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Simple nuclear mass formula
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A simple formula for ground state nuclear masses based on the microscopic-macroscopic approach is proposed.
Considering a set of 2353 nuclei with Z � 8 and N � 8, the formula yields an rms deviation of just 266 keV.
A few applications, including the loosely bound proton rich nuclei, superheavy nuclei, and cluster emitters, are
presented and discussed, establishing the reliability of the proposed formula. The present investigation has a
major advantage: it allows one to reliably parametrize the fluctuating part of the ground state energy. This result
is very interesting and important, since the fluctuating part of the energy is related directly to the trace formula,
which in turn encodes the interaction itself.
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I. INTRODUCTION

Systematization of the ground state nuclear masses has
been a subject of interest for many decades. Models with
different levels of sophistication and different flavors have been
developed so far that yield excellent descriptions of the masses
of nuclei spanning the entire periodic table [1–11]. Such
investigations are crucial, since understanding of a number
of physical phenomena such as the astrophysical r-processes
depends on the ground state masses of the nuclei involved
in them, which includes highly neutron rich species [12,13].
The recent advances in mass measurements (see, for example,
[13–17]) have made it possible to determine masses of neutron
rich as well as neutron deficient nuclei with high degree of
precision. However, experimentally determining masses of all
the nuclei of astrophysical interest may not be feasible in the
near future. Therefore, one needs to rely on theoretical models
for nuclear masses.

The nuclear mass models belong to two distinct categories,
namely, (a) the microscopic models (see, for example, [7–9])
and (b) the microscopic-macroscopic (mic-mac) models
[1–6,10,11]. In the present work, a simple mass formula,
based on the ideas of the mic-mac approach, has been
proposed. The mic-mac approach is developed in the next
section. Applications of the proposed model are presented
and discussed in the third section. The last section contains
summary and conclusions.

II. FORMALISM AND DETERMINATION
OF MODEL PARAMETERS

Consider a system of N neutrons and Z protons at zero
temperature. Let A be the total number of particles in
the system, that is, A = N + Z. According to Strutinsky’s
theorem [18], the ground state energy of a system of A particles
can be written as sum of a “smooth” energy and an oscillatory
term. This result has its roots in the fact that the quantal level
density can be broken up into a smooth term that originates
from the orbits of measure zero and an oscillatory term that
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originates from classical periodic orbits [18]. The smooth part
is obtained, for instance, from the Thomas Fermi model or its
extensions, whereas the determination of the oscillatory part
falls in the domain of the semi-classical periodic orbit theory,
leading to what are known as the trace formulas. There are
a few Hamiltonians for which the trace formulas are known
analytically [18]. A close examination of these reveal that
the trace formulas (at zero temperature) are functions of the
Fermi momentum (or the Fermi energy, as the case may be). In
the case of nuclei, the situation is rather complicated for two
reasons. The nucleon-nucleon interaction itself is enormously
complex, and second, the nucleus is a very complex many-
body self-bound system. Even if the interactions were known
as precisely as one wishes, if would have been a formidable
task to determine the corresponding trace formula.

The purpose of the present work is twofold: (a) to obtain
an accurate and reliable mass formula within the mic-mac
scheme and (b) to obtain information about the trace formula
through reliable parametrization of the fluctuating part of the
ground state energy, which in turn could be useful in deducing
information about the interaction itself.

In the light of the Strutinsky’s theorem stated above, the
binding energy of a nucleus with N neutrons and Z proton can
be expressed as

− E(N,Z) = ELDM + δE. (1)

Note that by convention, the binding energy E(N,Z) is a
positive quantity. Here, ELDM is the macroscopic part and
the δE is the fluctuating part of the binding energy. The above
expression does not include the extra binding energy due to
electrons.

The calculation proceeds in two steps. In the first step, the
smooth part of the total binding energy has been separated
out. This is done within the framework of the liquid drop
model. Following the literature [11,19], it is taken to be the
sum of a volume term (with an isospin dependence), a surface
term, a Coulomb term, the term representing correction to
Coulomb energy due to surface diffuseness, and finally the
pairing energy. Thus, the liquid drop formula assumed in the
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present work reads

ELDM = av

[
1 + 4kv
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]
A
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+ 3Z2e2

5r0A1/3
+ C4Z

2

A
+ Ep. (2)

Here, Tz is the third component of isospin and e is the electronic
charge. The coefficients av (volume energy), kv (isospin
dependence of volume energy), as (surface energy), ks (isospin
dependence of surface energy), r0 (Coulomb radius), and C4

(correction to Coulomb energy due to surface diffuseness) are
treated as free parameters. Explicitly, the (smooth) pairing
energy is given by [20]

Ep = dn

N1/3
, for N odd and Z even,

= dp

Z1/3
, for Z odd and N even,

= dn

N1/3
+ dp

Z1/3
+ dnp

A2/3
, for Z and N odd,

= 0, for Z and N even. (3)

The constants dn, dp, and dnp are treated as free parameters.
The free parameters of the liquid drop formula are obtained
by χ2 minimization of nuclear binding energies, considering
a set of 2353 nuclei with Z � 8 and N � 8:

χ2 =
N∑

j=1

[
E

(j )
expt − E(Nj,Zj )

�E
(j )
expt

]2

, (4)

where E(Nj,Zj ) is the calculated total binding energy for
the given nucleus and E

(j )
expt is the corresponding experimental

value [21]. The experimental uncertainty �E
(j )
expt, for the sake

of simplicity, is assumed to be 0.007 MeV for all the nuclei [see
the discussion following Eq. (8)]. The values of the coefficients
thus obtained are av = −15.505 MeV; as = 17.830 MeV;
kv = −1.825; ks = −2.265; r0 = 1.215 fm; C4 = 1.297 MeV;
dn = 4.687 MeV; dp = 4.717 MeV; and dnp = −6.495 MeV.
The rms deviation obtained for the fit, as expected [1], is
2.456 MeV. The difference �E between the experimental and
the corresponding calculated binding energies is plotted in
Fig. 1. It is clearly seen that the difference is large and negative
for doubly closed shell nuclei. In the present work, it is this
difference that is identified with the fluctuating part of the
binding energy, δE. The values of the fluctuations are seen to
be dependent on the proximity of a given particle number to
the shell closures.

As argued earlier, the fluctuations are linked to the trace
formulas and hence should be functions of the Fermi momen-
tum. Thus, in addition to the proximity to shell closures, δE
is also expected to be a function of N1/3 and Z1/3. Based on
these arguments, the following ansatz for δE is proposed:

δE(�x) =
�M∑

�k=�0

{
a�k cos

(
2π

�x · �k
M

)
+ b�k sin

(
2π

�x · �k
M

)}
, (5)
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FIG. 1. (Color online) Difference between the calculated and the
experimental [21] binding energies.

where �k ≡ (k1,k2,k3,k4), with 0 � ki � M for i = 1, 2, 3, 4.
The vector �x ≡ (x1,x2,x3,x4) stands for

x1 = β1

∣∣∣∣N − No

N

∣∣∣∣, x2 = β2

∣∣∣∣Z − Zo

Z

∣∣∣∣,
(6)

x3 = β3N
1/3, x4 = β4Z

1/3.

Here, No and Zo are suitable magic numbers, assumed to be (a)
8, 20, 50, 82 and 126 for protons and (b) 8, 20, 50, 82, 126 and
184 for neutrons. The magic number No (Zo) is determined by
demanding it to be the closest to the given N (Z). The factors
β1, β2, β3, and β4 are constants. Thus, the first two variables
describe the proximity of a given N or Z to a shell closure. The
variables x3 and x4 are proportional to the Fermi momenta. In
the language of Fourier transforms, the expression above can
be viewed as

δE(�x) = Re
∑

�k
α�ke

−2iπ �x·�k/M. (7)

The coefficients a�k and b�k , at least in principle, should be
determined from the knowledge of nuclear interaction. The
nucleon-nucleon interaction, though well parametrized (see,
for example, [22]), is not yet known exactly. Even if the
interaction was known exactly, due to the complex many-body
nature of the nucleus, it would have been a formidable task
to determine these coefficients. Here, an “inverse” problem
is attempted, in which these coefficients are treated as free
parameters. These are then determined from the known values
of δE for the set of 2353 nuclei. The number of parameters
in such cases becomes quite large (2M4 + 4). However, in
practice, this number can be reduced dramatically by realizing
that it is not necessary to extend the summations over all ki to
M . Explicitly, Eq. (5) is expressed as

δE(�x) =
M∑

k1=0

M−k1∑
k2=0

M−k1−k2∑
k3=0

M−k1−k2−k3∑
k4=0

{
a�k cos

(
2π

�x · �k
M

)

+ b�k sin

(
2π

�x · �k
M

)}
, (8)

which reduces the number of parameters to 2(M + 1)(M +
2)(M + 3)(M + 4)/4! + 4. Finally, since the average of δE
is almost zero, in the above summation, the term with
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�k ≡ (0,0,0,0) is dropped, thereby reducing the number of
parameters by 2. Here, the value of M is taken to be 4.
With this choice, the total number of free parameters becomes
142, which is still large, but considering the complexity of the
problem and the number of data points to be fitted to (2353),
the number is still quite reasonable, 6% of the total number of
data points.

Least squares minimization is carried out using the well-
known Levenberg-Marquardt (LM) algorithm [23,24] to de-
termine these parameters. The LM algorithm is a Newton-type
algorithm, which carries out linearization in a neighborhood
of the current approximation. This neighborhood is known as
the “trust region.” The LM procedure is known to be quite
robust, and has also been extended to the “ill posed” problems
[25]. The NETLIB implementation [26] of the LM algorithm
has been employed here, which has a lot better control over
the so-called LM parameter [24] used in it. This makes the
program more stable and dependable. It should be noted that
the present ansatz is linear in 138 parameters, whereas the four
parameters appearing within the sinusoids make the problem
somewhat nonlinear. However, it turns out that these four
parameters are fairly robust and have numerical values around
4 for β1 and between 1.5 and 2.5 for the rest. The initial guess
values of β have been chosen to be ∼2. For the remaining
parameters, initial values around 0.01 seem to be satisfactory.
The fit thus obtained yields the mean squared deviation of
just 266 keV, which is indeed encouraging. As a comparison,
the Möller-Nix mass formula [5] has a reported mean squared
deviation of 676 keV, Duflo-Zuker mass formula [3,4] has
a mean squared deviation of 373 keV, whereas the recently
reported formula due to Liu et al. [10] has rms deviation of
merely 336 keV.

The values of parameters and a routine to generate the δE
have been provided in the Supplemental Material [27]. The fit
has been tested by slightly changing the initial guess values
of these parameters, leading to results of similar qualities. The
fitted and the corresponding binding energies have also been
listed in the Supplemental Material [27].

In principle the analysis should be carried out with the
experimental error bars included. However, the individual
masses and hence the binding energies have widely varying
error bars associated with them. These range from ∼eV to
several tens of keV or even more. A χ2 minimization with
error bars with such variations is very difficult to carry out. In
the present analysis, for the sake of simplicity, a constant error
of 0.007 MeV has been assumed for all the nuclei, which corre-
sponds to the median of the errors for all the measured masses.
In order to make the error estimation, the variance-covariance
matrix has been worked out by inverting the Hessian matrix
by employing suitable NETLIB routines [26]. The positive
definiteness of the resulting variance-covariance matrix has
been explicitly verified by determining all the eigenvalues
of the same. The square root of the diagonal elements of the
matrix yields errors on the individual parameters, which turn
out to be small for most of the parameters in the present case
(refer to [27] for the detailed error bars on the parameters).
This observation implies that the parameters are indeed well
determined. The statistical error bars on the calculated masses
have been estimated again from the variance-covariance

matrix. The resulting statistical uncertainties turn out to be
of the order of a few keV in most of the cases, indicating
that the fit indeed is dependable. Further, it has been verified
that the statistical uncertainty remains at a few keV level for
entire isotopic chains throughout the periodic table.

In a model where the parameters have been fitted by using
χ2 minimization, goodness of fit is usually judged from the
explicit value of the χ2 per degree of freedom. As seen from
Eq. (4) above, a small value of �E

j
expt even for a single j case

may produce a huge χ2. The χ2 per degree of freedom in the
present context (assuming that the “experimental” errors are
0.007 MeV for all the nuclei), turns out to be ∼1540, indeed a
large number. Ideally, for a model to be good, the χ2 per degree
of freedom is expected to be of the order of 1. Interestingly,
the Möller-Nix mass model, for the same set of 2353 nuclei
considered here and with the experimental errors assumed to
be 0.007 MeV, yields a χ2 per degree of freedom of the order
of 8000. This is about 5 times larger than that obtained for the
present model. However, the Möller-Nix model is known for
its excellent ability to extrapolate and hence considered to be a
reliable mass model. This apparently paradoxical situation can
be understood easily if one realizes that the experimental error
bars on the measured masses are usually very small (could
be as small as 1 eV) [21], and the models do not predict the
masses with that small an rms deviation. Therefore, it is best to
judge reliability of a mass model by its ability to extrapolate as
well as the statistical errors on the calculated binding energies.

As indicated above, one of the aims of this work is to obtain
information about the trace formula. As is well known (see,
for example, [18]), the level density for a system is related to
energy through an inverse Laplace transform. In the present
case, the variables involved are essentially discrete, and at
least in principle, the level density can be obtained from δE
through a multi-dimensional Z transform [28]. Given that the
fit that has been obtained is reliable and accurate, the proposed
analysis is expected to be dependable. Uniqueness of such
an inversion is guaranteed by Lerch’s theorem, according to
which if two functions have the same integral transforms, then
they could differ at the most by a null function (see, for
example, [29]). This ensures that the resulting level density
will be reliable. A detailed investigation along these lines is
underway and will be reported in due course.

The expansion in Eq. (8) has been tested for convergence,
and it is found that the choice M = 4 is optimal. The
liquid drop energy and δE together define the ground state
binding energy of a nucleus with N neutrons and Z protons
completely. The difference between the experimental [21] and
the corresponding calculated binding energies is shown in
Fig. 1 as red stars. An important feature of this figure is
that there are practically no fluctuations remaining in �E.
This has been substantiated by working out the running
averages of the �E values, and it turns out that the running
averages become zero quickly with the subset size. A closer
inspection of the parameters obtained reveals that some of
them do have rather small numerical values, and therefore,
one may think of dropping them from the analysis. However,
one needs to be cautious, since this might lead to the intro-
duction of uncontrollable correlations among the remaining
parameters.
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FIG. 2. (Color online) Calculated and experimental S1n values
[21] for Gd isotopes.

III. RESULTS AND DISCUSSION

A number of tests have been carried out to examine the
validity of the proposed model. In particular, here, the inves-
tigations of (a) single and two neutron separation energies,
(b) α-decay Q values for nuclei in the Sn region as well as
superheavy nuclei, and (c) cluster decay Q values of heavy
nuclei have been reported. All these observables are obtained
by taking differences between the suitable binding energies,
and hence they impose a stringent test of the validity of the
proposed model.

The one and two neutron separation energies (S1n and S2n)
are calculated for all the 2353 nuclei and are compared with
the experimental values (where available). The calculations
are found to be in excellent agreement with the experiment.
It is found that the rms deviation in S1n (S2n) with respect
to the experiment is merely 277 keV (269 keV), which is
in tune with the rms deviation of the mass formula. As an
example, the calculated and experimental one and two neutron
separation energies for Gd isotopes have been plotted in
Figs. 2 and 3. The excellent agreement between the two is
amply clear from the figures.
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FIG. 3. (Color online) Calculated and experimental S2n values
[21] for Gd isotopes.

TABLE I. Calculated and experimental S1p for proton rich nuclei.
The uncertainties in the calculated and the experimental separation
energies have also been indicated in parentheses. Throughout this
paper, error bars have been represented in parentheses. For example,
2.561 (3) stands for 2.561±0.003.

Sp (MeV) Sp (MeV)

Calc. Expt. Calc. Expt.

63Ge 2.561 (3) 2.210 (46) 67Se 2.354 (4) 1.852 (74)
65As −0.179 (3) −0.090 (85) 71Kr 1.876 (6) 2.184 (142)

Similar remarks hold even for proton separation energies.
As an example, the calculated and the corresponding exper-
imental one proton separation energies Sp for the recently
measured highly neutron deficient nuclei [30] are presented
in Table I. It is found that the model predicts the separation
energies to a good degree of accuracy. In particular, the proton
drip line at 65As is reproduced by the model, indicating that
the model seems to be working well even for the exotic nuclei.

Investigations of the structure and decay properties of
neutron deficient nuclei in the Sn region is of current interest.
Here, the α-decay properties of a few Xe isotopes have
been presented as illustrative examples. The calculated and
corresponding experimental [31] α-decay Q values for Xe
isotopes are presented in Table II. It is found that the
calculations are very close to the experimental values. Even
the small Q values are reproduced accurately, indicating the
reliability of the model in that region. In particular, the model
predicts 134Xe to be only very slightly bound against α decay
(with a Q value of 9 keV) which is well within the limits
obtained experimentally (−20 ± 40 keV).

Next, the α-decay Q values of the superheavy nuclei
are investigated. The experimental as well as theoretical
investigations of superheavy nuclei is of current interest
and is important in a number of respects. For instance, it
attempts to answer a crucial question: is there an upper
bound on the periodic table. In addition, description of
superheavy nuclei is a challenge to the nuclear models, since
comparatively little is known about the superheavy region.
Here, the calculated α-decay Q values of the decay chains
of two of the superheavy nuclei, 294118 and 293116, and also
for the nucleus 288115 are presented. The calculated Q values

TABLE II. Calculated and experimental Q values for α decay of a
few Xe isotopes. The uncertainties in the calculated and experimental
Q values have also been indicated.

Parent Qcalc Qexpt

110Xe 3.995 (3) 3.885 (14)
112Xe 3.376 (2) 3.330 (6)
114Xe 2.802 (2) 2.770 (50)
116Xe 2.152 (2) 1.830 (170)
118Xe 1.482 (2) 1.380 (30)
120Xe 0.933 (2) 0.670 (30)
138Xe 0.009 (2) −0.020 (40)
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TABLE III. Calculated and experimental Q values for α decay
of some of the heaviest superheavy nuclei. The uncertainties in the
calculated Q values have also been indicated.

Z A Qcalc Qexpt Z A Qcalc Qexpt

118 294 11.714 (34) 11.81 115 288 10.629 (21) 10.61
116 290 10.988 (25) 10.80 113 284 9.971 (15) 10.15
114 286 10.299 (18) 10.33 111 280 9.399 (10) 9.87
112 282 9.681 (12) <10.69 109 276 8.940 (7) 9.85
116 293 10.683 (29) 10.69 107 272 8.611 (8) 9.15
114 289 9.969 (20) 9.96 105 268 8.256 (8) <7.83
112 285 9.311 (14) 9.28
110 281 8.736 (9) <9.00

are listed in Table III along with the experimental data [32].
The agreement between the two is found to be quite satis-
factory, indicating that the proposed mass formula has good
extrapolatability.

Finally, the Q values for cluster radioactivity are presented
and discussed. The existence of cluster radioactivity (heavier
than 4He) was predicted by Sandulescu, Poenaru, and Greiner
[33], which was confirmed later experimentally by Rose and
Jones [34]. So far, the lightest cluster emitter is known to be
114Ba, which decays by emitting 12C to 102Sn, and the heaviest
cluster emitter is 242Cm, which decays to 208Pb by emitting
34Si. It has recently been pointed out [35] that the cluster
emission mode could be appreciable (with probabilities larger
than that of the α-decay mode by several orders of magnitude)
in certain regions of the yet undetected superheavy nuclei,
thereby making the cluster emission mode an important tool
for identifying and studying the superheavy nuclei. These
predictions depend crucially on the reliability of the Q values
involved. As in the case of α decay of superheavy nuclei,
accurate prediction of cluster decay Q values poses a challenge
to the theoretical models, since the Q values are obtained by
taking the difference between the relevant binding energies.
The calculated and the experimental [36] Q values of a
few cluster emission processes are presented in Table IV.
The calculated Q values are found to be very close to the
experimental data, underlining the reliability of the proposed
mass formula.

In addition, binding energies for all 8979 nuclei listed in
the Möller-Nix tables [6] have been computed. These, along
with the corresponding Möller-Nix values can be found in
the Supplemental Material [27]. It can be seen that the two
agree with each other closely. However, particularly in the
case of extremely neutron rich regions, there are differences.
Furthermore the drip lines predicted by the present model
seem to be reasonable and are similar to those predicted by the
Möller-Nix model.

TABLE IV. Calculated and corresponding experimental [36]
cluster decay Q values. The uncertainties on the calculated Q values
have also been indicated.

Parent Daughter Cluster Q values (MeV)

Calc. Expt.

114Ba 102Sn 12C 19.195 (4) 18.3–20.5
223Ra 209Pb 14C 32.299 (2) 31.85
228Th 208Pb 20O 45.154 (5) 44.72
231Pa 208Pb 23F 51.898 (5) 51.84
230U 208Pb 22Ne 61.724 (4) 61.40
230Th 206Hg 24Ne 58.011 (4) 57.78
233U 208Pb 25Ne 61.424 (4) 60.75
232U 204Hg 28Mg 74.055 (3) 74.32
235U 206Hg 29Mg 72.523 (4) 72.61
236U 206Hg 30Mg 72.471 (3) 72.51
238Pu 206Hg 32Si 91.424 (4) 91.21
242Cm 208Pb 34Si 96.469 (5) 96.53

IV. SUMMARY AND CONCLUSIONS

In summary, a simple mass formula based on the ideas
of trace formulas is proposed. The formula yields an rms
deviation of just 266 keV, which, as far as the author knows,
is one of the smallest deviations reported in the literature. The
reliability of the formula is demonstrated through a number of
illustrative examples, spanning the entire periodic table. The
ability of the formula of reliable extrapolation is also indicated.
The analysis of the variance-covariance matrix establishes that
the results are dependable within a few keV. The present work,
in addition to the accurate description of nuclear masses,
indicates that the fluctuating part of the total ground state
energy of a nucleus can be accurately parametrized. The
implications of this simple result could be significant, since
the fluctuating part of the energy is ultimately related to the
trace formulas and hence the nuclear interaction itself. Further
investigations along these lines are in progress. The formalism
presented here is very simple, and so is the corresponding
FORTRAN code, which can be found in the Supplemental
Material [27].
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[5] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data
Nucl. Data Tables 59, 185 (1995).
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