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Borromean structures in medium-heavy nuclei
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Borromean nuclear cluster structures are expected at the corresponding drip lines. We locate the regions in
the nuclear chart with the most promising constituents, it being protons and α particles and investigate in details
the properties of the possible Borromean two-α systems in medium-heavy nuclei. We find in all cases that the
α particles are located at the surface of the core nucleus as dictated by Coulomb and centrifugal barriers. The
two lowest three-body bound states resemble a slightly contracted 8Be nucleus outside the core. The next two
excited states have more complex structures but with strong components of linear configurations with the core
in the middle. α-removal cross sections would be enhanced with specific signatures for these two different types
of structures. The even-even Borromean two-α nucleus, 142Ba, is specifically investigated and predicted to have
134Te-α-α structure in its ground state and low-lying spectrum.
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I. INTRODUCTION

Surprisingly large nuclear reaction cross sections were
found experimentally in 1985 [1,2] for light nuclei colliding
with 11Li. Normal cross sections were found for all lighter
lithium isotopes. The interpretation and qualitative under-
standing were almost immediately explained as based on
weak binding in relative s waves [3]. The structure is, in
general, called a nuclear halo, because the spatial extension
is much larger than radii of ordinary nuclei [4]. The essence
of theoretical descriptions is contained in a schematic model
for two short-range interacting pointlike particles, as reviewed
in Ref. [5]. Thresholds for binding nuclear clusters enhance
the probability for finding decoupled and spatially extended
nuclear structures. Drip lines related to different nucleons or
bound clusters of nucleons provide the best environment for
the corresponding ground-state structures. The features of such
nucleon drip-line nuclei are reviewed in Ref. [6]. Nucleons can
be arranged in bound clusters and thereby form the constituents
for novel nuclear few-body structures, as reviewed in Refs.
[7–9].

Increasing the number of clusters progressively reduces the
possibility of large spatial extension when all particles are
distinctly separated. An effective centrifugal barrier confines
the mean-square radius for a bound system, and overlapping
nuclei of finite size would couple intrinsic and relative
degrees of freedom. To prevent this collapse into one much
larger many-body system, the particles may correlate strongly
into clusters and effectively reduce the active degrees of
freedom corresponding to much fewer well-separated clusters
of particles [5]. Already four particles with infinitesimally
small binding energy have finite root-mean-square radius,
in sharp contrast to diverging radii of two- and three-body
systems approaching zero binding energy [10].

The repulsive centrifugal barrier combined with a short-
range attraction of given radius may leave an attractive pocket
able to hold a bound state. This prevents the occurrence
of nuclear halos of large relative angular momenta. The

same mechanism opposes halos where the Coulomb repulsion
dominates or contributes significantly. Thus, nuclear halos
are most likely to occur for very small binding energy, two-
and three-body systems, relative s and p waves, and small
pairwise charge products [11–13]. Two-body halos should then
be searched for at their threshold for binding while still subject
to these conditions, for both ground and excited states.

Three-body cluster states are probably less frequent and
potentially less pronounced than two-body halos. However,
investigations of occurrence and properties are essentially all
confined to light nuclei. For ground states the most promising
structures appear to be for Borromean systems, because the
unbound two-body subsystems are prohibited from reducing
the active degrees of freedom to an effective two-body system.
Then the conditions are positive pairwise cluster binding and
very small three-body binding. The most obvious constituents
are neutrons, protons, and α particles. Heavier particles
necessarily have both larger radii and charges and, therefore,
less obvious constituents in a halo system.

Pairs of identical nucleons and α particles are always un-
bound, and the Borromean properties are therefore determined
by the pairwise binding energies to the third particle [14]. The
positive binding of nucleon-core and a core-α systems dictate
the position in the nuclear chart to be around the corresponding
drip lines. As we discuss later, combining nucleons and α
particles is then not possible for neutrons while the proton drip
line is suitable for nuclei with neutron number N > 30. We do
not deal with the individual light nuclei where the Borromean
properties are thoroughly discussed in the available literature
[4,8].

Two α-particles and a heavier core along the α-drip line can
form a Borromean system. We in the present paper concentrate
on two α particles plus a medium-heavy core nucleus which is
a system so far very little discussed. The Borromean property
is established experimentally for a few nuclei [15], as pointed
out recently [16]. It remains to be seen whether α particles in
the end turn out to be substantially contributing constituents
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to the structure of some low-energy states in medium-heavy
nuclei. The minimum requirement is that the intrinsic α-
particle degrees of freedom effectively decouple from all other
nuclear degrees of freedom. Recent theoretical investigations
of large systems confirm the expectation that α particles are
advantageous for nuclear-matter densities corresponding to the
tail of a nucleus [17,18].

Explicit use of α-particle degrees of freedom is complemen-
tary to mean-field approximations, where correlations only
appear through shell structures of single nucleons (or pairs)
in deformed average fields. Such models provide completely
different basis states, but they are not necessarily unable to
describe the same features of some many-body states. In this
context it is interesting to note that octupole deformation has
been an important ingredient in descriptions of nuclei located
close to the α drip line [19], where α clustering is most likely
to occur in ground states. We assume α particles as the basic
constituents with the inherent limits of validity that only very
specific structures can be described. However, it may very
well be states that cannot be described in mean-field or shell
models, or at most only with severe difficulties, indicating that
an inappropriate basis is chosen.

The α clusterization, or more moderately α correlations,
should produce an otherwise larger binding energy which
then simply could be measured as the revealing observable.
The increased binding has to be compared to the surrounding
nuclei, and the signal would be contained in appropriate mass
differences [20,21]. This would be in complete analogy to
the odd-even staggering related to the “pairing gaps” [22].
Unfortunately, such a signal in the variation of the binding
energy between neighboring nuclei is extremely difficult
to separate from the smooth background variation which
therefore necessarily has to be eliminated. The optimistic point
of view would be that α correlations are more extended and
vary smoothly over smaller or larger regions of the nuclear
chart.

Instead of futile searching for signals in the binding energies
[21], we therefore directly calculate three-body properties
from an assumption of the presence of two α particles
surrounding a heavier core nucleus. We are then able to study
the solutions, test compatibility with the assumptions, and
predict the properties of the emerging structures. We first in
Sec. II outline which regions of the nuclear chart are most
promising. In Sec. III we briefly sketch the computational
procedure and specify the necessary parameters. This also
includes the two-body α-core potential used in the initial
three-body calculations. In Sec. IV 148Nd (140Ba + α + α) is
used as a trial system to evaluate the general nature of such
three-body α-Borromean systems. Dedicated calculations for
the Borromean 142Ba (134Te + α + α) nucleus are reported in
Sec. V, where comparisons are made to experimental results
for α-drip-line nuclei. Finally, Sec. VI contains a summary and
the conclusions.

II. DRIP LINES AND BORROMEAN REGIONS

Borromean systems are, almost by definition, most often
weakly bound, because all three two-body subsystems must
be unbound and the same interactions are responsible for the

three-body binding. This definition is appropriate for ground
states of systems where the cluster division already is made.
The total system may very well have much deeper-lying bound
states of different structures where the cluster division is
completely inadequate. Thus, the structures of interest here can
appear as relatively highly excited states of the given nucleus.

It is only within the decided cluster structures that the
corresponding three-body system is relatively weakly bound
compared to the threshold of large-distance separation of all
three clusters. The weak cluster binding is compatible with
large size and with cluster identities maintained. Therefore, the
most likely region for finding three-body cluster states should
be where the effective cluster-cluster interaction provides
small, positive or negative, binding energies. Cluster drip
lines are then useful in outlining regions where corresponding
Borromean systems should be more likely.

Let us now focus on two α particles surrounding a core
nucleus. We want to find the α drip line with vanishing α-
separation energy, Sα , that is,

Sα(A,X) = B(A + 4,X) − B(A,X) − Bα, (1)

where B is the nuclear binding energy, N and Z are neutron
and proton numbers, X = N − Z, A = N + Z, and Bα =
28.295 MeV is the binding energy of an α particle. The drip
line defined by Sα(A,X) = 0 can be estimated by use of the
liquid drop model, or specifically

BLD = avA − asA
2/3 − ac

Z2

A1/3
− aa

(A − 2Z)2

A
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4A1/3
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X2

A
,

(2)

where we use the parameter values [18]: (av,as,ac,aa) =
(15.56,17.23,0.7,23.285), all in MeV. Then Sα(A,X) = 0
combined with Eqs. (1) and (2) results in the quadratic equation
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The two solutions, X±(A), to Eq. (3) are combined with Z =
[A − X±(A)]/2 and N = [A + X±(A)]/2 to give the proton
and neutron numbers of the α-drip-line boundaries for any
nucleon number A. Similarly, it would be possible to derive
expressions for both neutron and proton drip lines.

The results are shown in the nuclear chart in Fig. 1, where
nuclei with experimentally known negative neutron, proton,
or α-separation energies are marked. The computed curves are
in overall agreement with the measured results, which is to
be expected because the liquid drop parameters are adjusted
to achieve this goal. The negative neutron and proton binding
energies are outside the corresponding drip lines. However,

064311-2



BORROMEAN STRUCTURES IN MEDIUM-HEAVY NUCLEI PHYSICAL REVIEW C 90, 064311 (2014)

0 30 60 90 120 150

0

30

60

90

N

Z

 

 
α
Neutron
Proton

60 90

60

FIG. 1. (Color online) The theoretical α, neutron, and proton drip
lines in the chart of nuclei, where nuclei with a negative separation
energy have been marked in a corresponding color. Marked in green
are 140Ba, 144Ce, and 148Nd, which represents nuclei of interest in the
α-drip-line region.

the negative α bindings occur between the legs of the two
solutions as emphasized by the many known α-unstable heavy
nuclei marked in red.

If an isotope is marginally on the unstable side of a drip
line, it can rather likely form a Borromean system by adding
two identical particles (neutrons, protons, or α’s) to the corre-
sponding core nucleus. This is often observed for neutrons, but
the repulsive Coulomb interaction may sometimes invalidate
this expectation for protons and α particles. Thus, these nuclei
are promising candidates for ground-state cases of Borromean
two-α systems. It is perhaps worth emphasizing that going
away from the α drip lines into either α-unbound or α-bound
nuclei would correspond to α-core ground-state structures of
negative or positive binding energy, respectively.

Then the red nuclei, between the legs of the α-drip-line
curves, should be simulated by a positive α-core energy
even for the ground state. Vice versa, outside the region this
two-body energy should be negative, and excited states of
two-body energy just above zero are the strong candidates
for the α-cluster states we are going to investigate. In other
words, both positive and negative two-body energies are worth
investigating, both as ground states and as excited states.

From Fig. 1 we can also deduce which mixed species of
nucleons and α particles are most promising in connection with
formation of Borromean states and the related α clusterization.
First we notice that the neutron-proton-core system is excluded
as a Borromean state owing to the bound deuteron. Borromean
states involving nucleons, in general, only occur for ground
states close to the corresponding nucleon drip lines. This
excludes neutron-α-core systems because the neutron and α
drip lines never intersect or come close to each other. When
the neutron core is unbound the α-core system is bound.

In contrast, proton-α-core systems are possible Borromean
systems along the proton drip line for systems heavier than
about N ≈ 40 or Z > 45. This is especially promising in the
region where proton and α drip lines intersect each other, as

shown in Fig. 1. These structures are interesting and should
be investigated in detail in the future. It would involve both
proton-core and α-core effective two-body interactions. At
present we only emphasize that this experimentally accessible
region probably would present a series of such Borromean
systems. In addition, we notice that similar cluster structures
may appear as excited states in lighter nuclear systems.

III. METHOD AND PARAMETER CHOICES

The three-body calculations require two-body potentials
between the three pairs of particles. For α-α-core systems
we only need to specify the α-α and α-core potentials. We
treat all particles as pointlike and the finite sizes must then be
accounted for through effective potentials. This also implies
that the actual choice of potentials is less important. We can
use the energy as the crucial parameter and measure lengths
relative to the radius of the core nucleus. Conclusions from
individual test cases are then more general. After definitions
of the two-body potential we define notation and principal
quantities in a brief sketch of the three-body method.

A. Two-body potentials

First we choose the α-α potential as the d version of the Ali-
Bodmer potential [23], as used previously in many applications
[24]. This potential is angular momentum dependent without
bound states while reproducing the low-energy phase shifts
very well. The measured energy, 0.091 MeV, is reproduced,
and the root-mean-square radius of the corresponding reso-
nance is calculated to be 〈r2〉1/2 = 5.95 fm.

The second potential between α particle and core must
necessarily be phenomenologically adjusted. At the α drip
line the binding energy has to be vanishingly small, but
not necessarily of the lowest state. In the present work the
antisymmetry between nucleons in the core and in the alpha
particles is only accounted for by use of a shallow effective
alpha-core potential or by exclusion of the deepest-lying bound
states. Thus, the Pauli principle is approximately obeyed by
occupying only states with very small binding energy. As
shown in Ref. [25], where the halo nuclei 6He and 11Li are
investigated, for weakly bound systems a shallow potential
and a deep potential holding Pauli forbidden states give rise
to similar three-body structures provided that both potentials
have the same low-energy properties. We assume the intrinsic
core spin is zero and the total angular momentum is then
exclusively from the orbital part. This implies that the potential
is central and the decisive ingredient is the radial shape
with corresponding size and strength. The natural choice for
medium-heavy nuclei is the Woods-Saxon potential, V (r),
with a constant central value and exponential falloff at larger
radii, that is,

V (r) = −V0

[
1 + exp

(
r − R

a

)]−1

, (7)

where we use the diffuseness, a = 0.65, R(A) = r0A
1/3 +

rπ + Rα , r0 = 1.16 fm, rπ = 1.4 fm, Rα = 1.7 fm. For A =
140 we arrive at R = 9.1 fm, which is used throughout this
paper. The remaining parameter is the strength, V0, which
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FIG. 2. (Color online) The two-body potentials for three different
angular momenta (and corresponding potential depths). The potential
depths are adjusted to give roughly the same energy as reflected by
very similar minima. The depth of the interaction potential can be
found in Table I.

is tuned to give the desired energies for any choice of
angular momentum and parity. The Coulomb potential is for a
homogeneous sharp cutoff distribution of core charge, Z = 56
and α-charge 2, with the resulting cutoff radius, RC = 7.4 fm.
This somewhat increased radius accounts for the finite sizes
of both core and α particle when a point particle in a potential
is assumed.

The variation of angular momentum allows us to investigate
the influence of nonvanishing partial waves on the total three-
body structure. It also allows comparison between ground
and excited states of both the same and different angular
momentum quantum numbers. Excited states from the present
effective potential may be unavoidable when deeper-lying
levels are occupied and Pauli forbidden. The effect of changing
the angular momentum can be seen in Fig. 2, where the
potential depth in each case is adjusted to produce the same
energy. The minima are then almost identical, and the only
difference is the centrifugal barrier term deviating strongly at
small distance.

The reduced radial ground-state wave functions, u(r),
corresponding to the potentials in Fig. 2 are shown in Fig. 3.
They are all spatially very similar and confined to a rather
narrow region around the common minimum. This behavior
is unlike that of a core and a neutron which typically has a
very wide spatial extent with a slowly decreasing tail [5]. The
narrow distribution is a direct consequence of the potentials
in Fig. 2, where the α particle is confined by two very steep
barriers on both sides of the minimum.

It is especially worth noting that the Coulomb interaction
for s waves is finite at r = 0 as obtained by a homogeneous
charge distribution within a sphere. The finite repulsion is still
sufficient to push the wave function out to the surface almost
precisely as for finite angular momenta with the additional
diverging short-range repulsion. This angular momentum
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FIG. 3. (Color online) The two-body radial wave functions, u,
for three different angular momenta (and corresponding potential
depths).

independent result is only achieved with a relatively large
charge on the core nucleus as for medium-heavy or heavy
nuclei.

The adjusted depths corresponding to J = 0, 2, and 4 are
collected in Table I. The resulting α-core energies and the
root-mean-square radii are also given in this table for ground
and all excited states. Owing to the large barriers around
the minimum these unbound states of positive energy are
sufficiently well defined to allow computation of their radii.
The potential depths are adjusted with angular momentum
specifically to compensate the centrifugal barrier and leave the
energy of the weakest bound state at essentially the same value.
The intent is to have a slightly unbound two-body subsystem
in the three-body system. The deepest potential will be used
as the α core in the three-body system, as both the effect
of changing angular momentum and the low-lying excited
states are of interest. Using the potential depth associated

TABLE I. The two-body energies and average sizes with a
Ba-140 core and an α particle, where the angular momentum, J , and
potential depth, V0, have been varied. Positive energies, E, correspond
to unbound states with negative binding. We denote ground, first
excited, second excited, and third excited states by (G), (F), (S), and
(T), respectively. Energies are in MeV, and distances are in fm.

V0 J State E 〈r2〉1/2

26.25 0 G 0.1 7.0
F 4.3 5.9
S 7.4 5.4

27.1 2 G 0.0 7.1
F 4.9 6.4
S 9.1 6.4

28.8 4 G 0.1 7.2
F 5.7 6.8
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with J = 4 in a calculation with J = 0 may clearly produce
more bound states. The radii of the states in Table I increase
with increasing energy, but only moderately. The actual values
would be strongly dependent on the radius of the potential. The
peaks in Fig. 3 occur at around 7.2 fm which, is about the size
of the core plus α-particle charge radius. Thus, fortunately, but
not surprisingly, the α particle is located at the surface of the
core.

B. Three-body formalism

The three-body calculations are carried out by use of the
adiabatic hyperspherical expansion method [26]. First the
Jacobi coordinates are defined as mass scaled vectors, x and
y, between one pair of particles, and between their center of
mass and the third particle, respectively. The relative orbital
angular momenta, lx and ly , are related to this choice of
Jacobi coordinates. Three different choices are possible. The
hyperspherical coordinates are defined by the hyperradius,
ρ, and five hyperangles, �. The (coordinate independent)
definition of ρ involves an arbitrary normalization mass, m,
which has no influence on the result and is only used for
notational convenience.

We first solve the hyperangular part of the Faddeev
equations for fixed average radius ρ. Each partial wave in
each Faddeev component is expanded on the set of Jacobi
polynomials from constants to the highest order defined by
Kmax. This provides a set of angular eigenvalues, λn(ρ),
and eigenfunctions, �n(ρ,�), where all quantities depend
on ρ. The solution to these equations produces the effective
potentials,

Veff(ρ) = �
2

2m

[
λn(ρ) + 15/4

ρ2

]
, (8)

where λn(ρ) is the crucial ingredient. The total wave function,
�, is expanded on the complete set, �n,

� =
∑

n

ρ−5/2fn(ρ)�n(ρ,�), (9)

where fn are the hyperradial wave functions. They are
determined by the coupled set of hyperradial equations arising
from insertion of � into the Faddeev equations, that is

{
− ∂2

∂ρ2
+ 1

ρ2

[
λn(ρ) + 15

4

]
− Qnn − 2mE

�2

}
fn(ρ)

=
∑
n′ �=n

(
2Pnn′

∂

∂ρ
+ Qnn′

)
fn′ (ρ), (10)

where E is the energy. The coupling terms, P and Q, are given
by

Pnn′ (ρ) = 〈�n| ∂

∂ρ
|�n′ 〉�, (11)

Qnn′(ρ) = 〈�n| ∂2

∂ρ2
|�n′ 〉� , (12)

where the expectation values are over the hyperangles, �,
for fixed ρ. The convergence with the number of included

adiabatic potentials is usually very fast, and only four to six
are necessary in Eq. (10).

IV. CORE PLUS TWO-α PROPERTIES

The previous section introduced the two-body potentials
and the three-body formalism, which will be applied in the
present section. Here 148Nd is considered as a three-body
system consisting of a 140Ba core and two α particles. These
nuclei are chosen as they are at the edge of the α unstable
region in Fig. 1. The purpose of this section is to study the
nature of a general, relatively heavy, α-Borromean system.
As the same potential will be used for all partial waves,
and as this potential was only adjusted to create a slightly
unbound two-body system, energy levels cannot be expected
to be reproduced. Of particular interest are the distributions
among both the effective potentials and the partial waves, as
well as the spatial distributions. In Sec. V B a detailed fine
tuning of the individual partial waves is included for a similar
system (142Ba consider as 134Te + α + α) to reproduce both
energy levels and electric transition probabilities.

The calculations presented here treat the core as an inert
particle with angular momentum and parity 0+. Therefore, the
effects arising from excitations of the 140Ba core, in the 148Nd
case, or the 134Te core, in the 142Ba case, into the 2+ excited
state (at 0.60 MeV in 140Ba and 1.28 MeV in 134Te) are not
considered.

The solutions are obtained in two steps. First, the angular
wave functions are calculated and, second, we solve the
coupled radial set of equations. In the first step both angular
wave functions, and radial potentials, and their couplings are
produced. In the first section, we discuss the properties of
these solutions, and in the second section we present the radial
structure in simple geometric terms.

A. Angular three-body structure

The five lowest of the effective potentials given in Eq. (8)
are shown in Fig. 4 for angular momentum and parity, 0+,
and a given appropriate strength, V0 = 28.8 MeV, of the
Woods-Saxon potential. The lowest minimum value is about
−8 MeV and located close to ρ ≈ 20 fm. The potential has
a rather steep barrier rising to about +11 MeV at roughly
27 fm, after which it decreases slowly towards zero as ρ
increases to infinity. The falloff is proportional to 1/ρ because
the Coulomb potentials are responsible for this long-range
behavior. This implies proportional falloff for all potentials,
because the large-distance Coulomb interactions are the same
for all adiabatic potentials. The increase of the potential for
small ρ is attributable to the centrifugal barrier behavior of
1/ρ2, while the Coulomb potentials remain finite through the
assumption of homogeneous charge distributions.

The higher-lying adiabatic potentials are remarkably sim-
ilar to the lowest and each only shifted by about 1.5 MeV,
very crudely independent of ρ. The zero point motion of
the best fit of the lowest potential by a one-dimensional
oscillator is about 2.7 MeV (�ω ≈ 5.5 MeV). The first excited
oscillator energy is then at about 8.5 MeV above the oscillator
bottom. The shifted zero point in our potential is at about
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FIG. 4. (Color online) Effective potentials [Eq. (8)] calculated
from the five lowest λn(ρ), for the case where V0 = 28.8 MeV
and J + = 0+. The horizontal lines correspond to the lowest, and
first excited state of the lowest λn(ρ), when it is approximated by
a harmonic oscillator. It is noteworthy how similar the effective
potentials are for the different λn functions.

−8 MeV, producing two oscillator estimates at about −5.0
and +0.5 MeV, as indicated by the horizontal lines in Fig. 4.

The distance between neighboring adiabatic potentials is
roughly about 1.5 MeV. The first excited state in the lowest
potential at about +0.5 MeV is then at about the same position
as the ground state of the fourth potential, which is estimated
to be at about 4 × 1.5 MeV, +2.7 MeV above the lowest
minimum at −8 MeV, that is, +0.7 MeV. This implies that
the wave functions of the lowest-lying two states in the
0+ spectrum can be expected to be almost entirely built on
individual potentials, unless, of course, the couplings between
the adiabatic potentials are unusually strong. Energywise the
third excited state could instead be composed of comparable
components from first and fourth potentials.

Higher angular momentum potentials are rather similar
but with minima shifted upwards by the centrifugal barrier
amounting to roughly 0.4 and 1.4 MeV for 2+ and 4+, respec-
tively. The large-distance behavior is essentially maintained,
whereas the increase and eventual divergence at short distance
accelerate with angular momentum as in Fig. 2. Finally, modest
variation of the two-body potential strength will only displace
the curves slightly, and the effect is most noticeable at large
distances, where it has no effect on the bound-state structure.

The calculated energies are given in Table II for the potential
strength V0 = 28.8 MeV and different angular momenta.
Decreasing the attraction to V0 = 26.25 MeV, only one 0+
state (2+, 4+) is bound at −0.2 MeV. A further increase of
strength to V0 = 27.1 MeV provides two bound 0+ states at
−1.8 and −0.6 MeV, and two bound 2+ states at −1.3 and
−0.2 MeV. When V0 = 28.8 MeV, corresponding to Fig. 4,
we find four bound-state solutions for each set of quantum
numbers, 0+, 2+, and 4+. Thus, the three-body bound states
appear much faster and more abundantly than the two-body
α-core potentials in Fig. 2. The oscillator estimate of about

TABLE II. The three-body energies of 148Nd (140Ba + α + α),
as well as average α-α and α-core distances for different angular
momenta with V0 = 28.8 MeV, a = 0.65 fm, R = 9.1 fm, RC =
7.4 fm. The weights of the contributing adiabatic potentials are given
for each state in the last five columns. All energies are in MeV and
all distances are in fm.

J π E
〈
r2
αα

〉 1
2

〈
r2
αc

〉 1
2 Weights of potentials (%)

1 2 3 4 5

0+ −4.9 4.8 6.9 95 4 0 1 0
0+ −3.7 12.0 7.0 7 92 1 0 0
0+ −2.6 10.9 7.0 3 1 94 2 0
0+ −0.8 10.2 7.2 17 3 2 74 4

2+ −4.5 4.7 7.0 95 5 0 0 0
2+ −3.3 12.0 7.0 7 89 3 1 0
2+ −2.3 9.6 7.0 2 4 22 70 2
2+ −0.1 10.9 7.4 2 1 9 22 66

4+ −3.5 4.9 7.0 95 4 0 0 0
4+ −2.4 12.4 7.1 7 84 9 0 0
4+ −1.6 9.7 7.0 1 10 81 6 2
4+ −0.7 8.8 7.0 0 1 10 78 10

−5.0 and 0.5 MeV for the two lowest 0+ states built on
the lowest adiabatic potential is rather accurate as only one
corresponding bound state appears at −4.9 MeV; see Table II.
Unbound resonance states are not computed until Sec. V B,
where 142Ba is examined in detail.

The structure of these states is known through the calculated
properties of the wave functions. We consider first the contribu-
tions from the different adiabatic potentials to the individual
states. Only five potentials are necessary to ensure accurate
radial solutions. The relative weights in Table II are remarkably
simple with one entirely dominating potential for all wave
functions. The two weakest bound 2+ states are the most
fractionated with a division of (22%, 70%) and (22%, 66%) on
third and fourth, and fourth and fifth potentials, respectively.

In general, each potential then essentially carries the
full weight of a given state, such that the lowest potential
corresponds to the lowest energy, the second potential and
the second lowest energy are related, etc. This confirms the
main conclusion of one adiabatic potential per state obtained
from the estimate by use of an oscillator approximation
without couplings between potentials. The third excited 0+
state begins to have contributions from both first and fourth
adiabatic potentials. The excitation on the lowest potential
competes with the lowest energy on the fourth potential,
and two configurations arise. The second excited 2+ state is
fractionated between third and fourth potentials now because
the potentials happen to be rather close lying and the couplings
are therefore more effective.

The structure revealed by the partial wave decomposition
of the wave functions is seen in Table III, where only
the contributions amounting to more than 4% are included.
We give decompositions in both the two different Jacobi
coordinate sets. Here it is worth noticing that only even angular
momenta are allowed between the two α particles owing to
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TABLE III. The weights of each partial wave for the potential
specified in Table II. Here lx denotes the relative angular momentum
between the two particles, and ly denotes the angular momentum of
the third particle relative to the center of mass of the first two particles.
The fifth column give the order, Kmax, of the Jacobi polynomium
used for the corresponding partial wave. The last four columns
describe ground (G), first (F), second (S), and third (T) excited states.
Components where all states have a weight less than 0.04 are omitted.

J π Jacobi lx ly Kmax G F S T

0+ α-α 0 0 80 0.79 0.73 0.72 0.72
2 2 60 0.19 0.22 0.22 0.22
4 4 50 0.02 0.04 0.05 0.05

0+ α-c 0 0 100 0.43 0.51 0.04 0.07
1 1 80 0.39 0.48 0.09 0.06
2 2 60 0.10 0.01 0.85 0.01
3 3 50 0.00 0.00 0.00 0.79

2+ α-α 0 2 70 0.82 0.07 0.26 0.04
2 0 70 0.05 0.72 0.45 0.54
2 2 50 0.05 0.08 0.16 0.29
2 4 40 0.07 0.02 0.06 0.01
4 2 40 0.01 0.09 0.05 0.05
4 4 30 0.00 0.01 0.01 0.05

2+ α-c 0 2 70 0.18 0.25 0.02 0.00
2 0 70 0.19 0.23 0.03 0.00
1 1 50 0.39 0.50 0.03 0.00
2 2 50 0.06 0.01 0.05 0.23
1 3 40 0.04 0.00 0.38 0.07
3 1 40 0.05 0.00 0.37 0.07
3 3 40 0.01 0.00 0.03 0.35
2 4 40 0.00 0.00 0.01 0.05
4 2 40 0.00 0.00 0.02 0.04
4 4 30 0.00 0.00 0.03 0.05

4+ α-α 2 2 80 0.09 0.15 0.34 0.27
0 4 50 0.78 0.02 0.07 0.08
4 0 50 0.00 0.68 0.15 0.26
4 2 48 0.01 0.03 0.18 0.02
2 4 48 0.06 0.03 0.18 0.27
6 2 20 0.00 0.06 0.02 0.02

4+ α-c 2 2 80 0.40 0.51 0.03 0.02
1 3 80 0.20 0.26 0.02 0.00
3 1 66 0.22 0.22 0.03 0.00
2 4 68 0.01 0.00 0.00 0.20
4 2 68 0.01 0.00 0.00 0.21
4 0 50 0.04 0.00 0.41 0.03
0 4 50 0.03 0.00 0.42 0.03
4 4 50 0.00 0.00 0.01 0.06
5 1 40 0.00 0.00 0.01 0.09
1 5 40 0.00 0.00 0.01 0.10

the identical boson characteristics. We first emphasize that
the small attractions, where the energies approach all the
way down to zero, all down to the percent level produce the
same partial wave decomposition independent of the specific
energy. We therefore only show the results for one strength.
The structures remain unchanged because essentially only the
potential energies are moved corresponding to a shifted energy
scale.

For the 0+ states we find more than 70% of α-α s waves in
all solutions, while the d waves absorb most of the remaining
probabilities. This is obviously consistent with the stronger
α-α attraction in the lowest partial waves. However, the α-core
potential may prefer another competing structure. The two
lowest 0+ states have roughly equal amounts of α-core relative
s and p waves, whereas the third and fourth 0+ states are
dominated by d and f waves, respectively. In combination
with the results from Table II this indicates that these higher-
lying adiabatic potentials are dominated by d and f waves.

The 2+ states must have nonzero angular momentum
partial waves. The most favorable structure seen in Table III
is apparently s waves between the two α particles but a
distribution for the α-core structure of equal s and d waves and
twice as much p waves. In contrast, the first excited state has
dominating α-α d waves and comparable to the ground state
contributions from g waves. The second and third excited states
have also α-α d waves as the largest components. The α-core
contributions are now moved to roughly equal p and f waves,
and comparable d and f waves, respectively for second and
third excited state.

The 4+ states must have even larger finite angular momen-
tum contributions than the 2+ states. In Table III we find again
that s waves dominate for the ground state, while the first
excited state is dominated by g waves in the α-α subsystem.
In the α-core subsystem, these two states have the largest
contributions from d waves and roughly half as much for p
and f waves. The third and fourth 4+ states have in the α-α
subsystem more than 50% of d waves and roughly half as
much g waves. In the α-core subsystem s and g, and d- and
g-wave components are about equal, respectively, for the third
and fourth 4+ states. The higher-lying states receive significant
contributions from more partial waves than ground and excited
states.

These rather complicated variations in structure for the
different states are dictated by minimizing the total energies.
This involves combinations of the two-body interactions which
in the present cases always prefer the lowest partial waves. The
final results are then obtained by combining the minimization
with total angular momentum conservation, partial wave
couplings, and orthogonality of all pairs of states.

B. Radial structure

The angular eigenvalues, λn, provide information about
the crucial radial potentials, which, in turn, through Eq. (10)
determine the radial wave functions, fn(ρ). The linear combi-
nation with the angular parts, �n, from Eq. (9) gives access
to complete information about each of the solutions. We in
particular are concerned with probability distributions for the
α-α and α-core distances.

In Fig. 5 we show the probability distribution for the 0+
ground state in two coordinate systems corresponding to the
two different Jacobi coordinates. The structure is relatively
simple with only one peak at an α-α distance of about 4 fm
from the top panel and an α-core distance of about 7 fm from
the bottom panel of Fig. 5.

The probability distributions for the excited 0+ states are
shown in Fig. 6 for the first Jacobi set where the x coordinate is

064311-7



D. HOVE et al. PHYSICAL REVIEW C 90, 064311 (2014)

FIG. 5. (Color online) The probability distribution for the 0+

ground-state wave with the α-core potential specified in Table II.
Projected contour curves are shown at the bottom of each figure.
The distance variables correspond to the two different Jacobi sets,
where top and bottom panels are for the first and second Jacobi sets,
respectively.

between the two α particles. In all these excited states we find
probability distributions between core and α particle almost
identical to that of the ground state as shown in the lower part
of Fig. 5. Consequently, we do not show these distributions.
However, the identical distributions demonstrate that the α
particles strongly prefer to be located at the surface of the core
as for the isolated two-body system with the wave function
shown in Fig. 3. The reason is that the α-core potential
overrules all other possible effects when determining the
three-body structure. Apparently the α-α potential is strongly
attractive and the potential energy minimum is rather narrow
and deep.

However, the α-α distribution varies from top to bottom in
Fig. 6, and it is also different from the ground-state distribution.
The first excited state shows a broader distribution around
the α-α distance of 13 fm with a marginal reminiscence of a
peak at the ground-state location of about 4 fm. The second
excited state has three peaks at α-α distances of about 14,
9, and 4 fm. The third excited 0+ state continues the trend
by containing four peaks at α-α distances of 14, 12, 7, and
4 fm. These different structures reflect the different structures
of the corresponding adiabatic potentials, which deliver the
dominating contributions to each of the excited states.

The probability distributions for the lowest two 2+ states
are very similar to the 0+ distributions in Fig. 5. Also the
α-core distributions are remarkably similar for the computed

FIG. 6. (Color online) The same as top panel of Fig. 5 for the
three excited 0+ states.

higher-lying 2+ states. The α-α distribution for the second
excited 2+ state in Fig. 7 reveals a much broader distribution.
It is almost without peaks but with a ridge stretching from
α-core distances between 10 and 4 fm with a corresponding
increase of the distance of the core from the α-α center of mass.
The third excited 2+ state is also shown in Fig. 7 exhibiting
distinct peaks at distances of about 15, 11, and 4 fm.

The α-core distributions for the 4+ states are again almost
indistinguishable from the previously computed distributions
for the other angular momenta, such as the example shown
in the bottom panel of Fig. 5. The α-α distribution for the
first excited 4+ state resembles the same distribution for both
first excited 0+ and 2+ states. The distribution for the second
excited 4+ state is shown in Fig. 8, where the peak structure
again is smeared out and the largest probability peak is at
around 11 fm. For the third excited 4+ state in Fig. 8, the α-α
distribution displays three peaks at around 14, 10, and 4 fm.
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FIG. 7. (Color online) The same as the top panel of Fig. 5 for the
second and third excited 2+ states.

FIG. 8. (Color online) The same as the top panel of Fig. 5 for the
second and third excited 4+ states.

In summary, the many different probability distributions
all have the remarkable property of one peak in the α-core
distance. The corresponding interaction is strong and essen-
tially a surface attraction owing to centrifugal and Coulomb
potentials. In contrast, the α-α distributions exhibit very large
variations from one peak to several peaks or rather smeared out
distributions. However, all these distributions have fortunately
a sharp cutoff at small distances where the α particles would
beginning to overlap.

The tempting interpretation in terms of simple geometric
structures is then only meaningful when one not-too-broad
peak contains a large fraction of the probability. It may still be
rewarding to look at average distance properties as the root-
mean-square radii given in Table II. Once more we emphasize
that the α-core root-mean-square radius is remarkably constant
for all states. We can then conclude that the α particles are
located on spheres corresponding to this radius around the
core.

The average α-α distances for the ground states of any
angular momentum are 4.8 fm, which is similar to, although
about 1 fm less than, the same quantity, 5.95 fm, for the two-α
structure of 8Be. Combined with the 70% of s waves in all
these ground states, we conclude that these three-body states
resemble a core plus 8Be in its ground state. The first excited
states of all three angular momenta are also very similar to
each other but now with more than 70% of α-α 2+ structure
and with a much larger distance of about 12 fm. This structure
is far from any excited state of 8Be, and these structures, in
fact, resemble a linear structure with the core in the middle.

The second and third excited states exhibit much more com-
plicated structures which cannot be collected into one simple
configuration. However, they can be described as containing
three or maybe even four components, each with different
configurations. The resulting probability distributions are more
smeared out, but both 8Be-like ground-state structures, linear
α-core-α chain-configurations, and intermediate structures,
are present in each state.

V. OBSERVABLE CONSEQUENCES

The general structures for systems with weak binding of
one- and two α particles are discussed in the previous section.
We here first compare to measured properties of 148Nd, which
was considered in Sec. IV as a general representative of α-
Borromean structures in relatively heavy nuclei. In the second
section we discuss the results obtained from fine-tuning the
interaction parameters to be appropriate for the only known
(apart from 12C) even-even Borromean two-α nucleus, 142Ba.

A. Properties of 148Nd (140Ba + α + α)

The spectra in Table II for the lowest energies of the 0+,
2+, and 4+ states present a rotational sequence, (0.0,0.4,1.4),
with rigid body moment of inertia, I, corresponding to
�

2/I ≈ 0.14 MeV. This implies a distance, rc,αα , of about
6.19 fm between the core and the center of mass of two α
particles, which is almost identical to the value derived from
Table II. Furthermore, this is in complete agreement with
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indistinguishable geometric properties for these three 0+, 2+,
and 4+ states shown in Fig. 5 for the 0+.

The conclusion is that these states form a rotational band.
The schematic rules for rotational B(E2)-transition probabil-
ities are then obeyed for a core plus a two-α structure rotating
around their common center of mass. The absolute values of
the electromagnetic transition probabilities are proportional
to the intrinsic electric quadrupole moment, Q0, of the same
structure. For a relatively heavy core we have Q0 ≈ 8er2

c,αα ≈
307 e fm2, where 4 e is the charge of the combined two α
particles. The single-particle value, Qsp ≈ 75 e fm2, is about
four (the charge) times smaller, provided the same radius is
used in both estimates.

Let us now compare these numerical average results to
measured values for 148Nd [27]. First, the observed excitation
energies do not follow the simple rotational model predictions.
The energies of the 4+ state is 2.5 times larger than the energies
of the 2+ states. If anything, this is closer to the vibrational
model value of 2 rather than 3.3 valid for rotations. The
vibrational picture does not match any better by combining
the second 0+ and 2+ states.

Transition probabilities contain more detailed information
about structures, but only rather uncertain data are available
for these nuclei. For 148Nd the available measurements of
B(E2) values are B(E2; 0 → 2) = 1.37 e2 b2, B(E2; 2 →
4) = 0.784 e2 b2, and the quadrupole moment, Q(2) = −1.46 e
b, for the 2+ state. Transforming these transition values into the
down going probabilities we get the ratio 0.78 × 25/(1.37 ×
9) = 1.58, which is comparable to 1.41 from the rotational
model but also not too far from the vibrational value of 2.
The quadrupole moment is related to the intrinsic quadrupole
moment by Q0 = −Q(2)7/2 = 511 e fm2 where our model
value of 307 e fm2 is 1.7 times smaller than measured.

Considering the same effective potentials were used for all
partial waves, an agreement within a factor of two is better
than what could have been expected. This is in spite of the
fact that the model forms a rotational spectrum, while the
data do not contain simple, strictly rotational, or vibrational
features. It is also worth noting that the simple model produced
an energy spectrum where the energy of the 4+ state is 2.5
times larger than the energy of the 2+ state, same as for
148Nd. This suggests that 148Nd, and nuclei similar to it,
might well be described as two-α structures in their low-lying
states.

The model with the same average parameters in the radial
effective potential is independent of angular momentum and
known to be very inaccurate for odd parity states. This average
model can only marginally distinguish between odd and even
parity states because the centrifugal barrier varies continuously
with orbital angular momentum. Only the Bose character of
the α particles is able to give small differences owing to
parity. However, low-energy nuclear spectra with only very
few exceptions are dominated by the positive parity states
while negative parity states are located at higher excitation
energies. In nuclear few-body models this feature is accounted
for by partial wave (angular momentum and parity) dependent
effective potentials. A proper comparison to data therefore
involves detailed input and careful search for suitable nuclei
where the few-body structure is possible.

TABLE IV. The Woods-Saxon depths, V0, reproducing the reso-
nance energies, Eres, for the different angular momentum and parities,
J π , in 138Xe (134Te + α) [29]. There is no known 5− state in the 138Xe
excitation spectrum, so the same potential depth as for 3− was used.
The energy of the 0+ state is determined by the α separation energy
through Eq. (13). All energies are in MeV.

J π 0+ 2+ 4+ 6+ 1− 3− 5− Other

Eres 0.138 0.727 1.211 1.419 2.004 2.153 —
V0 24.423 24.568 25.787 28.2 22.641 23.746 23.746 24.568

B. Properties of 142Ba (134Te + α + α)

The most tempting nuclei to investigate are Borromean
two-α systems. Searching the available masses for candidates
we find only one known even-even nucleus, 142Ba (α + α +
134Te), of that structure. The exception of 12C (α + α + α) is
special because the core also consists of an α particle. Nuclear
few-body models must assume decoupling of intrinsic and
relative cluster degrees of freedom. Therefore, the intrinsic
degrees of freedom preferably should be difficult to excite
either by weak couplings or by unreachable high excitation
energy.

The present case has 134Te as the core, where the lowest
excited state is a 2+ state at 1.279 MeV [28]. By adjusting
the partial wave interactions, the polarization is fully included
in the adopted effective potential on the two-body level. If
present, an α-cluster structure should be seen as resonances
in α-core scattering, that is, as 138Xe states [29]. The energy
of the 0+ ground state is then determined by the α separation
energy,

Eres(0
+) = −[B(138Xe) − B(134Te) − Bα]. (13)

This provides the depth of the radial potentials for each angular
momentum and natural parity. We choose the same radial
Woods-Saxon shape with the same radius and diffuseness pa-
rameters as used above. We only adjust the depth to reproduce
the measured resonance energies in 138Xe (α + 134Te). The
resulting values are given in Table IV.

The energies and sizes of the three-body eigenstates are
given in Table V, together with the distribution of weights
on the different adiabatic potentials and the experimentally
measured energies [30]. Here the ground-state energy is
determined by the two-α separation energy. Also included
in Table V is the difference between the calculated and the
measured energies.

The absolute values of the calculated energies are seen
to be displaced by roughly 0.3 MeV for four of the five
lowest states. A slight displacement is not surprising as no
attempt has been made to account for explicit three-body
effects. A distinct three-body potential could be added, but
it would be an ad hoc addition adjusted to fit the desired
spectrum. More interesting are the relative distances between
individual levels in the calculated spectrum, and they agree
very well with relative distances between the experimental
measurements. The calculated relative distances between the
0+ and the 2+, 4+, and 3− states only differ by about 0.03 MeV
from the relative distances in the experimental spectrum. The
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TABLE V. The same as Table II for 142Ba (134Te + α + α) using
the potential depths specified in Table IV for the individual partial
waves. The column labeled Eexp is the measured value from Ref. [30],
where the energy of the 0+ state is determined by the two-α separation
energy. Two first excited states, indicated by (F ), are also included.
The last five columns specify the individual weights of the five lowest
potentials.

J π Eexp Ecal Ecal − Eexp

〈
r2
αα

〉 1
2

〈
r2
αc

〉 1
2 Weights (%)

1 2 3 4 5

0+ −0.16 0.11 0.27 7.8 7.0 99 1 0 0 0
2+ 0.20 0.50 0.30 7.5 7.1 99 0 0 1 0
4+ 0.68 0.98 0.30 7.4 7.1 96 2 1 0 0
1− 1.17 1.11 −0.06 4.2 7.1 98 1 0 0 0
3− 1.13 1.37 0.24 4.3 7.1 96 2 1 0 1
2+(F ) 1.26 1.05 −0.21 5.9 7.1 0 98 1 1 0
6+ 1.31 0.90 −0.41 6.6 7.2 95 3 2 0 0
0+(F ) 1.38 1.59 0.22 9.3 7.1 2 96 1 0 0

only exception among the lowest states is the 1− state, which
does not agree with the shifted spectrum. Its absolute value
actually agrees more closely with the experimental value. This
agreement is most likely coincidental and merely the result of
counteracting offsets. It may be of interest that in the symmetry
classification of the corresponding states in the related system
12C [31], the lowest 1− state appears in a different “band” than
the 0+, 2+, 3−, and 4+ states.

For the three remaining, higher-lying states, the deviations
become more erratic. The difference between the calculated
and the experimental values is no longer close to constant. This
might indicate a limit to the model given by the core excitation
energy.

The weights of the individual potentials are as expected
from the results of the previous sections. Each state is dom-
inated by a single adiabatic potential. The lowest potential
dominates for all nonexcited states, while the second potential
dominates for the first excited states. The coupling between
different potentials must then be very weak, even when the
potentials of each partial wave are adjusted individually.

The average α-core distance is again constant at around
7.1 fm, which implies that the α particles are still placed
at the surface of a sphere around the core. The probability
distributions between the core and the α particle are also
identical to the distribution seen in the bottom part of Fig. 5 and
is therefore not included. The average α-α distances, however,
are very different from the ground-state values in Table II, at
least for the even parity states. However, the average values are
somewhat misleading. In Fig. 9 the probability distributions
for the 0+, 2+, 4+, and 6+ states are shown. The same peak as
in Fig. 5 at an α-α distance of roughly 4 fm is seen for all three
states. The large average values are caused by the appearance
of a much smaller peak at an α-α distance of about 13 fm. This
almost constitutes a line structure, with α particles on opposite
sides of the core.

The probability distributions for first excited 0+ and 2+
states are seen in Fig. 10. The distribution of the first excited
0+ is similar to the top panel of Fig. 6, only with the large peak
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FIG. 9. (Color online) The same as top panel of Fig. 5 for the
lowest 0+, 2+, 4+, and 6+ 142Ba states.

at the slightly smaller α-α distance of 10 fm. The distribution
of the first excited 2+ state is unusual compared with the first
excited states examined previously. It is almost identical to the
distribution of the 2+ ground state seen in the second panel of
Fig. 9.

However, the average distances for the odd parity states
agree reasonably well with the earlier results. The probability
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FIG. 10. (Color online) The same as top panel of Fig. 5 for the
first excited 0+ (top) and 2+ (bottom) states of 142Ba.

distributions for the 1− and 3− states are seen in Fig. 11. They
are identical to the top part of Fig. 5. The single peak is then
well described by the average distance in Table V.

The contributions from the different partial waves are
listed in Table VI. The overall tendencies are the same as
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FIG. 11. (Color online) The same as top panel of Fig. 5 for the
lowest 1− and 3− states of 142Ba.

TABLE VI. The same as Table III with 142Ba for the states from
Table V.

J π Jacobi lx ly Kmax G F

0+ α-α 0 0 80 0.80 0.62
2 2 60 0.18 0.30
4 4 50 0.02 0.07

0+ α-c 0 0 100 0.70 0.27
1 1 80 0.04 0.02
2 2 60 0.17 0.67

2+ α-α 0 2 70 0.62 0.06
2 0 70 0.20 0.44
2 2 50 0.11 0.46
2 4 40 0.04 0.02

2+ α-c 0 2 70 0.35 0.00
2 0 70 0.35 0.00
2 2 50 0.09 0.17
3 3 40 0.00 0.04
2 4 40 0.02 0.05
4 2 40 0.02 0.05
4 4 30 0.01 0.30
6 6 30 0.01 0.06

4+ α-α 2 2 80 0.04
0 4 50 0.63
4 0 50 0.18
2 4 48 0.08

4+ α-c 2 2 80 0.44
4 0 50 0.17
0 4 50 0.16

1− α-α 0 1 75 0.81
2 1 65 0.09
2 3 55 0.09

1− α-c 0 1 75 0.22
1 0 75 0.23
2 1 55 0.15
1 2 55 0.15
2 3 55 0.05
3 2 55 0.05

3− α-α 0 3 75 0.69
2 3 55 0.26

3− α-c 0 3 75 0.14
3 0 75 0.15
2 1 65 0.12
1 2 65 0.12
4 1 41 0.07
1 4 41 0.06

6+ α-α 0 6 100 0.23
6 0 90 0.06
2 4 90 0.06
2 6 90 0.52
6 2 80 0.08

6+ α-c 0 6 100 0.14
6 0 90 0.14
2 4 90 0.08
4 2 80 0.07
4 6 40 0.04
6 4 40 0.04
6 6 50 0.14
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TABLE VII. The electric transition probability for the states from
Table V. The first column specifies the nuclei, the second column
the transition in question, and the third column the calculated result
based on Eq. (14). The available experimental values for 142Ba [30]
and 138Xe [29] are presented in column four. A dash indicates the
value was unavailable. The dipole transition probabilities are in units
of e2 b, and the quadrupole probabilities are in e2 b2.

Nuclei B(Eλ; J → J ′) Model Experiment

138Xe B(E2; 2 → 0) 0.075 0.076(20)
B(E2; 4 → 2) 0.11 —
B(E2; 6 → 4) 0.12 —
B(E2; 3 → 1) 0.097 —
B(E1; 1 → 0) 0.0075 —
B(E1; 1 → 2) 0.015 —
B(E1; 3 → 2) 0.0097 —
B(E1; 3 → 4) 0.013 —

142Ba B(E2; 2 → 0) 0.24 0.145(4)
B(E2; 4 → 2) 0.34 0.188(12)
B(E2; 6 → 4) 0.37 —
B(E2; 3 → 1) 0.30 —
B(E1; 1 → 0) 0.026 1.1(6) × 10−6

B(E1; 1 → 2) 0.052 2.0(10) × 10−6

B(E1; 3 → 2) 0.034 —
B(E1; 3 → 4) 0.045 —

in Table III, but the specific weights have changed slightly.
The relative angular momentum between the two α particles
is dominated by s waves for all but the 6+ state, although to
a lesser extent than before. Particularly interesting are the odd
parity states which were not included earlier. The 1− state
is the only state which has a dominating contribution from
p waves to the relative α-core angular momentum. This could
be part of the explanation as to why the 1− state deviates
from the other low-lying states. Likewise, the 3− is the only
state to have a significant f -wave contribution to the α-core
angular momentum. For the 3− state there is a roughly even
contribution from s, p, d, and f waves. The higher-lying 6+
and 5− states have a much more scattered distribution of partial
waves, in particular for the α-core system. However, these
results are less reliable, as the states are outside the energy
region, which the model can reasonably be expected to cover.

The calculated dipole and quadrupole transition probabil-
ities are presented in Table VII. Included are both the results
for the two-body 138Xe (134Te + α) and the three-body 142Ba
(134Te + 2α) systems. The transition probabilities are given by

B(Eλ; J → J ′) = Q2
0〈J0λ0|J ′0〉2, (14)

where 〈J0λ0|J ′0〉 is the Clebsch-Gordan coefficient coupling
the states J and J ′. In the two-body system Q0 for the
quadrupole transition is

Q0 =
√

5

16π
2r2

αc

zαem2
c + zcem

2
α

(mα + mc)2
, (15)

while for the dipole transition Q0 is

Q0 =
√

3

4π
rαc

zαemc − zcemα

(mα + mc)
. (16)

Here mα and mc are the masses, zα and zc are the proton
numbers, and e is the elementary charge. The α-core distance
used is 7.1 fm, as given in Table V. There are two α particles
in the three-body system, so twice the α mass and twice the α
charge are used. Also, the distance is replaced by the distance
between the core and the α-α system, rc,αα . The value used
is not the average value from Table V, but the peak value of
6.8 fm from Figs. 9 and 11.

Unfortunately, only a few experimental values are available
at the moment, as seen in Table VII. Both the dipole and the
quadrupole transition probabilities are relatively small, but for
different reasons. The intrinsic particle degrees of freedom
do not contribute to the rotational motion, because of the
mass difference, so small values of the quadrupole transition
probabilities are inherent in cluster rotations. Considering first
the quadrupole transitions in 142Ba, the model values are
seen to be around 1.8 times too large. It should be noted
that the distance enters in the fourth power, so changing it
slightly will have significant impact on the result. As this
distance is dictated by Coulomb and centrifugal barriers, it
does to some degree depend on the chosen parameters. This
makes the agreement surprisingly good. The ratio between the
states is 0.24/0.34 = 0.71 in the model, which is very much
comparable to the ratio of 0.77 for the experimental values.
Very few other calculations are available, but specialized
models, such as the interacting boson model (IBM) [32],
specifically designed to calculate transition probabilities, do
exists. The few experimental B(E2) values for 142Ba are
reproduced more accurately by IBM, but the model struggles
with other, similar transitions for neighboring nuclei. For 138Xe
only one transition probability is known experimentally. The
three-particle model value for this transition is identical to the
experimental value, although the experimental uncertainty is
quite large.

The absolute values of the dipole transitions are off by a
factor 10−4 and does not resemble the experimental values.
This is not surprising, as the small values are a result of
the giant dipole resonances, which are not accounted for
in this model. However, in spite of the large experimental
uncertainties, the ratio between the transition probabilities
is still a relevant test of the model, as the 1− → 0+ and
1− → 2+ transitions have almost equal branching ratios. The
model’s transition probabilities have the ratio 0.026/0.052 =
0.5, which is very close to the experimental ratio of 0.55.

Another possible and very relevant test of the three-body
model is to estimate the charge radius and compare it with the
measured value. The experimentally measured ground-state
charge radii are 〈r2

ch〉1/2 = 4.895(8) fm, 〈r2
ch-c〉1/2 =

4.757(4) fm, and 〈r2
ch-α〉1/2 = 1.676(3) fm for 142Ba,

134Te, and the α particle, respectively [33]. The charge radius of
the entire system can be calculated as 〈r2

ch〉 = Z−1
T

∑ZT

i=1〈r2
i 〉,

where ZT is the total charge of the nucleus. For our three-body
system this can be rewritten as

〈
r2

ch

〉 = Zc

ZT

(〈
r2
c

〉 + 〈
r2

ch-c

〉) + 2
Zα

ZT

(〈
r2

ch-α

〉 + 〈
r2
α

〉)
, (17)

where Zc and Zα are the charges of the core and the α particle,
and 〈r2

c 〉 and 〈r2
α〉 are the mean-square radii of the core and the α
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particle, respectively. These expectation values are calculated
as in the three-body solution,

〈
r2
c

〉 =
(

2mα

mc + 2mα

)2 〈
r2
c,αα

〉
, (18)

〈
r2
α

〉 =
(

mc + mα

mc + 2mα

)2 〈
r2
α,cα

〉
. (19)

Using Eqs. (18) and (19) in Eq. (17) the result is 〈r2
ch〉1/2 =

4.96 fm, which is only 0.07 fm larger than the measured value.
It should be noted that neither the charge distribution nor
the potential radius used in the three-body calculations has
been adjusted to reproduce this charge radius. Such a close
agreement is much better than what could have been expected.

In summary, the low-energy spectrum of 142Ba is re-
produced by the present three-body model, as well as by
comparable light cluster models. Both the measured and the
calculated spectrum is neither rotational nor vibrational in
character. However, the charge radius and the quadrupole
transition probabilities are reproduced surprisingly well. The
structure of states can be described as two α particles just
outside the surface of the core and located either just over
4 fm apart (possibly as a 8Be) or at opposite sides of the core
in an almost linear chain.

VI. SUMMARY AND CONCLUSION

We discuss the possibility of finding Borromean nuclear
systems with heavy constituents. Crudely speaking, two
two-body systems, each with Z2/A > 17 (squared charge
over mass numbers), do not bind; that is, such pairs have
negative binding energy. They are then potential candidates
for constituents in a Borromean system. However, this is
impossible as a third nucleus first would have to be similarly
heavy in order not to bind and, second, its addition should
produce a bound three-body system. Therefore, it is hard
to avoid light nucleons or α particles but they can still be
combined with one heavy core nucleus.

We sketch the drip lines for nucleons and α particles and
conclude that it is only possible to form a Borromean system
with one medium-heavy nucleus by combining with two α
particles, two protons, or one proton and one α particle. In
the present investigation we focus on two α particles and
a medium-heavy core nucleus. An α-α effective potential
is chosen to reproduce all low-energy scattering properties.
The α-core effective potential is chosen in the same spirit
to reproduce only the weakest bound two-body states. If
the energy is zero, this nucleus is at the α drip line, and a
positive binding energy could allow more bound states where
the weakest bound, or slightly unbound, is appropriate as an
α-cluster structure in an excited state. These states may be
appropriate when the lower-lying α-core states are forbidden
by the Pauli principle owing to the same nucleonic constituents
in both core and α particle.

The core plus two-α calculations are carried out by use of
the hyperspherical adiabatic expansion method of the Faddeev
equations. The total angular momentum does not have to
be zero and the contributing individual partial waves can as

well be finite. Therefore, we find bound-state solutions for a
few relatively small angular momentum values. The adiabatic
potentials are all remarkably similar with the same minimum
and barrier positions. They are repulsively diverging at
small distances, then steeply increasing from the intermediate
minimum towards larger distances, and finally they decrease
as Coulomb interactions at very large distance. The different
adiabatic potentials are about 1.5 MeV apart from each other
at the minimum, and their curvatures correspond to a zero
point energy of several MeV.

The α-core potential is chosen to allow four three-body
bound states with energies varying from about −5 MeV up
to almost zero for each angular momentum. Each bound state
is dominated at the level of more than 70% by one potential
term. This means that the angular structure of each bound state
is directly related to one adiabatic potential. Still, their partial
wave decompositions are much more complicated, but with
s waves as clearly dominating α-α structures for the lowest
bound state for all angular momenta. The second lowest state is
dominated by the reverse (with respect to lx and ly) compared
to the lowest state. The two highest-lying bound states, in
contrast, contain large fractions of α-α d waves. This might
indicate that the α-α system changes relative structure from
ground to first excited state of 8Be. However, their distance is
too large for the attractive interaction to contribute, and this
structure therefore has to be attributed to angular momentum
and parity conservation.

The spatial distributions of α particles around the core for
the different bound states are revealing. The first striking
result is that the probability distributions as a function of
α-core distances in all states are located in rather narrow
distributions at distances corresponding to α particles at the
surface of the core. This is in contrast to the much more varying
α-α distance distributions. The lowest bound states for all
angular momenta show a spatial α-α distribution similar to
the 8Be structure, but with a slightly smaller average distance.
However, the higher-lying bound states clearly contain several
configurations, where the largest component often resembles
a linear structure with the core between the two α particles. In
these excited states a 8Be-like structure is present but the other
components are usually dominating and the total probability
distribution is much more smeared out than for the two lowest
bound states.

Measurable quantities like the energies should contain
information of α correlations. However, this is exceedingly
difficult to extract from the background of all other effects
contributing to the total energies. We therefore focused on
α-cluster structures resulting from strong α correlations.
These structures can be detected by scattering experiments
where α-particle drip-line nuclei are the most obvious targets.
Large cross sections for two-α removal can be expected as
measured in Ref. [34]. In more detail, an 8Be structure should
emerge from the lowest of our three-body bound states, and
two noninteracting α particles can be expected from the
three higher-lying of the four computed three-body states.
Measuring the transition matrix elements between different
states will also constitute a test of the model.

To compare in more detail with measured quantities, we
followed the standard procedure in few-body nuclear physics.
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We focused on the even-even Borromean two-α nucleus, 142Ba,
where removal of two α particles leave the fairly inert core
nucleus, 134Te. For each partial wave we construct effective
potentials adjusted to reproduce the α core, 138Xe, two-body
resonances. With these potentials we calculated three-body
energies and found a very good agreement with the lowest
states in the known 142Ba spectrum, although the spectrum
was shifted slightly, most likely owing to the fact that pure
three-body effects were not accounted for explicitly. The radial
structure showed that the α particles were placed on the
surface of the core. The relative angular momentum between
the α particles was dominated by s waves. In addition, both
the electric quadrupole transition probabilities and the charge
radius were reproduced rather well. Based on these findings,
we predict that the corresponding structures of these low-lying
states are two α particles in a 8Be configuration rotating with
different angular momenta at the surface of a sphere around the
134Te core. This system is the most promising for exhibiting α
clusterization in the ground state.

In summary, we investigated the structures of two α
particles surrounding a heavy core-nucleus in a three-body
model. The assumptions are that α clusters can be found
with significant probability in such nuclei. We expect that the
most promising places in the nuclear chart are at the α drip
line, where Borromean two-α structures are experimentally

established by mass measurements. These nuclei should have
relatively large sizes in their ground states when the energies
are close to zero. This is the single most important feature
characterizing spatially extended halo structures, which si-
multaneously enhance the possibility for decoupling of core
and α-particle degrees of freedom. These three-body structures
may also appear in excited states of nuclei where the α particle
is bound. Then the α and core degrees of freedom may be
mixed in the ground states but decoupled in the excited state
close to the α threshold.

We have shown that Borromean two-α structures are
possible at the α drip line. The α particles at the surface
of the core nucleus would produce rotational spectra with
the corresponding simple transition probabilities. Strongly
enhanced α-removal cross sections would also be a signal. One
interesting perspective is that similar proton-α-core structures
should be characteristic features of ground states when proton
and α drip lines are close to or intersect each other.
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