to be
small [26].

Concerning the low-energy constants cD and cE appearing
in the N2LO 3BF, a very important aspect of these calculations
is that they are completely determined from the three-nucleon
system. Specifically, they are constrained to reproduce the
A = 3 binding energies and the triton Gamow–Teller matrix
elements. The procedure [27] is based on consistency of 2BF,
3BF, and currents, as required by chiral effective field theory
(EFT). Their values are given in Table II.

In Ref. [24], density-dependent corrections to the in-
medium NN interaction have been derived from the

TABLE II. Values of n and � used in the regulator function,
Eq. (10), low-energy constants of the dimension-two πN Lagrangian
c1,3,4 (given in units of GeV−1), and low-energy constants cD and cE

as used in the three-body force.

Order � (MeV) n c1 c3 c4 cD cE

N3LO 450 3 −0.81 −3.40 3.40 −0.24 −0.11
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(a) (b) (c)

FIG. 4. Leading three-body forces at N2LO. See text for more
details.

leading-order chiral 3BF. These are effective two-nucleon
interactions obtained from the underlying three-nucleon forces
by integrating one nucleon up to the Fermi momentum. There-
fore, they are computationally very convenient. Analytical
expressions for these corrections are provided in Ref. [24]
in terms of the well-known nonrelativistic two-body nuclear
force operators, which can be conveniently incorporated in the
usual NN partial wave formalism and the conventional BHF
theory.

B. Predictions with chiral interactions

In Fig. 5, the blue (dotted) curve shows the predictions from
Bonn B already discussed in the previous section; the green
(dashed) curve displays the prediction with the chiral two-body
interaction only; finally, the red (solid) curve is obtained with
two- and three-body chiral interactions. In all cases, the Fermi
momentum is equal to 1.4 fm−1.

Short-range correlations with chiral or meson-theoretic
interactions can be dramatically different. In particular, chiral
potentials tend to produce a much more localized distribution
of momenta. This is reasonable since, due to the applied cutoff,
chiral potentials are much softer that meson-theoretic ones.
More precisely, the Bonn B potential vanishes (regardless
the partial wave) around 2000 MeV (in terms of the relative
momentum), whereas the chiral NN interaction is essentially
negligible already near 800 MeV. Accordingly, the curves
obtained with Bonn B extend to much higher momenta.

Clearly, the chiral 3BF contributes to the tensor force.
For instance, for the 3S1-3D1 transition near normal density,
it increases the probability amplitude around 1.5–2 fm−1 by
about 30%.

Interestingly, for the 3S1 state, which contains contributions
from the the 3S1-3D1 intermediate state, both curves obtained
with chiral interactions are much larger than the Bonn B

TABLE III. The wound integral κ in symmetric nuclear matter
(SNM) and neutron matter (NM) for the three calculations shown in
Fig. 5. The total density is the same in both SNM and NM and is
equal to 0.185 fm−3.

Theoretical approach SNM NM

Bonn B + DBHF 0.130 0.0133
Chiral NN (2BF) 0.075 0.0011
Chiral NN + 3BF 0.099 0.003

predictions, while the opposite is true for the 1S0 state.
Concerning the latter, strictly speaking a “hard core” (that
is, short-range repulsion from the central force), can only
be defined for a local potential. Chiral potentials have a
higher degree of nonlocality as compared to meson-theoretic
potentials (even nonlocal ones, such as the relativistic Bonn B).
This is mostly due to the form factor applied to chiral potentials
(typically, Gaussian functions of p and p′), whereas the form
factor used with meson-theoretic potentials is a function of
the momentum transfer and is, therefore, local. This may be
the reason for the very different structure of the probability
amplitude seen in central-force-dominated S waves. Next,
I make a comparison between symmetric matter and pure
neutron matter through the wound integral including all
states. When people calculate single-nucleon or nucleon-pair
momentum distributions, typically a much stronger depletion
of states below the Fermi surface is observed in symmetric
matter as compared with neutron matter [8], indicating the
absence of short-range tensor correlations from the latter.
Recalling that κ measures the probability of unoccupied states
below the Fermi surface, with the present method one can
gain access to similar information. In Table III, I compare the
wound integral in symmetric matter and pure neutron matter
around normal density for the three approaches considered in
Fig. 5. First, one can see that κ in symmetric matter is between
one and two orders of magnitude larger than in neutron matter.
This is reasonable. First, by far the main contribution to κ in
neutron matter comes from 1S0, which is about three times
smaller than the equivalent contribution in symmetric matter
due to the statistical factor of 2T + 1 appearing in the latter
case. Most important, of the total strength of κ in symmetric
matter, I observed that almost all of it (nearly 12% out of
13%), comes from J = 1 states, particularly 3S1-3D1, which is
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FIG. 5. (Color online) Blue (dotted) line shows standard prediction of the magnitude squared of the defect function from the DBHF
calculations together with the Bonn B potential. Green (dashed) line shows prediction with the chiral two-body interaction only. Red (solid)
line shows prediction with two- and three-body chiral interactions. Symmetric nuclear matter with Fermi momentum is equal to 1.4 fm−1.
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TABLE IV. Values of n and low-energy constants for different
values of the cutoff. The c1, c3, and c4 low-energy constants are given
in units of GeV−1.

N3LO � (MeV) n c1 c3 c4 cD cE

500 2 −0.81 −3.20 5.40 0.0 −0.18
600 2 −0.81 −3.20 5.40 −0.19 −0.833

absent from neutron matter. Also, the degree to which SRCs
are stronger in symmetric matter as compared with neutron
matter is very model dependent.

C. Symmetry energy

To conclude, and to reconnect with some of the statements
made in the introduction, in this section I address the role
of the tensor force on the symmetry energy. Although the
previous sections have focused on the comparison between
a representative relativistic, meson-theoretic potential and a
state-of-the-art chiral potential with chiral 3BF, here I will
expand the scopes of this study and consider other approaches
as well.

It may be useful to recall that, in the parabolic approxi-
mation, the equation of state of isospin asymmetric matter is

e(ρ,α) = e0(ρ) + esym(ρ)α2. (11)

Thus the symmetry energy is approximately the difference
between the energy per particle in neutron matter and in
symmetric matter.

As mentioned earlier, the combination of a local potential
and 3BF such as the Urbana IX force is broadly used in
equation-of-state calculations and other applications. Con-
cerning chiral interactions, NN potentials with different cutoffs
in the regulator function, Eq. (10), can differ considerably
in their off-shell behavior. Thus, I consider two additional
chiral potentials with different cutoff parameters; specifically,
� = 500 and 600 MeV [23], with the respective low-energy
constants given in Table IV. It is important to stress that, for
each cutoff, the fit to the NN data and the properties of the
A = 3 system is regained [27].

Figure 6 displays the symmetry energy from the following
models: my standard DBHF predictions (solid green); the
Argonne V18 potential with the Urbana IX 3BF [14] (dotted
blue); three chiral potentials with different, increasing, values
of the cutoff (dashed, dash dotted, and dash double dotted).
Thus, the figure represents a broad spectrum of interactions,
ranging from (most repulsive) relativistic meson theory to
the (softer) chiral forces with different “UV scales.” Notice
that the chiral potentials with larger cutoff appear softer
as seen through the symmetry energy because the equation
of state of symmetric nuclear matter becomes considerably
more repulsive with increasing cutoff (that is, at a faster rate
than neutron matter). Recalling Eq. (11), and the fact the
isospin-zero states are absent from neutron matter, this points
again to the chief role of the tensor force.

In summary, keeping in mind that different interactions
differ mostly in their high-momentum components, Fig. 6

FIG. 6. (Color online) The symmetry energy as a function of
density predicted with various interaction models, as explained in
the text.

demonstrates in a remarkably clear way how the high-
momentum differences, such as those which have been
explored in the previous sections, impact the high-density
behavior of the symmetry energy.

V. SUMMARY AND CONCLUSIONS

The magnitude squared of the so-called defect function
is closely related to the nucleon-pair momentum distribution
and is a measure of short-range correlations. I examined such
correlations through the coupled and uncoupled S waves,
which are mostly impacted by the short-range tensor and/or
central forces.

I focused on two different microscopic approaches. In one
case, a well-known meson-theoretic NN potential is employed
in a relativistic calculation of the nuclear-matter G matrix. In
the other, modern two- and three-body chiral forces are used
in calculations of the Brueckner G matrix. Notice that the
theoretical basis of the input nuclear forces is fundamentally
different in each of the two ab initio approaches.

Short-range correlations depend strongly on the nature of
the underlying nuclear forces. The momentum distributions
with meson-theoretic or chiral forces (whether 3BF are
included or not) are different both quantitatively and qualita-
tively, with chiral interactions yielding characteristically more
localized distributions.

Chiral three-body forces have a large impact on SRC. In
the 3S1-3D1 transition at normal density, they increase the
probability amplitude around 1.5–2 fm−1 by about 30%. In
the 1S0 state, chiral interactions appear much softer than
the meson-theoretic one, possibly due to a high degree of
nonlocality in the chiral interactions.

Concerning isospin dependence, short-range correlations
are negligible in neutron matter as compared to symmetric
matter.

Last, I observed that the high-density behavior of the
symmetry energy is impacted strongly by the nature of the
nuclear force at high momentum.

I would like to conclude by highlighting once again
the importance of microscopic approaches as opposed to
phenomenological ones. The former give insight into the role
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of specific components of nuclear forces and their behavior in
the medium, with the reassuring awareness that these forces
are constrained by free-space NN data and the properties of
few-body systems.
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